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I made these notes while preparing my talk “Compactness” at the Cau-
casian Mathematics Conference, Tbilisi, Georgia, September  & , .
I did not actually print out the notes for use during the talk; but I spoke
of some points from memory. I am likely to use these notes in prepar-
ing for the tutorial at the School mentioned below. Documents that I
have been able to consult directly (if only in electronic form) are in the
References at the end; footnotes contain other documents.

. The Compactness Theorem is that if every finite subset of a set of
sentences has a model, then the whole set has a model.

. I shall give a tutorial on compactness at the

th World Congress and School on Universal Logic
June –, , Istanbul
http://www.uni-log.org/







. John Dawson [] reports that Vaught, as well as van Heijenoort and
Dreben, finds the Compactness Theorem [for countable sets of sentences]
to be implicit in Skolem’s  paper [] (Dawson writes ). Looking
at the paper, I find this plausible. (It would be desirable to work out the
details. . . )

. But the Compactness Theorem (for countable sets) was not made
explicit until Gödel’s  article [] based on his doctoral dissertation.

. Mal′cev stated the Compactness Theorem (calling it, according to the
translator, the “general local theorem”), in , but for a proof referred
to his  paper, which had been found dubious in a  review by
Rosser.

. But Mal′cev obtained interesting algebraic results, as:

A locally soluble group of class k is soluble of class k.

“Locally special groups are direct products of their Sylow sub-
groups.”

In general, the review by I. Kaplansky of the  paper says,

Let E1, . . . , Ek be “elementary” properties of a group. Say that
a group G has type [E1, . . . , Ek] if it possesses a normal series
G ⊃ G1 ⊃ · · · ⊃ Gk such that each Gi/Gi+1 has property Ei+1.
Theorem: G is of type [E1, . . . , Ek] if and only if this is true for
each finitely generated subgroup. An interesting application is
the case where k = 2 and E2 is “abelian”, E1 is “order 6 m

Vaught, R. L. Model theory before . Proceedings of the Tarski Symposium
(Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., ),
pp. –. Amer. Math. Soc., Providence, R.I., .

In the introduction to the Collected Works, vol.  of Gödel, .
Mal′cev, A. On a general method for obtaining local theorems in group theory.
(Russian.) Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak.  (), no. , –.

Maltsev, A . I.  ‘Untersuchungen aus dem Gebiete der mathematischen Logik’,
Matematicheskii Sbornik, n.s., , -.

Mal′cev’s  paper is earlier than the earliest of his on MathSciNet; so I have not
seen Rosser’s review.





for a certain fixed m”. In this way we can pass from Jordan’s
theorem that any finite group of complex n-by-n matrices has
an abelian subgroup of index 6 a number m depending only on
n, to Schur’s theorem that the same is true for any (possibly
infinite) torsion group of matrices. Further applications are
given to a theorem of Černikov [ibid. () (), –;
MR (,a)] on Sylow series and a theorem attributed
to Baer on lattice isomorphisms of groups.

. As the Prime Ideal Theorem for countable rings requires no choice
principle (i.e. follows from ZF alone) so too the Compactness Theorem
for countable signatures. This is observed, in effect, by Skolem [], who
needs to prove the Löwenheim–Skolem Theorem (and in effect proves
countable Compactness) without using AC, so that the Skolem Paradox
results more plausibly.

. Four bits of evidence that the contents of my talk are not well known
or well appreciated:

a) Some model-theoretic sources suggest that the Compactness Theo-
rem is immediately equivalent to the compactness of Stone spaces.
(The two theorems are equivalent, but not immediately equivalent.)
My examples are:

i. Keisler [] lets S be the set of all Th(A) (“in a first order lan-
guage L”). Given a sentence ϕ [sic] of L, he defines

[ϕ] = {p ∈ S : ϕ ∈ p},

and he notes that such sets are a basis of closed sets for a topol-
ogy on S. He calls S thus topologized the Stone space of L. He
notes that, by the compactness theorem [sic], every set of basic
closed sets with the finite intersection property has nonempty
intersection.

I think an arbitrary sentence ought to be denoted by σ, while ϕ can be an arbitrary
formula.

Keisler does not capitalize the name of the theorem.





In other words, the compactness theorem states that the
Stone space S of L is compact.

This is not literally wrong, but it uses a nonstandard defini-
tion of a Stone space, and so it obscures the significance of the
Compactness Theorem.

ii. Tent and Ziegler [] say at the head of their Section ., just
before proving the Compactness Theorem,

Its name is motivated by the results in Section . which
associate to each theory a certain compact topological
space.

Section . begins:

We now endow the set of types of a given theory with a
topology. The Compactness Theorem .. then trans-
lates into the statement that this topology is compact,
whence its name.

Fix a theory T . An n-type is a maximal set of for-
mulas p(x1, . . . , xn) consistent with T . We denote by
Sn(T ) the set of all n-types of T . We also write S(T )
for S1(T ). . .

Remark. The Stone duality theorem asserts that the
map

X 7→ {C | C clopen subset of X}

yields an equivalence between the category of 0-dimen-
sional compact spaces and the category of Boolean alge-
bras. The inverse map assigns to every Boolean algebra
B its Stone space S(B), the set of all ultrafilters (see
Exercise ..) of B.

Here “consistent” means satisfiable. Exercise .. defines fil-
ters, ultrafilters, and ultraproducts and asks for a proof of Łoś’s





Theorem. Again nothing is literally wrong here. But the nota-
tion suggests that type spaces are by definition Stone spaces, so
that one might think the Compactness Theorem was a special
case of the compactness of Stone spaces.

b) The same sources and others prove Compactness using the full force
of the Axiom of Choice (Keisler uses transfinite recursion; Tent &
Ziegler, Zorn’s Lemma). Poizat [] spends  pages discussing AC
and mentions that the Prime Ideal Theorem is strictly weaker, but
does not point out that this is sufficient for the Compactness Theo-
rem; rather, he calls AC indispensible for this and other theorems.
(Rothmaler [] does refer the reader to Hodges [, §.], where mat-
ters are made explicit.)

c) The basic Compactness Theorem is not always distinguished from
stronger statements. Rubin & Rubin [] give almost literally the
result of Vaught [] given in the abstract quoted in its entirety
below; but they do not give Vaught’s parenthesis:

Consider the following three known theorems concerning
the existence of models of sentences (of the first-order pred-
icate logic) : () a sentence having a model of power b has
also a model of every power a such that ℵ0 5 a 5 b; ()
a sentence having a model of power ℵ0 has also a model
of every power c = ℵ0; () if Q is a set of sentences, in
which the set of individual constants involved may have an
arbitrary power d, and every finite subset of Q has a model,
then Q has a model, whose power is not greater than d+ℵ0.
Theorem: Each of (), (), and () implies the Axiom of
Choice in its general form. As regards (), this answers a
question, raised by Henkin (Trans. Amer. Math. Soc. vol.
 () p. ), as explicitly formulated. (On the other
hand, the statement, obtained from () by dropping the fi-
nal phrase (“whose. . . ”) has been shown by Henkin and Łoś
to be equivalent to the existence of prime ideals in Boolean
algebras, and its exact relationship to the Axiom of Choice





is still not determined.) The Theorem is derived from the
known result (of Tarski) that the Axiom of Choice is im-
plied by the statement: if ℵ0 5 b, then b2 = b. (Received
January , .)

Rubin and Rubin list  equivalent formulations of the Boolean Prime
Ideal Theorem; but none of them is the (arbitrary) Prime Ideal
Theorem or the Compactness Theorem.

Rubin and Rubin refer to Vaught’s three statements as a downward
Löwenheim–Skolem theorem, an upward Löwenheim–Skolem theo-
rem, and a compactness theorem, designating them as LOG 1, LOG
2, and LOG 3 respectively. Some sort of correction to LOG 3 as in-
dicated is needed (otherwise Γ could use singulary predicates, for
example, to say that all models are strictly larger than κ).

By the method of constants, LOG 3 ⇒ LOG 2. By the original
Löwenheim–Skolem Theorem, LOG 2 ⇒ LOG 1. Now suppose

ℵ0 6 κ, µ = 2κ·ℵ0 .

Then

µ2 =
(
2κ·ℵ0

)2
= 2κ·ℵ0·2 = 2κ·ℵ0 = µ,

ℵ0 6 κ 6 µ.

In a signature {F}, where F is a binary operation symbol, let σ say
F is surjective and injective. Then σ has a model of cardinality µ.
If LOG 1 holds, then σ has a model of cardinality κ, so

κ2 = κ. (∗)

This in turn implies the Well Ordering Theorem. For, let κ∗ be the
least aleph that is not less than κ:

κ∗ = {ξ : ξ ∈ ON & ξ 6 κ}.





By (∗) (for all κ),

κ+ κ∗ = (κ+ κ∗)2 > κ · κ∗ = κ∗ · κ.

This implies (by a result of Tarski) that κ and κ∗ are comparable.
Therefore κ = κ∗.

Under the supplied correction to LOG 1, without assuming the Ax-
iom of Choice (but with the Prime Ideal Theorem), all we know is
that the model of Γ is bounded in cardinality by

⋃
n∈ω κn + ℵ0.

Assuming this bound is equal to κ+ℵ0 is already equivalent to AC,
as we have just seen.

. The Maximal Ideal Theorem can be proved with Zorn’s Lemma; but
the method of constructing the maximal ideal by transfinite recursion is
useful to know. The method is available automatically (without AC) in
the countable case.

. It is worthwhile to prove the Prime Ideal Theorem without AC, to
emphasize that primeness (unlike maximality) is local, hence amenable
to Compactness.

. According to Dawson, in topology, bicompact was first defined (“every
open covering possesses a finite subcovering”) “in a paper submitted in
 but not published until ” by Alexandroff and Urysohn.

. The current name of the Compactness Theorem (again according to
Dawson) first appeared in Tarski’s  address to the ICM in Cam-
bridge, Massachusetts (published in ). One of his versions of the
theorem is that Str is compact; but the formulation (as his Theorem )
is basically as follows. For every formula ϕ of S , let Mod(ϕ) be the
class of structures A of S such that every tuple of A satisfies ϕ in A.
Thus Mod(ϕ) = Mod(∀x ϕ), if ϕ ∈ FmS (x). If a set of such classes
has empty intersection, then so does some finite subset. Tarski’s notation
is more complicated, involving first the function F associated with ϕ that
sends each A to the subset of Aω whose elements satisfy ϕ in A. Then





our Mod(ϕ) is his EL(F), which he calls an arithmetical class. F it-
self is an arithmetical function, and there is a compactness theorem
(Theorem ) for these as well.

. Dawson notes, “few logic texts bother to explain the topological con-
text of the compactness theorem at all.” His example of an exception is
Monk []. Monk derives the Compactness Theorem from the Complete-
ness Theorem (proved by Henkin’s method). He immediately says,

The compactness theorem lies at the start of model theory,
and it will play a very important role in Part IV. For some
motivation for the name compactness theorem, see Exercise
..

The exercise, quoted by Dawson, is

Let K be a nonempty set of L -structures. For each L ⊆
K let CL = {A ∈ K : A is a model of every sentence which
holds in all members of L}. Show that with respect to C as a
closure operator, K is a compact topological space.

Dawson shows that this is false as stated, because there is a counterex-
ample in which K consists of the finite substructures of 〈N, <〉: look at
the sentences saying there are at least n elements. Dawson could just
have noted that, while the given closure operator makes Str a compact
space, not every subclass of this is compact. Dawson does note that pre-
sumably Monk intended K to be “elementary, or perhaps ACδ”—but here
ACδ means closed, that is, elementary.

References

[] John W. Dawson, Jr. The compactness of first-order logic: from
Gödel to Lindström. Hist. Philos. Logic, ():–, .





[] Kurt Gödel. The completeness of the axioms of the functional cal-
culus of logic. In van Heijenoort [], pages –. First published
.

[] Wilfrid Hodges. Model theory, volume  of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cam-
bridge, .

[] H. Jerome Keisler. Fundamentals of model theory. In Handbook
of mathematical logic, pages –. North-Holland Publishing Co.,
Amsterdam-New York-Oxford, . Edited by Jon Barwise, With
the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A.
S. Troelstra, Studies in Logic and the Foundations of Mathematics,
Vol. .

[] J. Donald Monk. Mathematical logic. Springer-Verlag, New York-
Heidelberg, . Graduate Texts in Mathematics, No. .

[] Bruno Poizat. A course in model theory. Universitext. Springer-
Verlag, New York, . An introduction to contemporary mathe-
matical logic, Translated from the French by Moses Klein and revised
by the author.

[] Philipp Rothmaler. Introduction to model theory, volume  of Alge-
bra, Logic and Applications. Gordon and Breach Science Publishers,
Amsterdam, . prepared by Frank Reitmaier, translated and
revised from the  German original by the author.

[] Herman Rubin and Jean E. Rubin. Equivalents of the axiom of
choice. II, volume  of Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Co., Amsterdam, .

[] Thoralf Skolem. Some remarks on axiomatized set theory. In van
Heijenoort [], pages –. First published .

[] Katrin Tent and Martin Ziegler. A course in model theory, volume 
of Lecture Notes in Logic. Association for Symbolic Logic, La Jolla,
CA, .





[] Jean van Heijenoort, editor. From Frege to Gödel: A source book
in mathematical logic, –. Harvard University Press, Cam-
bridge, MA, .

[] R. L. Vaught. On the axiom of choice and some metamathematical
theorems. Bulletin of the American Mathematical Society, (),
. Abstract of paper read by title at the nd meeting of the
American Mathematical Society, New York, February, .


