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Preface

This document consists of transcriptions of the three hour lec-
tures of my course on the Compactness Theorem in the th
World Congress and School on Universal Logic, June, .

I submitted the abstract (also included here) some nine
months in advance of the School. I have added the foot-
notes, and the year () of Zermelo’s axioms; otherwise
the abstract is unchanged, though the references are now
incorporated with others at the end of the present docu-
ment. Every work mentioned with a year has a citation
in the references. The submitted abstract was placed in
a frame (t5-compactness.html) on the website (http://
www.uni-log.org/) of the School and Congress: apparently
this frame represented a conversion from the pdf version of
my submitted abstract, since hyphens were retained, though
they no longer marked the ends of lines. The use of frames
means it is not possible to give a single link to the abstract
as it was meant to be seen; one must say rather, “go to
http://www.uni-log.org/start5.html, click on ‘Tutorials,’
and then click on ‘Compactness Theorem.’ ”

Mostly in the summer of , I composed several collections
of notes relevant to the Compactness Theorem. These notes
concerned, respectively,

() the Löwenheim–Skolem Theorem,
() Gödel’s Completeness Theorem,
() Tarski’s  ICM address (giving the Compactness The-

orem its current name),
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() Lindström’s Theorem,
() logics in general, and
() the Compactness Theorem itself.

In July, I gave a two-week course on nonstandard analysis
at the Nesin Mathematics Village, Şirince; and in this course
I considered the logical relations between the Compactness
Theorem, Łoś’s Theorem, and the Prime and Maximal Ideal
Theorems. I typed up and edited my lectures in this course.
I then gave a half-hour talk on the Compactness Theorem at
the Caucasian Mathematics Conference, Tbilisi, September 
& , . I used slides for that talk, and the course that is
the subject of the present document is basically an expanded
version of those slides. All of these documents are among my
webpages.

I started typing notes for the lectures of my course before
giving them; but then a fortuitous computer malfunction in-
hibited me from continuing. Notes written at the computer are
easier to edit and save and share, which is why I am creating
the present document. However, notes to be used in deliver-
ing a lecture are better written out by hand. Hand writing
provides muscle memory as well as, I think, a better visual
memory of one’s own words. It also forces one to think about
just how much writing one will want to do at the board.

Prepared after the course, the notes below are a typeset
version of my handwritten notes, with changes and footnotes
based on my memory of what actually happened in the lec-
tures. Paragraphs labelled as Remarks were only spoken out
loud. Other parts may only have been spoken aloud; it is hard
to be precise on these matters.

The three hours of the course were distinct, the respective
themes being the Compactness Theorem () in action, () as
a topological theorem, and () proved. Looking at notes from
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regular university courses that I had recently taught, I had the
idea that I could cover three or four of my handwritten pages
(size A) in a one-hour lecture. This turned out to be nearly
correct. I tried to be prepared to curtail or jettison material
at the end of my notes for each lecture.

Speakers in the other lectures that I attended used slides,
unless technical problems prevented it. I think the use of slides
is usually a mistake, especially for a course of lectures. Slides
allow a speaker to pass too quickly through his or her material,
and they inhibit the listener from taking notes. Speakers who
use slides may also want to write on the board; but since
the room will have been darkened for the slides, the speaker’s
writing will be hard to read.

For my convenience, I typed up the schedule of the two days
on which my course would meet. The School of Universal Logic
was to have an afternoon session on Saturday, and morning
and afternoon sessions on Sunday. Then the schedule was
changed, because of the Turkish national university entrance
examinations. The Saturday afternoon session was delayed,
and the Sunday morning session was shifted to Monday. When
the School actually began on Saturday, there was a further
delay. I believe the schedule given on the next page represents
what actually happened.
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Room I Room II Room III

Saturday, June , 

: Opening: why studying [sic] logic

: Husserl & Frege Lindström Completeness

: Jain Löwenheim–Skolem Nonsense

: coffee

: Music Politics Relativity

: COMPACTNESS Category Quantum

Sunday, June , 

: COMPACTNESS Politics Relativity

: Music Category Quantum

: coffee

: COMPACTNESS Kant Nonsense

: Husserl & Frege Lindström Dugundji
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Abstract

A logic has a compactness theorem if a set of sentences of the
logic has a model whenever every finite subset of the set has a
model. For present purposes, the Compactness Theorem

is that first-order logic has a compactness theorem. This the-
orem is fundamental to model theory. One may however note
that Hodges’s encyclopedic twelve-chapter  volume Model
Theory finds no need to prove the theorem until Chapter .
It is worthwhile to think about what needs Compactness and
what does not.

One consequence of the Compactness Theorem is that a set
of (first-order) sentences with arbitrarily large finite models
must have an infinite model. A more purely mathematical
consequence is the Prime Ideal Theorem: every nontriv-
ial commutative ring has a prime ideal. One can prove this
by noting first that every maximal ideal is prime. Moreover,
every countable ring has a maximal ideal; for we can obtain
a generating set of such an ideal by considering the elements
of the ring one by one. In particular then, every finitely gen-
erated subring of a given ring has a maximal ideal, because
every finitely generated ring is countable. By the Compact-
ness Theorem then, the original ring must have an ideal that is
at least prime, although it might not be maximal. The point
here is that primeness is a “local” property, while maximality
is not.

It is usually understood that every nontrivial commutative
ring has, not just a prime ideal, but a maximal ideal. To make
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it easy to prove such results, Zorn stated in  the result
now known by his name. However, Zorn’s Lemma relies on
the Axiom of Choice. The Compactness Theorem is strictly
weaker than this, with respect to ZF (Zermelo–Fraenkel set
theory without Choice). For, Compactness is also a conse-
quence of the Prime Ideal Theorem, even the Boolean Prime
Ideal Theorem; and this is strictly weaker than the Axiom of
Choice (as shown by Halpern and Lévy in ).

The Compactness Theorem for countable sets of sentences
needs nothing beyond ZF. Skolem showed this implicitly in
 when he established the paradox that Zermelo’s []
axioms for set theory must have a countable model, if they
have a model at all. In , Gödel proved countable Com-
pactness explicitly, though not by that name. Mal′tsev stated
the full Compactness Theorem as the General Local Theo-
rem in , having proved it implicitly in ; he used it to
prove algebraic results in the way we proved the Prime Ideal
Theorem above.

In his  address to the International Congress of Math-
ematicians, Tarski gave the Compactness Theorem its current
name and noted its topological meaning. But this meaning
is not generally well expressed in today’s textbooks of model
theory.

The class of structures having a given signature can be given
a topology, although the closed “sets” in this topology are
proper classes (except for the empty set): they are the classes
of models of sets of sentences. The space of all structures has
a Kolmogorov (T0) quotient that is a set: it is the space of
complete theories of structures. If one replaces sentences with

I believe this name is the innovation of the translator, but Mal′tsev
used no particular name.

 The Compactness Theorem



their logical equivalence classes, then the set of sentences be-
comes a Boolean algebra, called a Lindenbaum algebra; and
the complete theories of structures become ultrafilters of the
Lindenbaum algebra. By means of the Boolean Prime Ideal
Theorem, the Stone space consisting of all ultrafilters of the
Lindenbaum algebra is easily shown to be compact. Or one
could look instead at the spectrum, consisting of the prime
ideals of the corresponding Boolean ring. Spectra are always
compact. The Compactness Theorem says more: every ultra-
filter of the Lindenbaum algebra is derived from the complete
theory of a structure.

The compactness theorem for propositional logic can be seen
as a version of the theorem, known by the name of Tychonoff,
that the product of two-element discrete spaces (or indeed any
compact spaces) is compact. The Compactness Theorem, for
first-order logic, does not follow so readily, though it can be
seen to result from a kind of reduction of first-order logic to
propositional logic. Then Lindström’s Theorem is roughly that
there is no such reduction for certain more expressive logics—
but see that tutorial for more. Sometimes the Compactness
Theorem is derived from the Completeness Theorem: see that
tutorial for more. Meanwhile, the present tutorial is intended
to fill out the foregoing sketch of the Compactness Theorem
as such.

My understanding of the history of the Compactness Theorem depends
on John Dawson’s  article.
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 Compactness in Action

Remark. I have lived in Istanbul for four years (and Turkey
for fifteen). Since I moved here with my spouse, the subway
station called Vezneciler near Istanbul University has opened.
When you come out of that station, you see a mosque, namely

Kalenderhane Camii.

Perhaps many people hardly notice it, assuming it is just an-
other mosque. But it is not just another mosque, and it de-
serves further notice. It is perhaps  years old, and it was
a church before the Ottoman Turkish conquest of Istanbul in
. Similarly, in some model-theory texts at least, the name
of the Compactness Theorem is explained in passing as being
due to the compactness of a certain Stone space. This ca-
sual reader accepts the explanation, because the Stone space
in question is compact. But every Stone space is compact,

For example, Hodges [, §., p. ] defines a Stone space as a non-
empty compact Hausdorff space with a basis of clopen sets. He then
states the theorem that the space of ultrafilters of a Boolean algebra is
a Stone space. In the next section, he defines a complete type as the
complete type of some tuple over a given set X of parameters, in an
elementary extension of a given structure A. Using the Compactness
Theorem, he shows that such a complete type is precisely a set of
formulas that is maximal among the sets of formulas with parameters
from X that are finitely realized in A. If X = ∅ and T = Th(A), one
then speaks of complete types of T . The set of complete types of T in
n variables is denoted by Sn(T ) and called the nth Stone space of
T , “for reasons that will appear in a moment,” namely, that the space
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and every logic gives rise to a Stone space, namely the Stone
space consisting of the prime filters of the distributive lattice
of logical equivalence-classes of sentences. The Compactness
Theorem is that, in first-order logic, each of those prime filters
actually has a model.

We shall use the notation

N = {1, 2, 3, . . .}, ω = {0} ∪ N.

Consider (N, 1, x 7→ x+1) as a structure in the signature (1, S).
It satisfies the Peano Axioms ():

∀x ∀y (Sx = Sy → x = y),

∀x Sx 6= 1,

∀X
(
1 ∈ X ∧ ∀y (y ∈ X → Sy ∈ X) → ∀y y ∈ X

)
.

Theorem (Dedekind, ). For all models A of the Peano
Axioms, for all structures B in the signature {1, S}, there is
a unique homomorphism from A to B.

Remark. We know the axioms by Peano’s name, apparently
because he wrote them out formally; but Dedekind recog-
nized them earlier and understood them better. In particular,

“is in fact the Stone space of a boolean algebra generally known as the
nth Lindenbaum algebra of T . . . The name ‘compactness theorem’
originally came from the fact that Sn(T ) is a compact space.” Strictly,
Hodges has not formally defined the Stone space of a Boolean algebra;
presumably it is to be understood as the space of ultrafilters of the
algebra, which space is a Stone space, as noted. If Sn(T ) is the Stone
space, in this sense, of the nth Lindenbaum algebra of T , then it is
automatically compact, regardless of the Compactness Theorem. But
if Sn(T ) is a space of complete types in the original sense of complete
types of tuples, then the Compactness Theorem can be understood as
the theorem that Sn(T ) is compact.

This is spelled out in the second lecture.

 Compactness in Action 



Dedekind understood that all three of the axioms were needed
to ensure existence of the homomorphism of the theorem.

Corollary. All models of the Peano Axioms are isomorphic
to the structure (N, 1, x 7→ x+1). Hence if c is a new constant
symbol, then

{Peano Axioms} ∪ {c 6= S(n)1: n ∈ ω}

has no model, although every finite subset has.

Compactness Theorem (Skolem, ; Gödel, ;
Mal′cev, , ). In a first-order logic, there is a model
of a set of sentences, if there is of every finite subset.

First-order means:
) variables stand for individuals, not sets;
) formulas are finite.

By Compactness, the Peano Axioms have no first-order for-
mulation. Neither do the axioms of torsion groups, which
are the abelian-group axioms, along with

∀x
∨

n∈N

nx = 0.

Theorem (Tarski, ; Łoś, ). In a signature S , sup-
pose T is a (first-order) theory, and σ is a (first-order) sentence
that is preserved in substructures in Mod(T ), that is,

if A,B � T , A ⊆ B, and B � σ, then A � σ.

I elaborated at the beginning of the second lecture.
Apparently I wrote S(n)c 6= 1 rather than c 6= S(n)1; I made the

correction at the beginning of the second lecture.
There was a question about what nx means. It means x+ · · ·+ x

︸ ︷︷ ︸

n

.
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Then for some universal sentence τ of S ,

T ⊢ σ ↔ τ.

Remark. The converse is easy and was alluded to in Nate Ack-
erman’s talk on the Löwenheim–Skolem Theorem.

Proof. By Compactness,
) T ⊢ σ ↔

∧
Γ, where

Γ = {τ ∈ SenS : τ is universal and T ⊢ σ → τ};

) T ⊢ σ ↔
∧

Γ0 for some finite subset Γ0 of Γ.
Details:

. We show T ∪ Γ ⊢ σ. Say A � T ∪ Γ; we show A � σ. By
hypothesis, it is enough to find B such that

B � T, A ⊆ B, B � σ.

This means finding a model of

T ∪ diag(A) ∪ {σ},

where diag(A) is the diagram of A, namely the quantifier-free
theory of AA (the obvious expansion of A to S (A), which has
a new constant symbol for each element of the universe A of
A). If there is no model, then by Compactness, for some

The parenthetical remark is in my notes, but I must not have written
it all down; for somebody asked me what the Roman A was. Ap-
parently she was unfamiliar with my convention, which comes from
Chang and Keisler. I did not mention that Hodges traces diagrams
to Wittgenstein’s Tractatus ..

Out loud I observed that logic is concerned with correct expression, but
it is difficult to explain expressions in detail. We should understand
that ϕ is a quantifier-free formula of S , and ~a is a tuple of elements
of A.
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ϕ(~a) in diag(A),

T ⊢ σ → ¬ϕ(~a),

T ⊢ σ → ∀~x ¬ϕ,

∀~x ¬ϕ ∈ Γ,

A � ∀~x ¬ϕ,

A � ¬ϕ(~a),

¬ϕ(~a) ∈ Γ,

which is absurd.
. Now T ∪ Γ ∪ {¬σ} has no model, so by Compactness,

neither has T ∪ Γ0 ∪ {¬σ}.

Remark. Hodges gives the following as an application of a gen-
eralization of the theorem.

Theorem (Mal′cev, ). A group has a faithful n-
dimensional representation (that is, an embedding in GLn(K)
for some field K) if every finitely generated subgroup does.

The Łoś–Tarski Preservation Theorem yields:

Th({substructures of models of T}) ⊆ T∀

(and the converse is easy). From algebra,

{substructures of fields} = {integral domains},

an elementary class (that is, Mod(T ) for some theory T ).

I may not have written out even this much. However, in Peter Arndt’s
earlier talk on Lindström’s Theorem, somebody had been confused
about applying Compactness to the characteristic of fields. Arndt
observed that a theorem about fields of characteristic 0 would be
true in fields of large-enough characteristic; the questioner apparently
thought that only the converse was the case.

Somebody asked what GLn(K) was.

 The Compactness Theorem



Theorem. For all theories T , the class of substructures of
models of T is an elementary class: If A � T∀, then A embeds
in an element of Mod(T ).

Proof. T ∪ diag(A) has a model, by Compactness, as in the
proof of the Łoś–Tarski Theorem.

What are the semigroups that embed in groups? They are
precisely the models of some universal theory.

It turns out that it was Mal′cev who first found this theory, at least
implicitly; but there are infinitely many axioms. See [].

 Compactness in Action 



 Compactness as a Topological

Theorem

As we saw, the set

{∀x ∀y (Sx = Sy → x = y),

∀x Sx 6= 1,

∀X
(
1 ∈ X ∧ ∀y (y ∈ X → Sy ∈ X) → ∀y y ∈ X

)
,

c 6= 1, c 6= S1, c 6= SS1, c 6= SSS1, . . . }

has no model, although every finite subset does (just let c be
large enough).

On N, addition is the unique operation + such that

n+ 1 = Sn, n+ Sx = S(n+ x).

That is, x 7→ n + x is the unique homomorphism from
(N, 1, x 7→ x + 1) to (N, n + 1, x 7→ x + 1) guaranteed by
Dedekind’s theorem. The existence of such homomorphisms
usually requires all three of the Peano Axioms. In fact, the
definitions of addition and multiplication require only the in-
duction axiom (as Landau shows implicitly in Foundations of
Analysis). This is why modular addition and multiplication

This assumes the correction in note  on page . In my handwritten
notes, and in the original June , , version of the present docu-
ment, instead of “As we saw, the set . . . has no model,” I wrote “It is
the set . . . that has no model.”
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are possible: these are operations in Z/nZ, which allows proofs
by induction.

But exponentiation needs more than induction. For exam-
ple, modulo 3, we have

21 ≡ 2, 22 ≡ 2 · 2 ≡ 1, 23 ≡ 2, 24 ≡ 2 · 2 ≡ 1 6≡ 21,

although 4 ≡ 1.

Cantor Intersection Theorem. Provided F0 is also
bounded, a decreasing chain

F0 ⊇ F1 ⊇ F2 ⊇ · · ·

of closed intervals of R has nonempty intersection: for this
intersection contains

inf{supFk : k ∈ ω}.

This fails for other intervals:
⋂

k∈ω

[k,∞) = ∅,
⋂

k∈N

(
0, 1

k

)
= ∅.

But it still holds if each Fk is
) the union of finitely many closed bounded intervals;
) the intersection of any number of such unions.

Such intersections are the closed subsets of R. Let τ be the
set of these. Then

Originally I said each Fk was bounded; but then that might seem to
imply that all closed sets are bounded.

Somebody asked me after the lecture why the second condition was
true. It is true by the distributivity of taking unions over taking
intersections: ⋂

A ∪
⋂

B =
⋂

a∈A

⋂

b∈B

a ∪ b.

 Compactness as a Topological Theorem 



) ∅ ∈ τ ,
) X ∈ τ & Y ∈ τ =⇒ X ∪ Y ∈ τ ,
) X ⊆ τ =⇒

⋂
X ∈ τ .

) R ∈ τ (here R can be understood as
⋂
∅).

Heine–Borel Theorem. A collection X of bounded closed
subsets of R has non-empty intersection if each finite subcol-
lection does.

Proof. We may assume X is countable, since each closed in-
terval is the intersection of the larger closed intervals with
rational endpoints:

[α, β] =
⋂

a6α<β6b
a,b∈Q

[a, b].

Then X has the form {Fk : k ∈ ω}, and we can apply the
Cantor Intersection Theorem to

F0 ⊆ F0 ∩ F1 ⊆ F0 ∩ F1 ∩ F2 ⊆ · · ·

The theorem is that bounded closed subsets of R are com-

pact. In his address to the  ICM, Tarski called the Com-
pactness Theorem by this name and noted that it did establish
compactness of certain topological spaces. We can understand
these spaces as StrS , the spaces of structures in the signature
S for various S .

Let

A = StrS ,

B = SenS = {first-order sentences of S }.

There are
I just made the explanation out loud, until somebody asked for clari-

fication.

 The Compactness Theorem



• a relation � from A to B,
• a binary operation ∨ on B.

If σ ∈ B, we define

Mod(σ) = {a ∈ A : a � σ}.

Then

Mod(σ) ∪Mod(τ) = Mod(σ ∨ τ). (∗)

Thus the classes Mod(σ) are a basis for a topology on A

where every closed subclass is, for some subset Γ of B,

Mod(Γ), that is,
⋂

σ∈Γ

Mod(σ).

Every topology on a set or class A can be seen as arising in
this way from a structure (B,∨) and a relation � from A to
B such that (∗) holds. This topology is compact, provided
that

Mod(Γ) 6= ∅

whenever Γ ⊆ B and, for every finite subset Γ0 of Γ,

Mod(Γ0) 6= ∅.

Thus the Compactness Theorem is that StrS is compact.
In the general case, we can produce a structure

(C,∨,∧,⊥,⊤) or C such that
• (B,∨) ⊆ (C,∨),
• Mod(⊥) = ∅ and Mod(⊤) = A,

At some point I was asked what the operation “vee” was. My expla-
nation that it was logical disjunction was immediately satisfactory to
the questioner. I believe I did point that, more generally, it would be
any operation making (∗) true.

 Compactness as a Topological Theorem 



• for all σ and τ in C,
– (∗) holds,
– Mod(σ ∧ τ) = Mod({σ, τ}),
– Mod(σ) = Mod(Γ) for some subset Γ of B.

Now let
σ ∼ τ ⇐⇒ Mod(σ) = Mod(τ).

Then C/∼ is a well-defined distributive lattice. If a ∈ A,
define

Th(a) = {σ ∈ C : a � σ}.

Then

Th(a) = Th(b) ⇐⇒

a and b are topologically indistinguishable.

Thus {Th(a) : a ∈ A} is a Kolmogorov (or T0) quotient of
A.

X

x 7→Th(x)
��
��

�
///o/o/o/o/o/o/o/o/o C

σ 7→σ∼

��
��

{Th(x) : x ∈ X} ///o/o/o C/∼

Moreover,

⊥ /∈ Th(a), ⊤ ∈ Th(a),

and

σ ∨ τ ∈ Th(a) ⇐⇒ σ ∈ Th(a) or τ ∈ Th(a).

Normally Γ will be finite; but we may allow it to be infinite if we wish.
I think I did not actually express this this last sentence, since sev-

eral students in the audience had indicated that they did not know
anything about topology.

 The Compactness Theorem



Therefore, by definition, Th(a)/∼ is a prime filter of C/∼.
But possibly not every prime filter of C/∼ is of this form. Let

Sto(C/∼) = {prime filters of C/∼},

[σ] = {F ∈ Sto(C/∼) : σ∼ ∈ F}.

Then
[σ] ∪ [τ ] = [σ ∨ τ ],

so the [σ] induce a topology on Sto(C/∼) by the relation ∈
(that is, the [σ] themselves are basic closed sets).

X

a7→Th(a)
��
��

�
///o/o/o/o/o/o/o/o/o/o/o/o C

σ 7→σ∼

��
��

{Th(x) : x ∈ X} ///o/o/o/o/o/o

��

Th(a)7→Th(a)/∼

��

C/∼
��

σ∼ 7→[σ]
��
��

Sto(C/∼)
∈

///o/o/o/o/o {[σ] : σ ∈ C}

The map Th(a) 7→ Th(a)/∼ is a dense topological embedding
of the space {Th(a) : a ∈ A} in Sto(C/∼) since if [σ] 6= ∅,
then σ ≁ ⊥, so Mod(σ) 6= ∅.

By the Prime Ideal Theorem, Sto(C/∼) is compact, since if

⋂

σ∈Γ0

[σ] 6= ∅

for all finite subsets Γ0 of Γ, that is, all Γ0 in Pω(Γ), then
Γ/∼ generates a proper filter of C/∼, and so Γ/∼ is included
in a prime filter F , and then

F ∈
⋂

σ∈Γ

[σ].

 Compactness as a Topological Theorem 



Thus (except it may not be Hausdorff) Sto(C/∼) is a com-
pactification of {Th(a) : a ∈ A}. But the latter space can be
any Kolmogorov space. In particular, it need not be compact.

 The Compactness Theorem



 Compactness Proved

Suppose Γ ⊆ SenS and is consistent, that is, every finite
subset has a model. Why has Γ a model?

Skolem’s approach (), developed by Gödel (), and
then by Mal′cev (, ) for the uncountable case, is first
to show that, by adjusting S , we may assume

• the sentences of Γ are in Skolem normal form, that
is, prenex ∀∃ form;

• S contains no operation symbols.
If a sentence

∀x0 · · · ∀xm−1 ∃y0 · · · ∃yn−1 ϕ

has a model, then
• some structures with universe n+ 1, that is, {0, . . . , n},

are models of
∃~y ϕ(0, . . . , 0, ~y);

• some of these embed in structures with universe 2n + 1
that are also models of

∃~y ϕ(1, 0, . . . , 0, ~y);

• some of these embed in structures with universe 3n + 1
that are also models of

∃~y ϕ(1, 1, 0, . . . , 0, ~y);

• and so on.





Thus we obtain an infinite, finitely branching tree of struc-
tures. By König’s Lemma (), this tree has an infinite
branch, whose union has universe ω and is a model of each
sentence

∃~y ϕ(a0, . . . , am−1, ~y);

therefore it is a model of ∀~x ∃~y ϕ. Similarly we obtain a model
of any consistent set of sentences, though the uncountable case
will use the Axiom of Choice.

But suppose we do not want to change S . We say that Γ
• is complete if it is consistent and, for all σ in SenS ,

contains σ or ¬σ;
• has witnesses if for every ϕ in FmS (x) (the set of for-

mulas of S whose only free variable is x), for some con-
stant symbol c of S ,

Γ ⊢ ∃x ϕ → ϕ(c).

If it exists, a canonical model of Γ has universe consisting
of the interpretations of the constant symbols of S .

Theorem (Henkin ). A complete subset of SenS with
witnesses has a canonical model.

Corollary (Mal′cev ). The Compactness Theorem fol-
lows is a consequence of the Prime Ideal Theorem.

Proof (Henkin). Given the consistent subset Γ of SenS , we
can obtain a set C of new constant symbols and a bijection

ϕ 7→ cϕ

I cite Mal′cev as being the first to state the Compactness Theorem
in full generality. I don’t know that he referred to the Prime Ideal
specifically; probably he did not.

 The Compactness Theorem



from FmS (C)(x) to C. Now let

Γ∗ = Γ ∪ {∃x ϕ → ϕ(cϕ) : ϕ ∈ FmS (C)(x)}.

This is consistent and has witnesses, and the same is true
of any complete subset of SenS (C) that includes Γ∗. Such
complete sets exist, by Lindenbaum’s Theorem (on which there
will be a tutorial); this theorem follows from the Prime Ideal
Theorem.

The converse is true by Henkin ().
Another corollary of the Canonical Model Theorem is

Łoś’s Theorem (). Given a signature S and an index
set I, suppose

• (Ai : i ∈ I) ∈ StrS
I ;

• A =
∏

i∈I Ai;
• for each i in I, Ai

∗ is the expansion of Ai to S (A) such
that

a = (aj : j ∈ I) =⇒ aAi
∗

= ai;

• U is a prime filter, or ultrafilter, of P(I), that is,

∅ /∈ U , I ∈ U , X ∪ Y ∈ U ⇐⇒ X ∈ U or Y ∈ U ;

• for each σ in SenS (A),

‖σ‖ = {i ∈ I : Ai
∗ � σ};

• T = {σ ∈ SenS (A) : ‖σ‖ ∈ U }.

I originally had the bijection from FmS (x) to C, but then recog-
nized out loud that this was not quite right. One will obtain C as
a disjoint union

⋃

n∈ω
Cn, with bijections from FmS (x) to C0, and

FmS (C0)(x) r FmS (x) to C1, and FmS (Cn+1)(x) r FmS (Cn)(x) to
Cn+2.

 Compactness Proved 



By the Axiom of Choice, T has a canonical model, which is
called the ultraproduct of (Ai : i ∈ I) with respect to U .

Proof. T is consistent because

σ ∈ T =⇒ ‖σ‖ ∈ U =⇒ ‖σ‖ 6= ∅,

X ∈ U & Y ∈ U =⇒ X ∩ Y ∈ U ,

‖σ‖ ∩ ‖τ‖ = ‖σ ∧ τ‖.

Then T is complete because

X /∈ U ⇐⇒ I rX ∈ U ,

I r ‖σ‖ = ‖¬σ‖.

Finally, T has witnesses because if ϕ ∈ FmS (A)(x), then by
the Axiom of Choice there is a, namely (ai : i ∈ I), in A such
that

Ai
∗ � ∃x ϕ ⇐⇒ Ai

∗ � ϕ(ai) ⇐⇒ Ai
∗ � ϕ(a),

and thus

‖∃x ϕ‖ = ‖ϕ(a)‖,

‖∃x ϕ → ϕ(a)‖ = I,

T � ∃x ϕ → ϕ(a).

Theorem (Halpern & Levy, ). The Prime Ideal Theorem
does not imply the Maximal Ideal Theorem.

Theorem (Hodges, ). The Maximal Ideal Theorem im-
plies the Axiom of Choice.

Running out of time, I did not write down arguments for consistency
and completeness.

 The Compactness Theorem



Thus Łoś’s Theorem is stronger than the Compactness The-
orem. To prove the latter from the former, suppose every fi-
nite subset ∆ of Γ has a model A∆ (here we use the Axiom of
Choice). Then there is an ultraproduct of (A∆ : ∆ ∈ Pω(Γ))
that is a model of Γ. Indeed, if we let

[∆] = {Θ ∈ Pω(Γ) : ∆ ⊆ Θ},

then
[∆] ∩ [Θ] = [∆ ∪Θ],

so the [∆] generate a proper filter of P(Pω(Γ)). This filter
is therefore included in an ultrafilter, which yields the desired
ultraproduct.

In case Γ = {σk : k ∈ ω}, we get

Mod(σ0) ⊇ Mod(σ0 ∧ σ1) ⊇ Mod(σ0 ∧ σ1 ∧ σ2) ⊇ · · ·

as in the Cantor Intersection Theorem.

I did not have time to write down the details.

 Compactness Proved 



Bibliography

[] C. C. Chang and H. J. Keisler. Model theory. North-Holland
Publishing Co., Amsterdam, third edition, . First edition
.

[] John W. Dawson, Jr. The compactness of first-order logic:
from Gödel to Lindström. Hist. Philos. Logic, ():–,
.

[] Richard Dedekind. Essays on the Theory of Numbers. I: Con-
tinuity and Irrational Numbers. II: The Nature and Meaning
of Numbers. authorized translation by Wooster Woodruff Be-
man. Dover Publications Inc., New York, .

[] Kurt Gödel. The completeness of the axioms of the functional
calculus of logic. In van Heijenoort [], pages –. First
published .

[] J. D. Halpern and A. Lévy. The Boolean prime ideal theorem
does not imply the axiom of choice. In Axiomatic Set Theory
(Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. Califor-
nia, Los Angeles, Calif., ), pages –. Amer. Math.
Soc., Providence, R.I., .

[] L. Henkin. Boolean representation through propositional cal-
culus. Fund. Math., :–, .

[] Leon Henkin. The completeness of the first-order functional
calculus. J. Symbolic Logic, :–, .

[] Wilfrid Hodges. Krull implies Zorn. J. London Math. Soc. (),
():–, .





[] Wilfrid Hodges. Model theory, volume  of Encyclopedia
of Mathematics and its Applications. Cambridge University
Press, Cambridge, .

[] Christopher Hollings. Embedding semigroups in groups: not
as simple as it might seem. Arch. Hist. Exact Sci., ():–
, .

[] Edmund Landau. Foundations of Analysis. The Arithmetic of
Whole, Rational, Irrational and Complex Numbers. Chelsea
Publishing Company, New York, N.Y., third edition, .
Translated by F. Steinhardt; first edition ; first German
publication, .

[] Jerzy Łoś. Quelques remarques, théorèmes et problèmes sur les
classes définissables d’algèbres. In Mathematical interpretation
of formal systems, pages –. North-Holland Publishing
Co., Amsterdam, .
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