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Abstract

In his Geometry of , Rene Descartes gave a geometric
justification of algebraic manipulations of symbols. He did
this by interpreting a field in a vector-space with a notion of
parallelism. At least this is how we might describe it today.
I alluded to this in the abstract for my February  seminar,
but did not actually talk about it. Now I want to talk about
it.

By fixing a unit, Descartes defines the product of two line
segments as another segment. He relies on a theory of propor-
tion for this. Presumably this is the theory developed in Book
V of Euclid’s Elements—the theory that inspired Dedekind’s
definition of real numbers as “cuts” of rational numbers.

But this theory has an “Archimedean” assumption: for any
two given segments, some multiple of the smaller exceeds the
larger.





In fact this assumption is not needed, as Hilbert observed
in Foundations of Geometry. Hilbert uses instead Pappus’s
Theorem. This work may be known now as “interpreting a
field in a projective plane”.

I tracked down Pappus’s original argument (from the th
century), and [on May ] I wrote an account of it on Wiki-
pedia [article Pappus’s hexagon theorem, section “Origins”].

As for model theory, another result that comes out of these
considerations is that there are model-complete theories of
Lie-rings equipped with an endomorphism of the abelian-
group-structure.
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Fixing a line segment in the Euclidean plane as a unit, Descartes []
defines multiplication of segments.

Thus he justifies algebra by interpreting it in geometry.

Hilbert will go the other way, using algebra to produce models of his
geometric axioms.

Descartes needs Proposition VI. of Euclid’s Elements [], that a line
parallel to the base of a triangle divides the sides proportionally, as
in Figure . Descartes himself uses single minuscule letters for line
segments. He uses the reverse of our ∝, instead of =. Strictly we
should probably consider these minuscule letters as lengths of line





Figure  Descartes’s definition of multiplication
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segments; and the length of a segment should be understood as the
class of all segments that are congruent to it. (In Euclid, equality
means congruence; sameness is a different notion.)

The proof of VI. uses the auxiliary lines in Figure , and VI.,

Figure  Euclid’s Proposition VI.
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that triangles (and parallelograms) with the same height are to one
another as their bases.

This follows easily from the definition of proportion in Book V of the
Elements. This definition uses an “Archimedean” assumption: for
any two magnitudes of the same kind (as line segments, or areas),
some multiple of the smaller exceeds the larger. If A, B, C, and D
are magnitudes, A and B being of the same kind, and likewise C
and D, then

A : B :: C : D





means for all positive integers k and m,

kA > mB ⇐⇒ kC > mD,

kA = mB ⇐⇒ kC = mD,

kA < mB ⇐⇒ kC < mD.

We then might understand

(A : B) = {m/k : kA < mB}.

Thus a ratio corresponds to a Dedekind cut of positive rational num-
bers.

Dedekind [] does not say his definition (discovered November ,
) of the real numbers is inspired by Euclid. But apparently he
read Euclid in school [, p. ].

Dedekind does not show explicitly that the real numbers defined by
him satisfy the field axioms; but he says it can be done. His idea
seems to be this: the operations of + and × are continuous in each
coordinate, and therefore every equation, like

(x+ y) · z = x · z + y · z,

that is satisfied by all rationals is satisfied by all reals as well.

The works that I know—Landau [, Thm , p. ] and Spivak [,
pp. –]—do not take this approach, but work directly with the
definitions of + and × as cuts.

Descartes does not recognize a need to prove associativity and com-
mutativity of his multiplication.

Note that addition is “obviously” commutative and associative, since
equality of parts implies equality of the whole. Consider for example
Euclid’s I. in Figure , that parallelograms on the same base and
in the same parallels are equal, because they can be divided into
parts that are respectively equal.

We can prove commutativity of multiplication using Figure . Here





Figure  Euclid’s Proposition I.
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ABCD = ABGD +GBC

= GCFE +GBC

= EBCF.

Figure  Pappus’s Theorem (parallel case)
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DC ‖ FG & DE ‖ AG

=⇒ AC ‖ FE.

let am

BF = 1, BE = 1, BD = a, BG = b.

Assume

DC ‖ FG, DE ‖ AG.

Then BA = ab and BC = ba. These are equal, provided AC ‖ FE.
To prove this, we may note that

BF : BD :: BG : BC,

BD : BA :: BE : BG,

and therefore, by Euclid’s Proposition V., ex aequali,

BF : BA :: BE : BC.





The proof of V. does not use commutativity of multiplication of
integers, but uses the Archimedean property. In fact it uses a bit
more than this: of two unequal magnitudes of the same kind, their
difference is also of the same kind. The argument can be made as
follows where capital letters are now magnitudes.

V.. Suppose A > B, and C is of the same kind as these. Then for
some k we have k(A−B) > C, and so for some m we have

kA > mC > kB,

and thus A : C > B : C (hence also C : A < C : B).

V.. If A : B :: C : D and A > C, then

C : D :: A : B > C : B,

so B > D.

V.. Suppose

A : B :: E : F,

B : C :: D : E.

If A > C, then E : F :: A : B > C : B :: E : D, so D > F .

V.. Same supposition as V.. Then for all k and m,

kA : kB :: mE : mF,

kB : mC :: kD : mE,

and so kA > mC =⇒ kD > mF . Thus

A : C :: D : F.

For associativity, in the same Figure , repeated now as Figure ,
suppose





Figure  Pappus’s Theorem (parallel case) again
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Then DE ‖ AG. Also

DC ‖ FG =⇒ BC = c(ab),

AC ‖ FE =⇒ BC = b(ac).

The theorem we have used is that if the vertices of a hexagon lie
alternately on two straight lines, and two pairs of opposite sides are
parallel, then so is the third pair. More generally, the intersection
points of the pairs of opposite sides lie on the same straight line—in
our case, this is the “line at infinity”. Pappus proved the finite case
[, VII.–].

Pascal’s Theorem is the case where the vertices of the hexagon lie
on a conic section. It is enough to prove the case of a circle, since
non-degenerate conic sections are projections of a circle.

One can prove Pappus’s Theorem without using proportions (or the
Archimedian property in any way). See Hilbert’s Foundations of

Geometry [, §, pp. –], where the theorem is named for Pascal.
Hilbert argues as follows. In Figure , the angles ACB and ADB are
right, so the points ABCD lie on a circle, and therefore the angles





Figure  Hilbert’s lemma
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ABD and ACD are equal, so their complements BAD and CAE
are equal. Considering now how AE is the result of two projections,
in two different ways, from AB, we can write this as

c cosα cosβ = c cosβ cosα,

where c = AB, and α = ∠BAC, and β = ∠CAE. Hilbert writes
the conclusion as

βαc = αβc;

here αc just means the length of AC. Now apply this to Figure ,
which is just Figures  and  relettered. We assume CB′ ‖ BC ′

Figure  Hilbert’s proof
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and CA′ ‖ AC ′. Perpendiculars dropped from O to CB′, CA′, and
BA′ make angles λ′, µ′, and ν′ with OA, and angles λ, µ, and ν
with OC ′, respectively. Then with distances from O lettered in the





obvious way, we have (in Hilbert’s notation, as above)

λb′ = λ′c, µa′ = µ′c, νa′ = ν′b,

λ′b = λc′, µ′a = µc′,

and therefore, since we can permute the angles, we apply these
equations in order to get

ν′µ′λa = ν′µλc′ = ν′µλ′b = νµλ′a′ = νµ′λ′c = νµ′λb′,

ν′a = νb′,

and therefore BA′ ‖ AB′.

Hilbert gives also another argument, from an unnamed source. He
then develops an “algebra of segments”, more or less along the lines
of Descartes. In short, he interprets a field.

There is an alternative approach to interpreting a field, using only
Book I of the Elements. Fix a unit segment. By Propositions I.
and I., in effect, every rectangle is equal to a rectangle with unit
side. The other side of this rectangle can then be defined as the
product of the two sides of the first rectangle. This multiplication is
immediately commutative, as well as distributive over addition.

More precisely, multiplication is effected as in Figure , where points

Figure  Multiplication
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are labelled with their distances from the lower left vertex. Then

We proved commutativity. Associativity is automatic, since the angles repre-

sent functions; but Hilbert does not seem to say this explicitly.





(by I. and its converse) d = ab if and only if the diagonal passes
through the intersection of the vertical and horizontal lines.

Associativity can be established by means of Figure . Again points

Figure  Associativity of multiplication
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are labelled with their distances from the lower left vertex. The
longer diagonal gives us both cb and ab. Then the shorter diagonal
then gives us a(cb). This is equal to c(ab), provided

C +D + E = K.

The longer diagonal gives us

A+B = E + F +H +K,

B = E + F,

and therefore
A = H +K.

The shorter diagonal gives us

A = D + E +G+H,

and therefore
D + E +G = K.

We finish by noting (from the longer diagonal)

C = G.

Therefore c(ab) = a(cb). We have assumed c < 1 < a and b < a(cb).
Strictly we should consider four more cases:





() c < 1 < a, but a(cb) = b;
() c < 1 < a, but a(cb) < b;

() c < a < 1; and
() 1 < c < a.

 Vector spaces

Descartes’s idea does let us interpret the scalar field in a vector space
(of dimension at least two) by means of parallelism. This is worked
out in my paper []. Given two parallel vectors a and b, we define
[a : b] as the class of pairs (c,d) of parallel vectors such that

a− c ‖ b− d

—assuming a ∦ c; otherwise we must be able to find a third pair of
parallel vectors with the same relation to the first two pairs. Then
the field is the set of these classes [a : b], where b 6= 0. Equality
and inequality of these, and addition and multiplication of these, are
defined by existential formulas. Hence we obtain an equivalence of
the categories of:

) vector spaces with scalar field as a separate sort,
) vector spaces with scalar field only as interpreted above,

where in each case the morphisms are merely embeddings, not just
elementary embeddings.

 Lie rings

Suppose K is a field. Let Der(K) be the set of derivations of K.
Then this is both

. a vector space over K, and
. a Lie ring, the multiplication being the Lie bracket, (X,Y ) 7→

[X,Y ], where

[X,Y ] = X ◦ Y − Y ◦X.





For example,

K = Q(x0, . . . , xm−1), Der(K) = 〈∂0, . . . , ∂m−1〉K ,

where ∂i = ∂/∂xi. Suppose V is both a subspace and sub-ring of
Der(K). Then (K,V ) is a Lie–Rinehart pair.

Since V is a vector space over K, we may suppose K ⊆ End(V,+).
In particular, we have

(f,D) 7→ fD : K × V → V.

Since V ⊆ Der(K), we have

(D, f) 7→ Df : V ×K → K.

Two compatibility conditions are satisfied. First, if f, g ∈ K and
D ∈ V , then

(fD)g = f(Dg).

Thus the expression
fDg

is unambiguous. Next, if f, g ∈ K and D,E ∈ V , then

[D, fE]g = D(fEg)− fE(Dg)

= (Df)(Eg) + fD(Eg)− fE(Dg)

= ((Df)E)g + f [D,E]g,

so
[D, fE] = (Df)E + f [D,E].

Suppose D ∈ V and t ∈ K and Dt 6= 0. For every f in K, we have

( f

Dt
D
)

t = f.

Thus
K = {Dt : D ∈ V }.

Let b denote the Lie bracket operation. I propose to call the struc-
ture (V,+,−, 0, b, t) a Lie ring of vectors. The class of these is
elementary. For, first of all, there are axioms as follows:





. (V,+,−, 0) is an abelian group.
. b makes this a lie ring: b distributes over +, and

X bX = 0, X b (Y b Z) + Y b (Z bX) + Z b (X b Y ) = 0.

. t is an endomorphism of the group:

t(X + Y ) = tX + tY.

Next, rearranging the second compatibility condition above, we ob-
tain

(Df)E = D b (fE)− t(D b E).

If f is replaced by t, then the right hand side is a term in our
signature. We then take the left hand side as an abbreviation of
this. By the axioms so far, each operation X 7→ (Dt)X or Dt is an
endomorphism of (V,+). Let

K = {Xt : X ∈ V }.

Then this is a group under

Xt+ Y t = (X + Y )t.

The map X 7→ Xt is a group homomorphism from K to End(V,+).
We want it to be a ring monomorphism. So the axioms say further:

. The action is faithful:

XtY = 0 → Y = 0 ∨XtZ = 0.

. K is closed under multiplication:

∃W (Xt)((Y t)Z) = (Wt)Z.

(Here the outer universal quantifiers are suppressed.) Then
multiplication is associative and distributes over addition, by
what we already have; so K is an associative ring. Expressions
like

(Xt)(Y t)Z

are now unambiguous.





. K is commutative:

(Xt)(Y t)Z = (Y t)(Xt)Z.

. K has inverses:
∃Z (Zt)(Xt)Y = Y.

In particular, K contains 1, which is different from 0, since the
action is faithful.

We also need K to be closed under the action of V . Again by the
second compatibility condition, we have

(DFt)E = D b (FtE)− (Ft)(D b E),

the right hand being a term of the signature; we use the left as an
abbreviation. So we now require:

. K is closed under x 7→ Dx, for all D in V :

∃W (XY t)Z = (Wt)Z.

. The first compatibility condition holds:

(((Xt)Y )(Zt))W = ((Xt)(Y Zt))W.

This is it. We have not shown that V acts on K as a Lie ring of
derivations, but this is automatic from the definition of the action,
since K is now established as a sub-ring of End(V,+).

If 0 < m < ω, let LVm be the theory of m-dimensional Lie rings of
vectors. Let (V,+, b, t) be a model, with scalar field, K. Then V
has a basis of commuting derivations ∂0, . . . , ∂m−1 of K, so

(K, ∂0, . . . , ∂m−1) |= m-DF.

This structure has a one-dimensional interpretation in (V,+, b, t)
with coordinate map X 7→ Xt (from V to K). To show this, we
need, for certain formulas φ of the signature {+, ·, ∂0, . . . , ∂m−1},
formulas φ∗ of the signature {+, b, t} such that

(V,+, t) |= φ∗(X, . . . ) ⇐⇒ (K,+, ·, ∂0, . . . , ∂m−1) |= φ(Xt, . . . ).





These are as follows.

φ φ∗

x = y (Xt)∂0 = (Y t)∂0

x+ y = z (Xt)∂0 + (Y t)∂0 = (Zt)∂0

x · y = z (Xt)(Y t)∂0 = (Zt)∂0

∂ix = y (∂iXt)∂0 = (Y t)∂0

x 6= y (Xt)∂0 6= (Y t)∂0

The existence of all but the last φ∗ ensure the interpretation. That
all of the φ∗ are quantifier-free (existential would be enough) ensures
that, if (V,+, b, t) is existentially closed, then so is (K,+, ·, ∂i : i <
m).

To prove this, we need only note that, if

(K,+, ·, ∂0, . . . , ∂m−1) ⊆ (L,+, ·, ∂̃0, . . . , ∂̃m−1),

then, letting
Ṽ = 〈∂̃0, . . . , ∂̃m−1〉L,

and letting b̃ be the Lie bracket, we have an embedding ∂i 7→ ∂̃i of
(V,+, b, t) in (Ṽ ,+, b̃, t).

Similarly, there is an m-dimensional interpretation of (V,+, b, t) in
(K,+, ·, ∂0, . . . , ∂m−1), with coordinate map

(x0, . . . , xm−1) 7→
∑

i<m

xi∂i.

As before, if (K,+, ·, ∂0, . . . , ∂m−1) is existentially closed, so must
(V,+, b, t) be.

The theory LVm has a model companion, whose axioms say that if
{∂0, . . . , ∂m−1} is a commuting spanning set—that is, if

∂ia
j = δ

j
i

for all i and j in m, for some (aj : j < m) in Km—then the structure
(K,+, ·, ∂i : i < m) is a model of m-DCF.
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