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Here are notes originally prepared for a talk to be given as part
of Istanbul Model Theory Day, April 18, 2016, at the Istan-
bul Mathematical Sciences Center on the campus of Bogazici
University. 9§ I submitted a long abstract, given here only as
an appendix (Chapter A) because it is not a great summary
of what I actually did talk about. In any case, the abstract
was reported to be too long for a poster for the event, and so
I submitted the following short abstract:

A field acting on an abelian group produces a vector space.

A Lie ring acting on an abelian group produces a differential

field. Combining the two actions produces a Lie-Rinehart

pair, and we shall look at this from the model-theoretic point

of view.

The notes here cover more than this, and more than I expected
to discuss in the hour and a half of my talk. 9 As I said at
the beginning of it, the talk continued one of May 13, 2013,
called “Descartes as Model Theorist,” whose notes I had just
revised and expanded [16]. My theme would be model theory
as self-conscious mathematics. 9 I started with the puzzle in
Figure 1.2. I compared modern and ancient proofs of Hero’s
formula, observing that the formula itself involved a product of
four lengths. This disturbed Pappus, but apparently not Hero.
Pappus was able to state the eight-line locus problem in terms
not of a ratio of products of four lengths, but of a product
of four ratios of lengths. In any case, the ancients could not
solve even a five-line locus problem, but Descartes could. 9
After a break, I sketched the derivation of the properties of
a Lie-Rinehart pair, and especially the identities (2.4) and
(2.12). I stated Theorem 1, mentioned Theorem 2, defined D-
dependence, mentioned Theorems 3 and 4, and gave the short
proof of Theorem 5.
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1. Analytic geometry

1.1. Axioms

To Euclidean plane geometry there are two approaches:

1. The so-called synthetic approach of Euclid and followers,
whereby the properties of the plane are derived logically
from axioms.

2. The “analytic” approach, in which the plane is given ex-
plicitly from the beginning, as the set of ordered pairs of
real numbers.

In the latter case, there are two approaches to the real num-
bers:

(a) They may be taken as satisfying the axioms of a complete

ordered field.

(b) They may be constructed from the counting numbers.
In the latter case, there are two approaches to the counting
numbers:

[i] They may be taken as satisfying the Peano axioms.*

[ii] They may be constructed.

In the latter case, rigor and elegance would seem to require
a construction like von Neumann’s [23] on the basis of the
Zermelo—Fraenkel axioms of set theory |25, 19].

'T call them Peano axioms by tradition. Peano stated them formally,
symbolically, in 1889 [13]; but Dedekind understood their content
earlier [1] and better [15].



Thus, be it “synthetic” or “analytic,” every approach to ge-
ometry is based on axioms.

1.2. Analysis and synthesis

In Greek, synthesis (ovvféois) is building up, or composition,
in Anglicized Latin loan-translation; analysis (avd\vois) is
cutting down, or dissolution.

1.2.1. Pappus of Alexandria

In geometry, analysis is assuming what you want to find, then
working backwards to see how it can be reached. Synthesis is
going forwards to reach it. This is how Pappus of Alexandria
explained the terms in the fourth century CE,? at the beginning
of Book Vi1 of his Collection |11, p. 82|:3

That which is called the Domain of Analysis, my son Her-
modorus, is, taken as a whole, a special resource that was
prepared, after the composition of the Common Elements,*
for those who want to acquire a power in geometry that is
capable of solving problems set to them; and it is useful for

My handy reference for the dates of ancient mathematicians is the table
on the inside back cover of Russo [17].

3The passage is also found in Thomas’s Loeb anthology [21, p. 597]

41t is not clear why Jones capitalizes and italicizes this, as if it were the
name of a particular book; for his note on the phrase reads, “That is,
common to all branches of mathematics. Pappus sometimes calls Eu-
clid’s book the First Elements (mpdira oroiyeia). Eroxeia by itself some-
times means Euclid’s Elements (and oroweiov an individual proposition
of the Elements), but the word often refers to other books, generally
those that are not ends in themselves, but are intended to be used for
other works . . . ” [12, p. 380].
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this alone. It was written by three men: Euclid the Elemen-
tarist, Apollonius of Perge, and Aristaeus the elder, and its
approach is by analysis and synthesis.

Now, analysis is the path from what one is seeking, as if it
were established, by way of its consequences, to something
that is established by synthesis. That is to say, in analysis we
assume what is sought as if it has been achieved, and look for
the thing from which it follows, and again what comes before
that, until by regressing in this way we come upon some one
of the things that are already known, or that occupy the rank
of a first principle. We call this kind of method ‘analysis’, as
if to say anapalin lysis (reduction backward). In synthesis,
by reversal, we assume what was obtained last in the analysis
to have been achieved already, and, setting now in natural
order, as precedents, what before were following, and fitting
them to each other, we attain the end of the construction of
what was sought. This is what we call ‘synthesis’.

Today, in analytic geometry, what we want to find is real
numbers, or rather a relation of two of them, which we call x
and y; the relation will be expressed by an equation. This is
how Descartes (at |2, p. 29] or [3, p. 11]) reformulates locus
problems, after quoting Pappus on the subject.> We may
state the general problem as follows.

If some even number ¢y, . . . , {5, 1 of straight lines are given
in a plane, along with a ratio o, we want to find those points
P in the plane such that, if the distance between P and ¢; be
called d;, then

d(] e dnfl o Hi<n dz .
= = . (1.1)
dn e d2n71 Hi<n dn+i

5He quotes Pappus in Latin translation, rather than the original Greek,
“afin que chacun lentende plus aisément” [3, p. 7, n. 1].
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Figure 1.1.: From point to straight line at a given angle

If the number of given straight lines is odd, so that /5, 1 is
missing, we may replace dy, 1 with a given length, or with
dop_o.

For Pappus, d; might be the distance from P to ¢; along a
straight line that meets {; at a given angle. This would mean
adjusting « by the sine of the angle (Figure 1.1).

Also for Pappus, if n = 3, then the problem is to ensure
that the ratio of the volumes of two parallelepipeds is «a. If
n > 3, then Pappus does not allow the product [[._ d; to
have a meaning. However, he makes two points:

1. Other mathematicians do find the product meaningful.

2. The equation (1.1) can be reformulated as

<n

do s 7 d
dn d2n71 B . dn+i -

<n

and the product here does have a meaning, since it is
a product of ratios, which are dimensionless. Thus if
lengths a, b, ¢, and d are given, then there is some e

1.2. Analysis and synthesis 9



such that ¢/d = b/e, and consequently

Qo

a
o .

a
b

SIS
Ul o

Here are Pappus’s own words [11, pp. 120—3|, which Descartes
quotes (the passage immediately preceding is quoted on page
19):

(36) If three straight lines are given in position, and from
some single point straight lines are drawn onto the three at
given angles, and the ratio of the rectangle contained by two
of the (lines) drawn onto (them) to the square of the re-
maining one is given, the point will touch a solid locus given
in position, that is, one of the three conic curves [ypauual.
And if (straight lines) are drawn at given angles onto four
straight lines given in positions, and the ratio of the (rectan-
gle contained) by two of the (lines) that were drawn to the
(rectangle contained) by the other two that were drawn is
given, likewise the point will touch a section of a cone given
in position.

(37) Now if (they are drawn) onto only two (lines), the
locus has been proved to be plane, but if onto more than
four, the point will touch loci that are as yet unknown, but
just called ‘curves’ |ypapuai], and whose origins and prop-
erties are not yet (known). They have given a synthesis of
not one, not even the first and seemingly the most obvious
of them, or shown it to be useful. (38) The propositions
of these (loci) are: If straight lines are drawn from some
point at given angles onto five straight lines given in posi-
tion, and the ratio is given of the rectangular parallelepiped
solid contained by three of the (lines) that were drawn to the
rectangular parallelepiped solid contained by the remaining
two (lines) that were drawn and some given, the point will
touch a curve given in position. And if onto six, and the
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ratio of the aforesaid solid contained by the three to that
by the remaining three is given, again the point will touch a
(curve) given in position. If onto more than six, one can no
longer say “the ratio is given of the something contained by
four to that by the rest”, since there is nothing contained by
more than three dimensions.

(39) Our immediate predecessors have allowed themselves
to admit meaning to such things, though they express noth-
ing at all coherent when they say “the (thing contained) by
these”, referring to the square of this (line) or the (rectan-
gle contained) by these. But it was possible to enunciate
and generally to prove these things by means of compound
ratios, both for the propositions given above, and for the
present ones, in this way:

(40) If straight lines are drawn from some point at given
angles onto straight lines given in position, and there is given
the ratio compounded of that which one drawn line has to
one, and another to another, and a different one to a different
one, and the remaining one to a given, if there are seven, but
if eight, the remaining to the remaining one, the point will
touch a curve given in position. And similarly for however
many, even or odd in number. As I said, of not one of these
that come after the locus on four lines have they made a
synthesis so that they know the curve.

1.2.2. Hero of Alexandria

Mathematicians who have used products of four lengths in-
clude Hero of Alexandria (in the first century CE), in comput-
ing the area of a triangle from the lengths of its sides. Hero
writes [21, pp. 471—7]:
There is a general method for finding, without drawing a per-
pendicular, the area (70 éuBaddv) of any triangle whose three

1.2. Analysis and synthesis 11



sides are given. For example, let the sides of the triangle be
7, 8 and 9.
1. Add together 7, 8 and 9; the result is 24.
Take half of this, which gives 12.
Take away 7; the remainder is 5.
Again, from 12 take away 8; the remainder is 4.
And again 9; the remainder is 3.
Multiply 12 by 5; the result is 60.
Multiply this by 4; the result is 240.
Multiply this by 3; the result is 720.
Take the square root of this and it will be the area of
the triangle.®

© XN TN

Since 720 has not a rational square root, we shall make a
close approximation . . .

The general rule is what we call Hero’s formula: If a triangle
have sides of lengths a, b, and ¢, so that the semiperimeter s
of the triangle be half of a + b + ¢, then the area K of the
triangle is given by

K =/s(s—a)(s —b)(s — c).

Hero’s proof will use the situation of the puzzle in Figure 1.2.
What is the radius of the circle, inscribed in a right triangle,
whose point of tangency with the hypotenuse divides this into
segments of lengths 3 and 10 respectively?? If one calls the
radius R, then by the Pythagorean Theorem,

(R+3)*+ (R+10)* = 132,

5The numbering of the steps is by me.

7“Maslanka Puzzles,” Guardian Weekly, September 6-12, 2013. I had
written the puzzle on a sheet of paper that I filed away with some
notes on Descartes. Taking out the latter for present purposes, I
found the puzzle too.
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Figure 1.2.: What is the radius of the inscribed circle?

A

B C
x N a—x

Figure 1.3.: Hero’s formula, the modern way

2R?* + 26R + 109 = 169,
R(R +13) = 30.

Here R + 13 is the semiperimeter of the triangle, and so the
area of the triangle must be 30.

We can obtain a modern “analytic” proof of Hero’s formula,
using the diagram of Figure 1.3, by expressing h? in terms of
a, b, ¢, and x by means of the Pythagorean Theorem applied
to two different triangles.® We solve for x and then h, plugging

81 follow here the Weeks—Adkins textbook |24, pp. 268—9] from which I
was taught geometry in high school. The book was perhaps rigorous
enough; but it made me wish we just read Euclid instead.

1.2. Analysis and synthesis 13



the result into 4K?2 = a?h?. Details are as follows.

A —2*=h*=b—(a— 1)
A =b —d® + 2ax,
a? — v+

r=———,
2a

4K? = a®h?
— CL2 . (02 o 1’2)

=a’ (c+a)(c—z)

_ & (<a+;§—b?) (b?— (;a_ C>2>

:;l(a+b+c)(a—b+c)(a+b—c)(—a+b+c)

=4s(s—b)(s —¢)(s —a).

Note that the sign of a — x is irrelevant. The only “geometry”
needed is the Pythagorean Theorem. A completely formulaic
approach would be to note that

1
K = —acsin j3,
2
while by the Law of Cosines
b = a® + ¢ — 2accos 3,
so that

4K? = a*c*sin® B

=a’c® — a®c*cos’ B

2 .2 2\ 2
:a%z_(ba—C)
2
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as before.
By contrast, Hero’s own proof? is thoroughly geometrical,
in the sense of relying on the diagram, as in Figure 1.4.
1. Triangle ABI is given.
2. H is the center of the inscribed circle.
3. 4, E, and Z are the feet of the perpendiculars dropped
from H to the sides of ABI.
The area of ABI is twice the triangles BI'H and AAH.
I'B is extended to 0 so that BO = AA.
The area of ABI' is I'60 - EH.
Angles 'HA and I'BA are right.
TI'HBA is a circle.
Angle BAT is supplementary to BHT.
10. So is AHA.
11. Thus angles BAI' and AHA are equal.

12. By similar triangles, one has the computations given in

© 0N Do

Figure 1.4.
In Cartesian style, we might assign minuscule letters:
a = BT, b=Ar, c = AB.

Letting s = 1(a + b+ ¢) as before, we have

AA = s —a, BE = s — b, EI'=5s—c¢,

9At least, the proof given by Hero; “Heron’s formula . . . is now known
from Arabian sources to have been discovered by Archimedes” [21, p.

477, 1. al.
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r
BO = AA,
. BI': BA :: AA: AH
A AA - EH,
BI: AA:: BA: EH
:: BK : KE,

Io: AA:: BE : KE,
I6?:10-AA:: BE -ET : KE -ET
- BE - ET : EH?,
Ie* . EH*>=T16-AA-BE-ET,
ABI' =T -AA-BE - ET.

Figure 1.4.: Hero’s formula, his way
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so that, if we define
d = BA, e = BK, f =KE, h =EH,

we can argue as in Figure 1.5. The manipulations are more
transparent, though not of a kind that we are used to; and
they require several references to the diagram. It may be that
Hero’s proof is better for somebody who can look at the dia-
gram, but has no ready supply of paper for computations.

1.2.3. René Descartes

The conic sections are just that: the intersections of planes
with cones. It turns out that every conic section, for some
choice of rectangular coordinate system (including choice of
unit length), for some positive ratio e, can be given by the
equation

>+t =e (v +1)?

(see Figure 1.6). The conic section is then the locus of points,
the distances of each of which from the focus (0,0) and from
the directrix x + 1 = 0 have the constant ratio e.

Instead of using three dimensions to define conic sections
as such, some modern books use the focus-directrix property
as a definition of what are still called the conic sections. An
example is the textbook of Karakas [4], the official reference for
a course of analytic geometry that (with two senior colleagues)
[ was assigned to teach at METU in the fall semester of 2007-8.

We can infer from Pappus that Euclid knew of the focus-
directrix property;'° but in this case the property is a theorem,
not a definition.

*°See [20, pp. 492503, esp. P. 495, n. a], [11, pp. 362—71], and [12, pp.
5037 & 591-5].

1.2. Analysis and synthesis 17



3~(3—a): f-(s—=¢) - h? ’
s*h*=s-(s—a)(s —b)(s —c).

Figure 1.5.: Hero’s formula, Cartesian style
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Figure 1.6.: A conic by the focus-directrix property

The conic sections are also the solutions of the four-line locus
problem. Descartes works this out, though Pappus notes that
it was known to Apollonius, and partially to Euclid before him.
Just before the long passage on locus problems quoted earlier,
Pappus castigates Apollonius because, instead of acknowledg-
ing the value of what Euclid did do on the locus problem, he
boasts of having done better. Here is what Pappus says [11,
pp. 116-21]:

(32) . . . Apollonius says what the eight books of Con-
ics that he wrote contain, placing a summary prospectus in
the preface to the first, as follows: “The first contains the
generation of the three sections and the opposite branches,
and their fundamental symptomata,** more fully and more

11

“olp-mTwpa, atos, 6: Anything that happens, a chance, occurence . . .
II. property, attribute . . . 2. Geom., property, of a curve, etc . . .”
[8, p. 1686]. By transliterating the Greek word, and not simply trans-
lating it as “property,” Jones seems to take it as a technical term for

1.2. Analysis and synthesis 19
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Figure 1.7.: A cutting-off of a ratio

thoroughly examined than in the writings of others . . . The
third (has) many and various useful things, which are both
for syntheses of solid loci, and for (their) diorisms;** and
having found most of them both elegant and novel, we found
that the synthesis of the locus on three and four lines was

what Pappus referred to earlier, in (30), as a ouuBeBijxos of each of the
ellipse, hyperbola, and parabola: namely that, respectively, “a certain
area [ywplov| applied to a certain line . . . falls short [é\etmov] by a
square, . . . exceeds [tmepBdAov] by a square, . . . neither falls short
nor exceeds.”

*?Jones defines a diorism as, “the conditions of possibility and number
of solutions of a problem” [11, p. 67]. He cites an example from The
Cutting off of a Ratio of Apollonius [12, pp. 606—7|. See Figure 1.7,
where it is given that AB || I'A and the point 6 lies within angle AZH.
A ratio is given, and we are set the problem of finding K on EB so
that the ratio of EK to ZA is the given ratio. Since for any choice of
K, EK : ZA < EO : OM, it must be that the given ratio is less than that
of EO to OM: this is the diorism of the problem. A simpler example is
found in Proposition 1.22 of Euclid’s Flements, which is the problem
of constructing a triangle with given sides: the diorism is that any
two of the sides must be greater than the third [12, p. 382].

20 1. Analytic geometry



not made by Euclid, but (merely) a fragment of it, nor this
felicitously. For one cannot complete the synthesis without
the things mentioned above . . .”

(33) Thus Apollonius. The locus on three and four lines
that he says, in (his account of) the third (book), was not
completed by Euclid, neither he nor anyone would have been
capable of; no, he could not have added the slightest thing
to what was written by Euclid, using only the conics that
had been proved up to Euclid’s time, as he himself confesses
when he says that it is impossible to complete it without
what he was forced to write first. (34) But either Euclid,
out of respect for Aristaeus as meritorious for the conics he
had published already, did not anticipate him, or, because
he did not desire to commit to writing the same matter as
he (Aristaeus),—for he was the fairest of men, and kindly to
everyone who was the slightest bit able to augment knowl-
edge, as one should be, and he was not at all belligerent,
and though exacting, not boastful, the way this man (Apol-
lonius) was,—he wrote (only) as far as it was possible to
demonstrate the locus by means of the other’s Conics, with-
out saying that the demonstration was complete. For had he
done so, one would have had to convict him, but as things
stand, not at all. And in any case, (Apollonius) himself is
not castigated for leaving most things incomplete in his Con-
ics. (35) He was able to add the missing part to the locus
because he had Euclid’s writings on the locus already before
him in his mind, and had studied for a long time in Alexan-
dria under the people who had been taught by Euclid, where
he also acquired this so great condition (of mind), which was
not without defect.

This locus on three and four lines that he boasts of having
augmented instead of acknowledging his indebtedness to the
first to have written on it, is like this . . .

1.2. Analysis and synthesis
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Here follows the earlier quotation, where Pappus says in par-
ticular,

of not one of these [locus problems| that come after the locus
on four lines have they made a synthesis so that they know
the curve.

Descartes does solve a particular five-line locus problem, as
depicted in Figure 1.8, where GF, ED, AB, and I H are par-
allel and evenly spaced, and G is perpendicular to them. We
want to find C' so that

CF-CD-CH=CB-CM - Al
We let
CM =z, CB =y, Al = AE =GFE =a,
so that
CF =2a —y, CD=a-—y, CH=y+a.

Then
azy = (2a —y)(a —y)(y + a)
= (y — 20)(y* — a°)
=% — 2ay® — a*y + 2a°. (1.2)

Does merely writing this equation mean that we have solved
the locus problem? Note that we can solve the equation for z.
In any case, following Descartes, we show that the equation
defines the intersection of
e a parabola whose upright side (latus rectum) is a, whose
axis is AB, and whose vertex is a point K, which slides
along AB; and
e astraight line passing from G through the point L, which
is on the axis of the parabola at a distance a from K.

22 1. Analytic geometry
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Figure 1.8.: A five-line locus problem
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We shall show that the intersection of the parabola and the
straight line does indeed solve the problem. This would seem
to be the “synthesis” of the problem.

We establish two expressions for BK and show that their
equation is just (1.2). By similar triangles,

GM : MC :: CB: BL,

that is,
2a —y Y
x BL’

and therefore

BIL — zﬁy, BK = KL — BL

vy
_2a—y
_20° —ay —xy

2a —y

Also, by the symptoma of the parabola,

<

BK : BC :: BC:a, BK = —.

Equating the two forms of BK gives

2a% — ay — xy B y?
2a — vy T a’
2a® — a*y — avy = 2ay* — o,
which is equivalent to (1.2).
For Pappus, I think, just finding (1.2) does not solve the
locus problem. For us, perhaps it does, since it gives us the
tools for analyzing curves that we learn in calculus. In fact the
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equation already has geometric meaning, at least implicitly,
since Descartes has shown that the Euclidean plane interprets
the field operations given by the equation. In this way, field
theory is geometry.

One can go the other way, using an ordered field to construct
a Fuclidean plane. Thus geometry is field theory.

Textbooks of today, such as the cited book of Karakag [4],
show some confusion over these points.

1.3. The Cantor—Dedekind Axiom

In a book from 1953 called Fundamental Concepts of Algebra,
after reviewing the construction of the real numbers on the
foundation of the Peano postulates, Bruce Meserve states the
“Cantor-Dedekind axiom” |9, p. 32|:

To each point of the line there corresponds one and only
on real number and, conversely, to each real number there
corresponds one and only one point of the line.

Meserve’s purpose seems to be to establish what continuity of
a line or curve is. Meserve will later give the e—§ definition of
continuity of real functions. In his Fundamental Concepts of
Geometry, he says [10, p. 86]:

In euclidean geometry we have the following theorem:

CANTOR-DEDEKIND THEOREM: There exists an isomor-
phism between the set of real numbers and the set of points
on a line in euclidean geometry.

This isomorphism enables us to use the set of real numbers
as coordinates of the points on a euclidean line.

No proof is offered; but five pages later, the assertion is re-
peated as an axiom:

POSTULATE OF CONTINUITY.

1.3. The Cantor-Dedekind Axiom 25



P-14: There exists a projective line m containing a set of
points P, isomorphic with the set of numbers in the extended
real number system.

This is the last axiom for a projective geometry in a geome-
try book that treats “synthetic” projective geometry first; only
later does one see analytic projective geometry, and then affine
and Euclidean geometry.

As of April 5, 2016, Meserve’s two books were cited in the
Wikipedia article, “Cantor—Dedekind axiom.” According to
this short article,

This axiom is the cornerstone of analytic geometry. René

Descartes implicitly assumes this axiom . . .

Similarly, Karakas alludes to this “axiom” as “the fundamental
principle of analytic geometry” |4, §1.5, pp. 15-6]. The iso-
morphism between real numbers and points in each case is, at
best, an isomorphism of ordered abelian groups.

1.4. The real fundamental principle

Addition itself is fundamental to both geometry and arith-
metic. To place two line segments end to end, and to combine
two sets into one, are basic mathematical activities with an ob-
vious correspondence. at least the two activities correspond,
if each of the line segments is a number in the sense of Euclid,
meaning it is a multitude of units.

If we conceive of a number as a row of dots, then we can
multiply it by stacking new rows on top. This is like erecting
a rectangle on a given line segment. See Figure 1.9. However,
an array of dots, like a row of dots, is still a set of dots. But a
rectangle is a completely different kind of thing from a straight
line.
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Figure 1.9.: Multiplication

The true fundamental principle of analytic geometry is that
the fixing of two points on an infinite straight line can be
shown geometrically to determine a field structure in which Q
embeds.

If the line is continuous, then it will be isomorphic to R;
but this is not essential for geometry. What is essential for
Cartesian geometry is that there be a multiplication on the
line with a geometric meaning.

Descartes shows how this meaning arises from a theory of
proportion, though he does not give details. In fact Proposi-
tion .43 of Euclid’s Elements is enough. This is the propo-
sition according to which, if a parallelogram is divided into
four, then two non-adjacent parts are equal if the diagonals of

the other two are in a straight line. See “Descartes as Model
Theorist” [16].
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2. Lie—Rinehart pairs

By a differential field, let us understand a field K equipped
with a set V' of derivations that is closed with respect to

(1) addition and subtraction,

(2) scaling by elements of the field, and

(3) the Lie bracket.
In particular, V' is a vector space over K; we shall assume
further that it is nontrivial. We are going to consider the pair
(K, V) as a two-sorted structure, called a Lie-Rinehart pair.
In a typical example,

m— 0 0
K:C(to,...,t 1), V:SpanK<%y---7W)a

where the t* are algebraically independent over C. We shall
use minuscule Latin letters for elements of K; capitals, for V.
Thus

a, b,y € K, D, E, XY eV.

We are going to require K to be a field. Others may not do
so. They may assume simply that K is an associative algebra
over some field, but that V' is a Lie algebra over the field. We
have such a field, namely the prime field of K.
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2.1. Analysis

Algebraic properties of Lie-Rinehart pairs (K, V) are as fol-
lows.

2.1.1. Abelian groups, mutually acting

Both K and V' are nontrivial additive abelian groups. More-
over, they act on each other as groups; that is, there are maps

(,Y) = 2y, (X, y) — Xy

from K x V to V and from V x K to K respectively that are
additive in each argument, so

(a+b)(D+FE)=aD+bD+al +dE, (2.1)
2.1
(D + E)(a+b) =Da+ Db+ Ea+ Eb.

Since the endomorphisms of an abelian group compose another
abelian group, we have homomorphisms

e v — (Y —2Y) from K to End(V),
e X — (y— Xy) from V to End(K).

The latter map is literally an inclusion. All four structures
here are to be understood implicitly as abelian groups,—and
only that, so far.

2.1.2. Action of an associative ring

K is also equipped with a multiplication, denoted by x or -
or juxtaposition. By the definition that I shall use, a multi-
plication on an abelian group is just a binary operation that
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distributes over addition (in both senses); a ring is then an
abelian group with a multiplication. We have now a homo-
morphism

T

from K to End(K), given by
ab=a-b. (2.2)

The homomorphism is an embedding, since x has an iden-
tity, 1, which is not 0 (since K is nontrivial), and also x has
inverses.

Since X is associative, we have

c/L\-/bx:(a-b)-x:a-(b-x)za(gx):(5og)x,

and thus the map z — 7 is an embedding of the associative
ring (K, X) in the associative ring (End(K), o).
In fact (K, x) is a commutative ring:

a-b=">-a. (2.3)

We shall not use this further, but it will be analogous to (2.8).
We shall use that (K, x) is a division ring (hence a field).

K acts on V not only as an abelian group, but as an asso-
ciative ring:

1D =D, (a-b)D = a(bD).

That is, the map = — (Y — 2Y) is a homomorphism from
the associative ring (K, x) to the associative ring (End(V), o).
Thus V' is a module over K, in fact a vector space, since K
is a field (or just a division ring). Since V' is nontrivial, the
homomorphism from K to End(V) is an embedding.
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In short,
x—2: (K, x)— (End(K), o),
r—x: (K, x)— (End(V),o0).

We may thus consider an element a of K as an element of
End(V); but as an element of End(K), it is called a.

2.1.3. Action of a space of derivations

V acts on K not only as an abelian group, but as a vector
space over K. Thus

(aD)b = a - (Db) = a(Db).
We can write this more simply as
aD =aoD. (2.4)

This means the diagram of Figure 2.1 commutes.
K is acted on by V' not only as an abelian group, but as a
ring. In particular,

D(a-b) = (Da)-b+ a- Db, (2.5)

that is, V acts on (K, X) not only as a space, but as a space of
derivations. By (2.2), namely ab = a - b, we can write (2.5)

as
D(@b) = Dab + a(Db),

which means D o d = Da +a o D and hence
Da=Dod—doD. (2.6)

This, along with being in End(K), is what it means for D to
be a derivation of (K, x).
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(z,Y)—zY

KxV \%
(2,Y)—(F,Y) C
End(K) x End(K) - End(K)

Figure 2.1.: Commutative diagram for aD =ao D

2.1.4. Lie multiplication

The abelian group End(K) is closed not only under functional
composition, but also under the bracket, [ , ] or b, given by

[, 0] = bty =poyp —1hop.

Since composition is a multiplication on End(K), so is the
bracket. Because of the Jacobi identity for the bracket on
End(K), namely

[[gpad)]vX] = [907 [¢7X” - [¢a [9079(]}7 (27)

as well as anticommutativity,

[, 9] + [, ] = 0, (2.8)

(End(K),b) is by definition a Lie ring.
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Theorem 1. For any abelian group R, on End(R), any inte-
gral combination

(. 0) > ppoth—qipoyp

of composition and its converse is a multiplication, m. The
homomorphism

p = (= pmy)
from End(R) to End(End(R)) preserves m for all R, that is,
(pm)my =pem(ymx)—qym(pmx),

if and only if m s trivial, or composition, or the bracket, that
18,
(p.q) € {(0,0),(1,0), (1,1)}.
The proof is a computation. I stated the result at the Logic

Colloquium in Athens, 2005; I have not found it anywhere else.

2.1.5. Action of a Lie ring
We can now rewrite (2.6), namely Da=Dod—aoD, as
Da = [D,d). (2.9)

This means the diagram in Figure 2.2 is commutative.
The bracket of any two derivations of K is a derivation of
K. Indeed, in V' we have

(D, Ela = D(Ea) — E(Da) [z — 7 is additive]
= [D, Ea] — [E, Da by (2.9)]

= [D,[E,d]] - [B,[D,a]] |by (2.9)]
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(X y)—=Xy

VxK K
(va)'_)(ng) T
End(K) x End(K) End(K)

Figure 2.2.: Commutative diagram for Da = [D, @]

= [[D, E],a], [by the Jacobi identity]|

so (2.9) holds with [D, E] for D. This proof is a bit shorter
than checking

[D,E)(a-b) = ([D,Ela) -b+a- ([D, E]b).

(The same number of equations is required, but the members
are shorter.) Our example of V' is closed under the bracket by
(2.11) below, since the bracket of any two basis elements is 0,
and so the bracket of any two elements of V' must be a linear
combination of basis elements.
Since V is closed under the bracket, there is a homomor-
phism B
X=X

from V' to End(V'), where

DE =D, E]. (2.10)
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The Jacobi identity (2.7) for the bracket on V' can now be
written as

DF = [5.5].

In particular, the map X Xisa homomorphism from (V) b)
to (End(V),b).

In general,

D(aE) = [D,aFE) [by (2.10)]
= Do (aF)— (aE)o D
=DoaoFE—aoFEoD [by (2.4)]

=DaoE+doDoE—GoEoD [by (2.6)]
= DaoE+do|[D,E|
= (Da)E + a[D, E]. [by (2.4)]

Thus,

D(aFE) = (Da)E + a[D, E]. (2.11)

In particular,

D(aD) = (Da)D,

and hence if D # 0, so that Da # 0 for some a in K, then
D # 0. Thus the map X +— X embeds (V,b) in (End(V),b).
In short,

X — X: (V,b) — (End(V),b),
X — X: (V,b) — (End(K),b).

2.1.6. Correlative identities

We can rewrite (2.11) as

(Doa)E = (Da)E + (a0 D)E
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(X,y)—Xy

VxK K
(Xy)—+(Xy)
End(V) x End(V) End(V)

Figure 2.3.: Commutative diagram for Da = [D, a]

and thus B
Da = [D,al. (2.12)

This means the diagram in Figure 2.3 commutates. We can
also rewrite (2.12) as

Doa—Da=aoD. (2.13)

We have now obtained the four correlative identities (2.12),
(2.4), (2.9), and (2.13), namely

Da = [5,@], aD =ao D,
Da = [D,d), Doa—Da=aoD.

We have not got aD = ao D. Rather, using (2.11), we obtain

aDE = [aD,E) = —|E,aD) = —E(aD)
— —((Ea)D + a[E, D)) = a[D, E] — (Ea)D
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— (a0 D)E — (Ea)D.

However, as we derived (2.13) from (2.12), so we can obtain
(2.9) from (2.12) and (2.4), after observing that every element
of K is a derivative. Indeed, if Da # 0, then

b
—D |a=0.
(e0)e

We now have

=[D,a]E by (2.12)]
= [D,aFE] — alD, E]

= [D,aE] —do D, E] by (2.4)]
=[D,aE]~doDoE+doEoD
—Do(aE)—aoDoE by (2.4)]
= [D,a]lo E,

and therefore (2.9).

2.2. Synthesis

We now observe that all of the foregoing properties of (K, V)
can be expressed by V4 axioms in a two-sorted language. As
before, we shall write minuscule letters for the variables of the
scalar sort, K; capital letters, for the variables of vector sort,
V. Each sort will have symbols for the standard operations
on an abelian group; we can use the standard symbols +, —,
and 0. There will be symbols for the left action of each sort on
the other; we can use juxtaposition to denote these actions.
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But we shall not use symbols for multiplication within the
sorts. This means abD is unambiguously a(bD), while DFEa is
D(FEa).
1. Universal axioms make each sort an abelian group.
2. Now universal axioms ensure that these actions are ac-
tions of abelian groups on abelian groups. Thus we ob-
tain the identities (2.1).
3. Vd axioms ensure that K is a field acting on V', which is
non-trivial:

3X 0 # X,
aD=0=a=0VvVD=0,
abD = baD,
dz abD = zD,
de D =uaD,

Jz (D =zaD Va=0).

Thus V' becomes a vector space over K.
4. That the action of V on K is that of a vector space is
given by (2.4), namely aD = a o D, hence by

(aD)b = (@o D)b.

Since K now embeds in End(V'), we express the identity
by
((aD)b)E = a((Db)E).

5. Within the class of models of the axioms given so far,
embeddings preserve multiplication of scalars. So, when
we seek to identify the existentially closed members of
the class, there is no harm in assuming we have a symbol
for multiplication of scalars.
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6. The same will not be true for the bracket of vectors. We
express the faithfulness of the action of the vectors by
an V3 axiom:

VX Jy (Xy #0Vv X =0).
7. As (2.12), namely Da = [D, a] is expressed by
(Da)E = [D,d]E,

we can now express it in our restricted language by com-
puting

((Da)E)b = (1D, a] B)b
= (D(aE) — a(DE))b
= ([D,aE] — a[D, E])b
= ([D,ao E]—ao[D,E])b
=(DoaoFE—aoDoE)b
= (Do (aE) — (aD) o E)b,

and so
((Da)E)b = D((aE)b) — (aD)(Eb).
2.3. Theory

2.3.1. Existentially closed models

Let the theory of Lie-Rinehart pairs (in our sense) of charac-
teristic 0 be LRy. In any existentially closed model of LRy,
the constant field, defined by the formula

VY (Yz = 0),
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is the separable closure of the constant field. Therefore LRy is
not companionable.

Nonetheless, from Ozcan Kasal’s 2010 doctoral dissertation
at METU [5] we have the next theorem. Given a model (K, V)
of LRy, we shall use the notational convention whereby

an element a of K™ is a row vector (ao e am_l),
DO
an element D of V™ is a column vector : ,
Dm—l
application of tuples of derivations to tuples of scalars is
evaluated like matrix multiplication, so that, for exam-
ple, Da is the matrix (D'a;)i<™

j<m:

Theorem 2 (Kasal, 2010). A model (K,V') of LRy is existen-
tially closed if and only if

(a)

(b)

(¢)

40

for allm in N, for all algebraically independent a in K™,
for all b in K™, for some D in'V,

Da=5>

—this condition is not first-order;

K is of infinite transcendence degree: this is implied by—
and by the previous condition it implies—that for all m
m N, for some a € K™, for some D in V'™,

Da = I, (2.14)

so that (aj: j < m) is algebraically independent;

for all m in N, for all linearly independent D in V'™,
the structure (K, D) is an existentially closed model of
the theory of fields of characteristic 0 with m derivations
having no required interaction; those models compose an
elementary class, which can be axiomatized on the pat-
tern for DCFq given in [14].
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2.3.2. Differential dependence

In a Lie-Rinehart pair (K, V), let us say that a scalar b is
differentially dependent or D-dependent on a set A of
scalars if, for some m in w, for some a in A™,

VY (Ya=0=Yb=0).
Then algebraic dependence implies D-dependence.

Theorem 3 (Kasal, 2010). D-dependence makes the scalar
field of a Lie-Rinehart pair a pregeometry. In particular, the
closure of every subset of K under D-dependence has a ba-
sis, and all bases are equipollent, so that the subset has a D-
dimension.

Proof. D-dependence is
finitary: dependence on A means dependence on a finite sub-
set of A, by definition;
increasing: every element of A depends on A;
monotone: if A C B and ¢ depends on A, then it depends on
B;
idempotent: if everything in B depends on A, and ¢ depends
on B, then ¢ depends on A;
Finally, D-dependence allows exchange. For suppose ¢ de-
pends on AU {b}, but not A. We show b depends on AU {c}.
Under the two hypotheses:
(1) for some m in w, for some a in A™, for all derivations
D,
Da=0ADb=0= Dc=0; (2.15)

(2) but then for some derivation F,

Ea=0A Ec#0.
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In particular, Eb # 0. Suppose if possible b is independent of
AU{c}. Then for some derivation F,

Fa=0AFc=0AFb+0.

But in this case the derivation £ — (Eb/Fb)F is a counterex-
ample to (2.15). O

Given the Lie-Rinehart pair (K,V), suppose a in K™ is
D-independent. Then there is D in V™ such that

Da =1,

as in (2.14).

2.3.3. A model companion

For all m in N| let us introduce a new predicate for the relation
of m-ary relation of D-dependence of scalars. One formula that
defines this relation is

VY det(Yx) =0,

where Y and a are m-tuples of vector and scalar variables
respectively. Let LR{ be LRy together with axioms defining
the new predicates.

Theorem 4 (Kasal, 2010). The existentially closed models of
LRg are precisely those models (V, K) meeting the following
conditions.

1. The D-dimension of K is infinite, that is, for all m in
N, for some a in K™, for some D in V™,

Da = 1,,.
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II. For all k, £, m, n, and s in w, for all D-independent a
in K*, for all b in K*, whenever

a) x € K™, y € K", z € K°, (x,y) is algebraically
independent, and U is an open subset of an affine
variety over Q(a, b) that has generic point (x,y, z),

b) DeVk, E€ V™ Da=1I, Ea=0, but (D, E)

18 linearly independent;

c) (;:; [C—j’> is a (k+m) x (m + n) matriz with

entries from the coordinate ring Q(a, b)[U],

then U contains (c,d, e) such that

F |G :
a) (ﬁ) evaluated at (¢, d, e) gives
D , Dc | Dd
(ﬁ(cd), that is, (Ec Ed)’

b) each entry of (d,e) is D-dependent on (a,c).

The exzistentially closed models of LRy therefore compose an
elementary class, whose theory is thus model-complete. The
theory is moreover complete, but unstable.

2.3.4. The tree property

The tree property [18, Defn 0.1], of a complete theory that

has it, is that for some formula ¢ (x;y), for some tree (a,: o €

w=<®) of tuples of parameters from some model of the theory,
e for all o in wW<®, whenever i < j < w, the conjunction

o(x,as;) N (T, aq;)

is inconsistent with the model, but
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e for each 7 in w®, the type

{p(x,a:1,):n € w}

is consistent with the model.
For example, in (Q, <), we may let ¢ be yp < z < 31, and we
may require

0 0 1 0 1
a0<<a02<agz<aaz+1<“<a

o)

so that, in particular, each open interval (a2, al) has disjoint
subintervals (a2 ;, al ;. ).

Having the tree property means precisely not being simple
[6, Prop. 2.3.7, p. 25].

In the example, whenever p and o in w<® are incomparable,
that is, (i) # p(i) for some ¢ in the domain of each, the
formulas ¢(z,a,) and ¢(z,a,) are inconsistent. This means
the theory of (Q, <) has what may be called TP [7].

There is another form, TP,, of the tree property; having
the tree property means having TP; or TPy [18, Thm o.2]. A
complete theory 7" has TP, if, for some formula p(x;y), for
some infinite matrix (a})’<% of tuples of parameters from some
model of T', for each 7 in w, no two specializations ¢(z, a})
are consistent with one another, but for every 7 in w®, the
type {p(x, afj(i): i < w} is consistent.

Theorem 5. LR{ has TPs.

Proof. We use p(X,y", y'), which is X¢° = y*. We let aé- be
(t,b;), where (t': i < w) is D-independent, and the b; are all
distinct. See Figure 2.4. Evidently X¢' = b; A Xt' = b; is
inconsistent if i # j, but since the t' are D-independent, for
each o we can define D so that, for each i, Dt' = bo(i)- [l
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Figure 2.4.: TP, for LRy
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A. Long abstract

Using areas, FEuclid proved results that today we consider as
algebraic. We consider them so, because Descartes justified
algebra by showing how it could be considered as geometry.

Such observations can be understood as resulting from the
equivalence of certain categories.

Models of a given first-order theory T are the objects of two
different categories:

e Mod(T'), in which the morphisms are embeddings, and

e Mod*(T'), in which the morphisms are elementary em-

beddings.

The latter category is closed under direct limits; if the former
is likewise closed, then 7" has universal-existential axioms (and
conversely). T is called model-complete if the two categories
are the same. T is called companionable if it is included in* a
model-complete theory, called the model companion of T, in
a model of which each model of T" embeds.

A vector space here is a pair (K, V), where K is a field, V
is an abelian group, and K acts on V. The theory of vector
spaces in this sense has a model companion, which is theory
of one-dimensional vector spaces.

If T is the theory of vector spaces of dimension at least two,

*The original had “includes” by mistake, perhaps because T is included
in T if and only if the class of models of T includes the class of
models of T™.
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and U is the theory of abelian groups with an appropriate no-
tion of parallelism, then Mod(T") and Mod(U) are equivalent.
If S is field theory, and T,, is the theory of n-dimensional vec-
tor spaces (where n > 0), with a basis named, then Mod(S)
and Mod(T,,) are equivalent.

In a vector space (K, V), V may also act on K as a Lie ring
of derivations; then (K, V') becomes a Lie-Rinehart pair. Such
pairs can be given universal-existential axioms, using only the
signature of abelian groups for each of K and V', along with
a symbol for the action of each on the other. In his 2010
dissertation, Ozcan Kasal showed that the resulting theory is
not companionable, although if predicates for certain definable
relations are introduced, the theory becomes companionable,
and the model companion is not stable. It turns out that like
the theory of the integers as a group, the model companion
even has the so-called tree property.
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