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1. Introduction

In model theory, we associate to a structure M invariants like Th(M), the theory
of M; these invariants have a logical-combinatorial nature:

• M 7→ Th(M)
• M 7→ category of definable sets and maps over M (or over Meq)
• M 7→ category of definable groups and definable group homomorphisms

over M (or over Meq)

To use Th(M), say, for the study of M it is desirable that Th(M) can be effectively
described in practice: Th(M) should be axiomatizable by finitely many axiom
schemes.

1.1. Example. Th(C as ring) is axiomatized by:

• field axioms (finite in number)
• ∀x1 . . . xn ∃y (yn + x1y

n−1 + · · ·+ xn = 0), (n = 1, 2, 3, . . . )
• 1 + · · ·+ 1︸ ︷︷ ︸

n times

6= 0, (n = 1, 2, 3, . . . )

1.2. Non-example (Gödel). Th(Z as ring) cannot be effectively described in any
reasonable way. (But Z as ordered additive group is tame!)

Since Gödel we know that the requirement of effective axiomatizability of Th(M)
is a serious constraint on M, and this has given rise to the impression (via popular
literature) that there is a very limited scope left for “positive” contributions of logic
to mathematics.

But: despite Gödel, mathematical problems, even in apparently “non-tame”
subjects like number theory, do get solved, often by ingenious moves into tame

territory! Thus the relevance of model theory ≈ tame mathematics

1.3. Example. The field Q of rational numbers is not tame (Julia Robinson), but
its completions R, Q2, Q3, Q5, . . . are all tame (Tarski, Ax, Kochen, Eršov). (It is
not known if the field Fp((t)) is tame.)
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2. How to show tameness of an infinite structure M:

Find a set T of “axioms” such that M |= T and show:

(1) T admits QE [quantifier-elimination] (and. . . ) or:
(2) T is model-complete (and. . . ) or:
(3) T is κ-categorical for some infinite cardinal κ or:
(4) . . . .

If any of these methods works, one usually obtains, not only a complete description
of Th(M), but also a lot of positive information about (the category of) definable
sets and maps, such as a dimension theory for definable sets.

2.1. Example. For M := (R, <, 0, 1,+,−, ·) we take T := RCF (the axioms for
real-closed ordered fields):

• axioms for ordered fields
• ∀x ∃y (x > 0→ x = y2)
• ∀x1 . . . x2n+1 ∃y (y2n+1 + x1y

2n + · · ·+ x2n+1 = 0), n = 1, 2, 3, . . .

How do we show that RCF admits QE?

3. QE test:

An L-theory T admits QE ⇐⇒
for any models M and N of T , each L-embedding R → N, where R ⊆ M and
R 6= M, can be extended to an L-embedding

R′ → N′

from some strictly larger L-substructure R′ of M into some elementary extension
N′ of N.

To apply this test to RCF, we need to know the following about ordered domains
(Artin & Schreier, 1926):

Let A be an ordered (integral) domain. Then:

(1) A has a real closure Arc, i.e. Arc is a real closed ordered field extending A
and algebraic over (the fraction field of) A.

(2) Every embedding A → L of A into a real closed ordered field L extends
(uniquely) to an embedding Arc → L.

Proof that RCF admits QE. LetK and L be real closed ordered fields, A an ordered
sub-ring of K and i : A→ L an embedding (of ordered rings). Assume A 6= K. We
want to show that i can be extended as required in the QE-test. By (2) above we
can reduce to the case that A itself is a real closed ordered field. Take any b in KrA.
Then b determines a cut in A, that is, U < b < V where U := {x ∈ A : x < b} and
V := {x ∈ A : b < x}. Then i(U) < i(V ) in L. By passing to a suitable elementary
extension L′ of L we can take an element b′ of L′ such that i(U) < b′ < i(V ). Then
i extends to an embedding i′ : A[b]→ L′ with i′(b) = b′. �

Routine consequences:

(1) Th(R, <, 0, 1,+,−, ·) = {logical consequences of RCF}, and thus Th(R, <
, 0, 1,+,−, ·) is decidable.

(2) Qrc (the ordered field of real algebraic numbers) is an elementary substruc-
ture of (R, <, 0, 1,+,−, ·).

(3) Definable = semi-algebraic (for any real closed ordered field).
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(4) If S is a semi-algebraic subset of Rm+n, then there is a semi-algebraic map
f : πS → Rn such that Γ(f) ⊆ S: [picture]. (This can be read off directly
from the axioms of RCF.)

4. The field of p-adic numbers (p prime):

Equip Q with the (non-Archimedean) absolute value given by |a|p = p−e, where

a = pem/n with e,m, n ∈ Z and p - mn. The completion of (Q, |·|p) is called the

field of p-adic numbers and is denoted by (Qp, |·|p). Its elements are infinite sums∑
k∈Z akp

k with all ak in {0, 1, . . . , p− 1}, and ak = 0 for all k less than some k0 in
Z.
Zp = closure of Z in Qp = {x ∈ Qp : |x|p 6 1}, a compact sub-ring of Qp.

The pair (Qp,Zp) is an example of a valued field.
A valued field is a pair (K,V ) with K a field and V a valuation-ring of K (i.e.

a sub-ring of K such that x ∈ K =⇒ x ∈ V ∨ x−1 ∈ V ).
To a valued field (K,V ) we associate:

• its residue field k := V/m(V )
• its value group Γ := K×/V ×, viewed as an ordered abelian group with
aV × 6 bV × ⇐⇒ b/a ∈ V .

4.1. Definition. We call a valuation-ring V Henselian if each polynomial Xn +
a1X

n−1 + · · ·+ an−1X + an in V [X] such that an−1 /∈ m(V ) and an ∈ m(V ) has a
zero in m(V ).

4.2. Examples. Zp is Henselian, k[[t]] is Henselian (for any field k).

4.3. Definition. A p-adically closed field is a valued field (K,V ) such that charK =
0 and V is Henselian, with m(V ) = pV and k ∼= Fp and [Γ : nΓ] = n for n equal to
1, 2, 3, . . . .

So (Qp,Zp) is a p-adically closed field.

4.4. Theorem (Kochen, late 1960s). The theory of p-adically closed fields is com-
plete and model-complete.

Kochen used this to characterize rational functions in Qp(X1, . . . , Xn) that take
only values in Zp for arguments in Zp (such as (Xp − X)/p). (“p-adic Hilbert’s
17th problem”)

5. Henselian valued fields of equi-characteristic 0

Consider Henselian valued fields (K,V ) of equi-characteristic 0, i.e. charK =
char k = 0.

5.1. Theorem (Ax & Kochen, Eršov, mid 1960s). Th(K,V ) is completely deter-
mined by the pair (Th(k),Th(Γ)) (Γ = value-group).

Proof. A classical result of Kaplansky’s (1940s) is that a valued field (K,V ) of
equi-characteristic 0 can be embedded as a valued field into the generalized formal
power-series field k((tΓ)) consisting of all formal series

∑
γ∈Γ αγt

γ with coefficients

αγ in k, and with well-ordered support {γ ∈ Γ : αγ 6= 0} (the valuation-ring of
k((tΓ)) consisting of the series with support included in Γ>0).

By adapting suitably the embedding technique of Kaplansky, A & K and Eršov
showed that if (K1, V1) and (K2, V2) are Henselian valued fields of equi-characteristic
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0 with Th(k1) = Th(k2) and Th(Γ1) = Th(Γ2), then (K1, V1) and (K2, V2) have
isomorphic elementary extensions. Therefore Th(K1, V1) = Th(K2, V2). �
5.2. Corollary. Given an elementary statement σ about valued fields, there are
elementary statements σ1, . . . , σk about fields and elementary statements τ1, . . . , τk
about ordered groups such that for all Henselian valued fields (K,V ) of equi-characteristic
0,

(K,V ) |= σ ⇐⇒ k |= σi ∧ Γ |= τi for some i in {1, . . . , k}.
Note the uniformity : the equivalence holds for all (K,V ). This has a remarkable

consequence:

6. Consequence for Qp and Fp((t))

Let σ be an elementary statement about valued fields. Then

(Qp, Zp) |= σ ⇐⇒ (Fp((t)),Fp[[t]]) |= σ

for all but finitely many primes p.

Proof. By Gödel’s Completeness Theorem, there must be a formal proof of

σ ↔ (σ1 ∧ τ1) ∨ · · · ∨ (σk ∧ τk)

from the axioms for Henselian valued fields of equi-characteristic 0. But only finitely
many of the axioms saying that the fields and the residue-field have characteristic
0 can be used in such a proof. Thus the equivalence above also holds in (Qp, Zp)
and in (Fp((t)),Fp[[t]]) for all but finitely many p. Now note that these two valued
fields have the same residue-field and the same value-group. �

7. Application

Serge Lang showed in his thesis (early 1950s) that each homogeneous polynomial
of degree d at least 1 in more than d2 variables over Fp((t)) has a non-trivial zero
in that field. Thus, for a given d at least 1, this statement remains true when we
replace Fp((t)) by Qp, for all but finitely many p.

(Exceptions indeed occur, [Terjanian,] and may depend on d.)
What about QE for Henselian valued fields? There are several results of the

following general nature (P.J. Cohen, V. Weispfenning, F. Delon, J. Denef, Pas).
Henselian valued fields of equi-characteristic 0 have (uniformly) relative QE:

field-quantifiers can be eliminated at the cost of introducing quantified variables
ranging over the residue-field, and over the value-group. (The exact language used
here can make a difference for the applications.)

7.1. Example (Pas). For the valued field (C((t)),C[[t]]) we have (full) QE in the
language with 3 sorts of variables: variables ranging over the field itself, vari-
ables ranging over the residue-field C, and variables ranging over the value-group Z
(viewed as an ordered abelian group with unary predicates for the sets nZ, where
n = 2, 3, . . . ); moreover, these sorts are related in the usual way, except that in-
stead of the residue-class map C[[t]] → C we consider the leading-coefficient map
C((t))→ C associating to each series its leading coefficient.


