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Abstract

After some generalities about model-theory, I give a specific result about differential
fields: for every natural number, the theory of fields with that number of commuting
derivations has a model-companion. This is so because, if a system of partial differen-
tial equations is given, there is a way to tell in finitely many steps whether the system
is soluble, and moreover the number of steps is independent of the parameters of the
system.
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1 Model-theory

I consider model-theory to be the study of structures as models of theories. This definition
has three terms that need explanation. For the moment, a theory is just a set of sentences
of a formal logic. If each of those sentences is true in a structure, that structure is a
model of the theory. The logic is usually first-order, and will always be so here; this means
variables stand for individuals, never sets as such, and moreover sentences are finite: only
finitely many variables appear in a given sentence, and all conjunctions and disjunctions
are finitary.

A structure then consists of one or more sets, together with various relations and
operations on those sets, along with distinguished individual elements of those sets. None
of these additional features is actually required to be present: a bare set is a structure. But
groups, rings, ordered fields, and vector-spaces are also structures. One non-example is a
topological space, considered as a set Ω with the closure operation X 7→ X: the problem
here is that X ranges, not over elements of Ω, but over sets of elements of Ω. However,
certain topological spaces are essential to model theory: first-order formulas in a given
number of free variables determine a Boolean algebra, called a Lindenbaum algebra, and
the elements of the Stone space of this algebra are called types.

One reason to use first-order logic is that it has a compactness theorem: if every finite
subset of a theory has a model, then so does the whole theory. One might see this as a
restriction: it implies for example that there is no theory whose models are precisely the
torsion groups. Indeed, suppose T is a theory of which every torsion group is a model.
We introduce a new constant g and, for each positive integer n, a sentence σn, namely
gn 6= 1. Every finite subset of T ∪ {σk : k ∈ N} has a model, namely Z/nZ for sufficiently
large n; therefore the whole set has a model, and in this model, g must be interpreted as
a non-torsion element.
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So compactness can be used to show some limitations of first-order logic. But it can
also be used to make rigorous the intuitive approach of Newton and Leibniz to calculus
[6].

A structure has a signature, namely a set of symbols for the distinguished relations,
operations, and individuals of the structure. Then a sentence σ can be true or false in a
structure M only if the non-logical symbols in σ come from the signature of M. A set Γ
of sentences entails a sentence σ, and σ is a logical consequence of Γ, if σ is true in every
model of Γ. Now we can say that Γ is a theory if (and only if) it contains all of its logical
consequences. In any case, if T is the set of logical consequences of Γ, then Γ is a set of
axioms for T . The theory T is then complete if, for every sentence σ of its signature, T
entails either σ or its negation.

Every structure has a theory, namely the set of sentences that are true in the structure.
This theory is automatically complete. However, by Gödel’s Incompleteness Theorem of
1931, there is no method for writing down a set of axioms for the theory of N in the
signature {+,×}. Nonetheless, by slightly earlier work of Tarski’s student Presburger,
there is such a method in the smaller signature {+}. In a word, the structure (N,+) is
‘tame’, but (N,+,×) is not tame. An early theme of model-theory is just the identification
of tame structures [5]. Further examples are (R,+,×,6), (C,+,×), and (Q,6).

By the compactness theorem, every theory with infinite models has infinitely many non-
isomorphic models. The theory ACF0 of (C,+,×) has countably many non-isomorphic
countable models, but just one model of each uncountable cardinality. The theory LO∗

of (Q,6) has one countable model, but 2κ models in each uncountable cardinality κ. An
ongoing task of model-theory is to understand the combinatorial properties that effect
distinctions such as the one just described between the class of models of ACF0 and of
LO∗. For example, LO∗ is unstable, because of the ordering; no such ordering can be
defined in ACF0, so this theory is stable; in fact it is ω-stable, because its Stone spaces in
countably many parameters are themselves countable.

Abraham Robinson investigated a variant of completeness that he called model com-
pleteness. To define this, we first define the diagram of a structure: this is the set of
quantifier-free sentences, with parameters from the structure, that are true in the struc-
ture. For example, the diagram of (N,+,×) is generated by the usual addition and multi-
plication tables learned at school. Then a theory T is model-complete if the set T∪diag(M)
axiomatizes a complete theory whenever M is a model of T . For example, the theory ACF
of algebraically closed fields is model-complete: this follows because for every model K,
the theory (axiomatized by) ACF∪diag(K) has only one model in each cardinality greater
than that of K itself. The theory ACF is not itself complete, but it becomes complete
when an axiom specifying the characteristic of a model is added. Indeed, the new theory is
complete because it is model-complete and it has a model that embeds in all other models.

Because then ACF∪diag(K) is complete for every field K, the theory ACF is called the
model-completion of the theory of fields. A slightly more general notion is that of model-
companion: a theory T ∗ is a model-companion of T if every model of the one theory
embeds in a model of the other, and moreover T ∗ is model-complete. If LO is the theory
of linear orders, then LO∗ as defined above is indeed its model-companion. The theory
of groups has no model-companion; neither does the theory of fields with a distinguished
algebraically closed subfield.

Suppose T is a theory such that the union of an increasing chain of models is itself
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a model; equivalently, like most structures studied in algebra, T is axiomatized by ∀∃
sentences. The existentially closed models of T are those models M such that, for every
quantifier-free formula φ in the signature of M with parameters, if φ has a solution in
some extension of M that is a model of T , then φ already has a solution in M itself. If
(and only if) there is a theory whose models are precisely the existentially closed models
of T , then this theory is the model-companion of T [1]. The theory of fields with a dis-
tinguished algebraically closed subfield has no model-companion, because the existentially
closed models of this theory are the algebraically closed fields of transcendence-degree one
over an algebraically closed subfield, and transcendence-degree can be given no first-order
characterization.

2 Differential fields

High-school algebra and calculus combine in differential fields: these fields with one or
more derivations, namely operations D with the algebraic properties of ‘taking the deriva-
tive’: D(x + y) = Dx + Dy, and D(x · y) = Dx · y + x · Dy. Let DF be the theory of
fields with a single derivation. A required characteristic can be indicated by a subscript.
Using an elimination result of Seidenberg, Robinson found a model-companion of DF0,
but its axioms were not illuminating. The model-companion of field-theory needs only
axioms saying that every non-constant polynomial in one variable has a root. Lenore
Blum showed that a similar result was possible for DF0. Meanwhile Carol Wood found a
model-companion for DFp when p is positive. Combining these results yields the following:

Theorem 2.1 (Robinson, Blum, Wood). A model (K,D) of DF is existentially closed if
and only if each of the following conditions holds.

1. K is separably closed.

2. (K,D) is differentially perfect (in positive characteristic p, if Dx = 0, then x has a
pth root).

3. The sentence

∃x
(
f(x,Dx, . . . ,Dn+1x) = 0 ∧ g(x,Dx, . . . ,Dnx) 6= 0

)
is true in (K,D) whenever f and g are ordinary polynomials over K, in tuples
(x0, . . . , xn+1) and (x0, . . . , xn) of variables respectively, such that

∂f

∂xn+1
6= 0, g 6= 0.

Hence DF has a model-companion.

Following Robinson, we may call this model-companion DCF. Its completions—the
complete theories that include it—are obtained by specifying a characteristic. The com-
pletion DCF0 is ω-stable; when p is positive, DCFp is not ω-stable, but is stable [7].

An alternative way to simplify the axioms of DCF is to consider, not systems in one
variable, but first-order systems—first-order, not in the sense of logic, but in the sense
of having only single applications of the derivation. Then the models of DCF can be
described geometrically [4, 2]:
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Theorem 2.2. A differential field (K,D) is existentially closed if and only if each of the
following conditions holds.

1. K is separably closed.

2. (K,D) is differentially perfect.

3. For every variety V over K, if there are rational maps φ and ψ from V to An for
some n, where φ is dominant and separable, then V has a K-rational point P such
that φ and ψ are regular at P , and D ◦ φ(P ) = ψ(P ).

In Condition 3, it is sufficient to assume n = dimV .

3 Several derivations

Given a positive integer m, we may let m-DF be the theory of fields with m commuting
derivations. So in this theory, equations are so-called partial differential equations. As
usual, a required characteristic can be given by a subscript. The existence of a model-
companion of m-DF0—call it m-DCF0—was established by Tracey McGrail; alternative
characterizations and generalizations (still in characteristic 0) were given by Yaffe and by
Tressl. However, as with Robinson’s original account of DCF0, none of these descriptions
of m-DCF0 is perspicuous.

It appears that neither of the methods described above for simplifying the axioms
of DCF is useful for m-DCF. Nonetheless, we have the theorem below (in which no
characteristic is specified) [3]. Notation is as follows.

• ω is the set of von-Neumann natural numbers, so that an element n is the set
{0, . . . , n− 1}.

• If ξ ∈ ωm, that is ξ = (ξ(0), . . . , ξ(m− 1)), then

|ξ| =
∑
i<m

ξ(i), ∂ξ = ∂0
ξ(0) · · · ∂m−1

ξ(m−1).

• If n is a positive integer, then P is the total ordering of ωm × n that is taken from
the left lexicographic ordering of ωm+1 by means of the embedding

(ξ, k) 7−→ (|ξ|, k, ξ(0), . . . , ξ(m− 2))

of ωm × n in ωm+1.

• If (σ, k) ∈ ωm × n, and D is a derivation of a field K, and x = (xξh : (ξ, h) P (σ, k)),
and f ∈ K(x), then f has a derivative Df , which is the linear function over K(x)

in new variables yξh given by

Df =
∑

(ξ,h)P(σ,k)

∂f

∂xξh
· yξh + fD,

where f 7→ fD is the derivation of K(x) that extends D and takes each xξh to 0.
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• If i < m, then i = (e(0), . . . , e(m− 1)), where e(j) = 0 if j 6= i, and e(i) = 1.

• 6 is the product ordering of ωm.

Suppose now (K, ∂0, . . . , ∂m−1) is a model of m-DF, and n and r are positive integers. Let

us say that an extension K(aξh : |ξ| 6 2r ∧ h < n) of K is nice if

• for all f in K(xξh : |ξ| < 2r ∧ h < n) such that

f(aξh : |ξ| < 2r ∧ h < n) = 0,

for each i in m,
∂if(aξh, a

ξ+i
h : |ξ| < 2r ∧ h < n) = 0;

• for each k in n, each <-minimal element ρ of

{σ ∈ ωm : aσk ∈ K(aξh : (ξ, h) C (σ, k))sep}

has |ρ| 6 r.

The first condition of niceness here is that each ∂i extends to a derivation from K(aξh : |ξ| <
2r ∧ h < n) to K(aξh : |ξ| 6 2r ∧ h < n) such that

∂ia
ξ
h = aξ+i

h .

The second condition of niceness is that if both ρ and σ are <-minimal elements of the
indicated set, then, under the extensions of the derivations ∂i just described, aρk and aσk
have a common derivative aτk, where |τ | 6 2r. This ensures that there will be no obstacle
to extending the ∂i indefinitely as commuting derivations:

Theorem 3.1. A model (K, ∂0, . . . , ∂m−1) of m-DF is existentially closed if and only if
the following condition holds:

For all positive integers r and n, for every nice extension K(aξh : |ξ| 6 2r ∧ h < n) of

K, for some tuple (bh : h < n) of elements of K, the tuple (aξh : |ξ|< 2r ∧ h < n) has a
specialization (∂ξbh : |ξ| < 2r ∧ h < n).

Every system of equations over (K, ∂0, . . . , ∂m−1) can be understood first as a system

of equations of ordinary polynomials belonging to K(xξh : |ξ| 6 r ∧ h < n) for some r and
n. Suppose we formally differentiate these polynomials with respect to the ∂i, using the
rule ∂ia

ξ
h = aξ+i

h as above. We may introduce new variables xξh, as long as |ξ| 6 2r. If no

new algebraic condition on (xξh : |ξ| 6 r ∧ h < n) is introduced in this way, then by the
theorem, the original system of differential equations has a solution.
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