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Here are notes on Kurt Gödel’s  paper, “The completeness of the
axioms of the functional calculus of logic,” in the translation of Stefan
Bauer-Mengelberg, as edited by Jean van Heijenoort in the anthology,
From Frege to Gödel [].
I make these notes in preparation for a course of three lectures on

the Compactness Theorem to be presented in the school (June –,
) of the th World Congress and School on Universal Logic in
Istanbul (the congress being June –).
Gödel’s paper apparently represents the earliest explicit statement of

a version of the theorem that is now called the Compactness Theorem.
In Gödel’s version, the signature is countable (“denumerable”).
Gödel defines a proof system and proves its completeness in the sense

that every sentence that cannot be disproved (“refuted”) has a model.
By means of the Compactness Theorem, he derives the result that,
in a countable signature, an arbitrary set of sentences has a model,


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provided the set is consistent (the conjunction of no finite subset can
be disproved).
As Gödel explains in his first paragraph, the “functional calculus” of

his title is the restricted functional calculus, which he defines in a
footnote:

In terminology and symbolism this paper follows Hilbert and Ack-
ermann . According to that work, the restricted functional
calculus contains the logical expressions that are constructed from
propositional variables, X, Y , Z, . . . , and functional variables (that
is, variables for properties and relations) of type I, F (x), G(x, y),
H(x, y, z), . . . , by means of the operations ∨ (or), (not), (x)
(for all), (Ex) (there exists), with the variable in the prefixes (x)
or (Ex) ranging over individuals only, not over functions. A formula
of this kind is said to be valid (tautological) if a true proposition
results from every substitution of specific propositions and functions
for X, Y , Z, . . . , and F (x), G(x, y), . . . , respectively (for example
(x)[F (x) ∨ F (x)]).

Perhaps the expression type I is the ancestor of our first order, and a
function of type I takes individuals as its arguments. Such functions
are our relations. A proposition can then be understood as a nullary
relation. I shall translate Gödel’s symbolism as follows:

Gödel I

(x) ∀x
(Ex) ∃x

¬
& ∧
∼ ↔
→ ⇒

Van Heijenoort spells out the reference in his own bibliography: David Hilbert
and Wilhelm Ackermann, Grundzüge der theoretischen Logik (Berlin: Springer,
).
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(I vacillate between using ⇒ for implication, because the notion is
different from a function’s being from one set to another, and using →
because it is easier to write by hand.)
The restricted functional calculus is what Church [] calls the pure

functional calculus. We just call it first-order logic. But we have made
a difference in emphasis. We have a different first-order logic for each
signature. Gödel just supposes there are infinitely many n-ary func-
tional variables (relation symbols) for each n.
Perhaps for Gödel, a property is a singulary relation; a relation, a

relation of more than one argument. An n-ary relation on a set A
determines the function from An to 2 that takes the value 1 at a point
a of An if and only if the relation actually holds at that point.
I shall quote Gödel’s ten numbered theorems verbatim, with my own

commentary interspersed.
Theorem I. Every valid formula of the restricted functional calculus

is provable.
The proof of this will not be completed until after Theorem VI.
Gödel explains validity in another footnote. In our terminology,

ϕ(x) is valid if ∀x ϕ(x) is true in every structure; by “well-known
theorems” (of Löwenheim and Skolem, presumably), it is enough to be
true in every countable structure.
The formula ϕ(x) is satisfiable if ∃x ϕ(x) is true in some structure.

Thus ϕ is valid if and only if ¬ϕ is not satisfiable.
Gödel’s “system of axioms” is as follows. Again I translate into cur-

rent symbolism; my convention on parentheses is Shoenfield’s [, pp.
–]: ∨ is more binding than ⇒, and of two occurrences of one of
these, the occurrence on the right is the more binding.
The “undefined primitive notions” are ∨, ¬, and ∀x, and, “By means

of these, ∧, ⇒, ↔, and ∃x can be defined in a well-known way.” The
axioms are:

) P ∨ P ⇒ P ,

) P ⇒ P ∨Q,
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) P ∨Q⇒ Q ∨ P ,

) (P ⇒ Q)⇒ R ∨ P ⇒ R ∨Q,

) ∀x F (x)⇒ F (y),

) ∀x (P ∨ F (x))⇒ P ∨ ∀x F (x).

The rules of inference are:

Detachment: from ϕ and ϕ⇒ ψ, infer ψ.

Substitution: “The rule of substitution for propositional and functional
variables.” Above, P , Q, and R are propositional variables, and
F (x) is a functional variable. Church discusses this. There are six
axioms above; by substitution we derive infinitely many validities.
Alternatively, we could replace the axioms with axiom schemes,
and forget about the rule of substitution.

Generalization: From ϕ(x), infer ∀x ϕ(x).

Change of variables: “Individual variables (free or bound) may be re-
placed by any others, so long as this does not cause overlapping
of the scopes of variables denoted by the same sign.”

Gödel points out in a note that Russell andWhitehead do not formulate
“all of these” explicitly.
Gödel has noted in the first paragraph that we already have com-

pleteness for propositional calculus. Thus, I say, we might as well
replace the first four axioms above with one axiom scheme, giving us
every tautology of the propositional calculus. Gödel himself will re-
assert propositional completeness as one of the lemmas below.
We could be more explicit about change of variables:

• ∀x ϕ(x) ⇒ ∀y ϕ(y) is an axiom (y being substitutable for x in
ϕ).
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• From ϕ(x), infer ϕ(y), provided x is not a free variable of any
hypotheses of a proof.

Gödel states some lemmas without proof:

. For every tuple x of variables,

∀x ϕ(x)⇒ ∃x ϕ(x),
∀x ϕ(x) ∧ ∃x ψ(x)⇒ ∃x (ϕ(x) ∧ ψ(x)),

∀x ¬ϕ(x)↔ ¬∃x ϕ(x).

Note that Gödel has not formally explained the meaning of ∃x;
perhaps the “well-known” definition alluded to above is that ∃x ϕ
means ¬∀x ¬ϕ.

. For every n in ω, for every permutation σ of n, for every n-tuple
x of variables,

∃x ϕ(x)⇒ ∃(x ◦ σ) ϕ(x).
In my notation, x is a function from n to the set of variables.

. Assuming x is injective as such a function, even if y is not,

∀x ϕ(x)⇒ ∀y ϕ(y).

. [Blending of quantifiers in a conjunction or disjunction: see the
proof of Theorem III. Gödel apparently neglects to say that the
variables must be distinct.]

. For every ϕ there is ϕ′ in normal form such that ϕ↔ ϕ′. Gödel
does not define normal form, but only refers again to Hilbert and
Ackermann. Evidently it is as defined by Skolem in his  paper
[]: in our terms, a formula is in normal form if it is an open
(quantifier-free) formula, preceded by some (or no) existential
quantifiers, preceded by some (or no) universal quantifiers.

As Gödel explains, he uses lower-case German letters like x, y, u, v, “and so on,”
for these tuples.
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. If ϕ ↔ ϕ′, then ψ ↔ ψ′, where ϕ is a subformula of ψ, and ψ′

results from ψ by replacing ϕ with ϕ′.

. Completeness of the first four axioms for propositional calculus.
Note that Gödel does not mention any rules of inference at this
point.

Theorem I is equivalent to:
Theorem II. Every formula of the restricted functional calculus is

either refutable or satisfiable (and moreover satisfiable in the [sic] de-
numerable domain of individuals).
Refutable means having provable negation.
The “class” (set) K consists of sentences in normal form of the more

precise form
∀x . . . ∃y ϕ.

That is, the sentence must have at least one universal and one existen-
tial quantifier.

Theorem III. If every K-expression is either refutable or satisfiable,
so is every expression.
A note says the restriction to “the denumerable domain of individu-

als” will be implicit.

Proof. By definition, ϕ(x) is satisfiable if and only if ∃x ϕ(x) is satis-
fiable.
If ϕ(x) is refutable, this means ¬ϕ(x) is provable, so ∀x ¬ϕ(x) is

provable by Generalization, so ∃x ϕ(x) is refutable.
If ∃x ϕ(x) is refutable, this means ¬∃x ϕ(x) is provable, so that
∀x ¬ϕ(x) is provable, and therefore ¬ϕ(x) is provable by Axiom ,
that is, ϕ(x) is refutable.
It is now enough to prove the claim for sentences.
By Lemma , it is enough to prove the claim for normal sentences.

Let Q ϕ be such. If x and y are distinct variables not occuring in Q,
and R is some singulary relation symbol, then the sentence

∀x ¬Rx ∨ ∃y Ry
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is a tautology and is therefore provable by Lemma . But by Lemma
, the sentence

∀x ¬Rx ∨ ∃y Ry ↔ ∀x ∃y (¬Rx ∨Ry)

is provable, by Lemma , and therefore so are the following:

∀x ∃y (¬Rx ∨Ry),
Q ϕ↔ Q ϕ ∧ ∀x ∃y (¬Rx ∨Ry),

Q ϕ ∧ ∀x ∃y (¬Rx ∨Ry)↔ ∀x Q ∃y (ϕ ∧ (¬Rx ∨Ry)),
Q ϕ↔ ∀x Q ∃y (ϕ ∧ (¬Rx ∨Ry)).

The sentence ∀x Q ∃y (ϕ ∧ (¬Rx ∨Ry)) being in K, we are done.

The degree of a sentence in K is the number of blocks of universal
quantifiers.

Theorem IV. If every expression of degree k is either satisfiable or
refutable, so is every expression of degree k + 1.

Proof. Suppose σ is the sentence ∀x ∃y ∀u ∃v Q ϕ. Suppose R (taking
arguments of the length of xy) does not occur in ϕ. Then

(Rxy ⇒ ∀u ∃v Q ϕ)↔ ∀u ∃v Q (Rxy ⇒ ϕ).

We make the following abbreviations:

τ1 is ∀x′ ∃y′ Rx′y′ ∧ ∀x ∀y (Rxy ⇒ ∀u ∃v Q ϕ),

τ2 is ∀x′ ∃y′ Rx′y′ ∧ ∀x ∀y ∀u ∃v Q (Rxy ⇒ ϕ),

τ3 is ∀x′ ∀x ∀y ∀u ∃y′ ∃v Q (Rx′y′ ∧ (Rxy ⇒ ϕ)).

“Obviously” τ1 ⇒ σ. By Lemma , τ1 ↔ τ2; by Lemma , τ2 ↔ τ3. We
may assume as an inductive hypothesis that τ3 is either satisfiable or
refutable. If τ3 is satisfiable, then so is σ. If τ3 is refutable, then so is
τ1. In particular, taking Rxy to be ∀u ∃v Q ϕ, we have

¬(∀x ∃y ∀u ∃v Q ϕ ∧ ∀x ∀y (∀u ∃v Q ϕ⇒ ∀u ∃v Q ϕ)).

But ∀x ∀y (∀u ∃v Q ϕ⇒ ∀u ∃v Q ϕ), and therefore ¬σ.
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“It now remains only to prove”
Theorem V. Every formula [ sic] of degree  is either satisfiable or

refutable.
Let ∀x ∃y ϕ(x,y) be such a formula, that is, sentence, where x is an

r-tuple, and y is an s-tuple, of distinct variables. All variables come
from the sequence (xk : k ∈ ω). Let

ϕ1 be ϕ(x1,y1),

ϕ2 be ϕ(x2,y2) ∧ ϕ1,

. . . . . . . . . . . . . . . . . . . . . . . . .
ϕn be ϕ(xn,yn) ∧ ϕn−1.

Here k 7→ xk is the bijection from N to the set of r-tuples of variables
such that, writing xk as (xk(i) : i < r), we have that the map

k 7→ (k(0), . . . , k(r − 1), k(0) + · · ·+ k(r − 1))

is an order-preserving bijection from N onto ωr, where the latter has
the right lexicographic ordering. In particular,

x1 = (x0, . . . , x0), x2 = (x1, x0, . . . , x0), x3 = (x0, x1, x0, . . . , x0).

We also let

yk = (x(k−1)s+1, x(k−1)s+2, . . . , x(k−1)s+s).

Theorem VI. For every n

[∀x ∃y ϕ⇒ ∃x0 · · · ∃xns ϕn]

is provable.

Proof. Use induction. By Lemma ,

∀x ∃y ϕ(x,y)⇒ ∀x1 ∃y ϕ(x1,y),
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and by Inference Rule ,

∃y ϕ(x1,y)↔ ∃y1 ϕ(x1,y1),

so
∀x ∃y ϕ(x,y)⇒ ∀x1 ∃y1 ϕ(x1,y1).

By Lemma ,

∀x1 ∃y1 ϕ(x1,y1)⇒ ∃x1 ∃y1 ϕ(x1,y1).

This is just the claim when n = 1.
Similarly

∀x ∃y ϕ(x,y)⇒ ∀xn+1 ∃yn+1 ϕ(xn+1,yn+1).

Now let

zn = (xi : i 6 ns & xi is not an entry of xn+1).

By Lemma ,
∃x0 · · · ∃xsn ϕn ⇒ ∃xn+1 ∃zn ϕn.

By Lemma ,

∀xn+1 ∃yn+1 ϕ(xn+1,yn+1) ∧ ∃xn+1 ∃zn ϕn

⇒ ∃xn+1 (∃yn+1 ϕ(xn+1,yn+1) ∧ ∃zn ϕn).

Thus

∀x ∃y ϕ(x,y) ∧ ∃x0 · · · ∃xsn ϕn

⇒ ∃xn+1 (∃yn+1 ϕ(xn+1,yn+1) ∧ ∃zn ϕn).

By Lemmas , , and ,

∃xn+1 (∃yn+1 ϕ(xn+1,yn+1) ∧ ∃zn ϕn)⇒ ∃x0 · · · ∃xs(n+1) ϕn+1.

By induction, this establishes the claim for all n.
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Let Fn be the propositional formula that results from replacing the
atomic (“elementary”) components of ϕn with distinct propositional
variables (or nullary relation symbols).
If some Fn is refutable, then so is ∃x0 · · · ∃xns ϕn (by Rules  and 

and Lemma ). By the last theorem then, ∀x ∃y ϕ(x,y) is refutable.
Suppose now no Fn is refutable. Then all are satisfiable. Then for all

n, there is a structure An with universe ω in which ϕn is satisfied by
(0, . . . , ns). “By familiar arguments” we may assume that, for all rela-
tion symbols R appearing in ϕ, for all a with entries from {0, . . . , ns},

An � Ra ⇐⇒ An+1 � Ra.

Now define B with universe ω so that

B � Ra ⇐⇒ for sufficiently large n, An � Ra.

“Then it is evident at once that” B � ∀x ∃y ϕ. This concludes the
proof of Theorem I.

Let us note that the equivalence now proved, “valid = provable”, con-
tains, for the decision problem, a reduction of hte nondenumerable
to the denumerable, since “valid” refers to the nondenumerable total-
ity of functions, while “provable” presupposes only the denumerable
totality of formal proofs.

We can incorporate identity between individuals. Then we get The-
orem VII and Theorem VIII, analogues of Theorems I and II.

Theorem IX. Every denumerably infinite set of formulas of the re-
stricted functional calculus either is satisfiable ( that is, all formulas of
the system are simultaneously satisfiable) or possesses a finite subsys-
tem whose logical product is refutable.
“IX follows immediately from” the following, which is our Compact-

ness Theorem for countable signatures:
Theorem X. For a denumerably infinite system of formulas to be

satisfiable it is necessary and sufficient that every finite subsystem be
satisfiable.
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To prove this, it is enough to look at normal sentences of degree one.
Suppose we have a system of sentences

∀xk ∃yk ϕk(xk,yk),

where xk is an rk-tuple, and yk is an sk-tuple. Obtain a bijection
j 7→ xk

j as before, each xk
j being an rk-tuple. Let yk

j be an sk-tuple,
and suppose the sequence

y1
1 ,y

1
2 ,y

2
1 ,y

1
3 ,y

2
2 ,y

3
1 ,y

1
4 , . . .

gives the xj in order. Now define

ψ1 = ϕ1(x
1
1,y

1
1),

ψn = ψn−1 ∧ ϕ1(x
1
n,y

1
n) ∧ · · · ∧ ϕn(x

n
1 ,y

n
1 ).

Then ∧
16k6n

∀xk ∃yk ϕk(xk,yk)⇒ ∃(yi
j : 2 6 i+ j 6 n+ 1) ψn.

If each ψn is satisfiable, then so is the system of all of them. But in
this case the original system is satisfiable.

We can also give a somewhat different turn to Theorem IX. . .

The final two paragraphs concern independence of the axioms.
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