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We want to understand the maximal ideals of the ring C(R) of continuous
functions from R to itself. What are the fields that are quotients of this
ring? Can they be understood as ultrapowers of R? In fact, they can.

The results of §§  and  are standard.
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 Ultraproducts

We begin with a review of ultraproducts in general, and Łoś’s Theorem.

Suppose (Ai : i ∈ I) is a family of structures with a common signature
S . (We shall be interested mainly in the case when these structures
are fields, in the signature {+,−, ·, 0, 1}.) We aim to produce a kind of
‘average’ of the structures Ai. To this end, let P be a proper ideal of the
power set P(I); this means

∅ ∈ P & I /∈ P, ()
X ⊆ Y & Y ∈ P =⇒ X ∈ P, ()

X ∈ P & Y ∈ P =⇒ X ∪ Y ∈ P. ()

For example, for some proper subset A of I, P might consist of all subsets
of A; or if I is infinite, P might consist of the finite subsets of I. In
general, elements of P can be considered as small; their complements
(which compose a filter of P(I)) are large. Since P is a proper ideal,
the same set cannot be both small and large. Since P is not yet assumed
to be maximal, some elements might be neither small nor large.

An element of the Cartesian product
∏
i∈I Ai is a tuple (ai : i ∈ I),

where ai ∈ Ai; we may write this tuple simply as a. Two such tuples are
congruent modulo P if they disagree only on a small set of indices:

{i ∈ I : ai 6= bi} ∈ P ⇐⇒ a ≡ b (mod P ). ()

We may write a/P for the congruence-class {b : a ≡ b (mod P )}. Let M
be the set of these congruence-classes. We turn this into a structure M
of S by requiring, for each n in ω,

M � ϕ(a0/P, . . . , an−1/P ) ⇐⇒ {i : Ai � ¬ϕ(a0i , . . . , an−1i )} ∈ P ()

for all n-ary unnested atomic formulas ϕ of S , that is, all ϕ having one
of the forms
Equivalently, they agree on a large set of indices. Everything below can be expressed
in terms of filters rather than ideals; and indeed it may be easier to think in terms
of filters rather than ideals. I stick with ideals here, because they are already
familiar from ring theory.

The equation x = y can also be considered as an unnested atomic formula; but if ϕ
is this, then () becomes a restatement of ().





) Rx0 · · ·xn−1 for some n predicate R in S , or
) x0 = Fx1 · · ·xn−1 for some (n− 1)-ary operation-symbol F in S ,

for some n in ω (where n > 0 in the second case; in this case, if n = 1,
then F is a constant). This definition of M is valid since

{i : Ai � ¬ϕ(b0i , . . . , bn−1i )}
⊆ {i : Ai � ¬ϕ(a0i , . . . , an−1i )} ∪ {i : a0i 6= b0i } ∪ · · · ∪ {i : an−1i 6= bn−1i },

so that if ak ≡ bk for each k, then

{i : Ai � ¬ϕ(a0i , . . . , an−1i )} ∈ P ⇐⇒ {i : Ai � ¬ϕ(b0i , . . . , bn−1i )} ∈ P

by () and (). Another way to express () in the two cases is that

RM =
{
(a0/P, . . . , an−1/P ) :

(
(a0i , . . . , a

n−1
i ) : i ∈ I

)
∈
∏
i∈I

RAi
}
,

for n-ary predicates R, and for (n− 1)-ary operation-symbols F ,

FM(a1/P, . . . , an−1/P ) = (FAi(a1, . . . , an−1) : i ∈ I)/P. ()

The structure M is a reduced product of the family (Ai : i ∈ I); as
such it might be denoted by something like∏

i∈I
Ai/P.

We can understand each element a of
∏
i∈I Ai as a new constant or pa-

rameter, to be interpreted in each Ai as ai, and in M as a/P . Then we
can write () as

M � ϕ(a0, . . . , an−1) ⇐⇒ {i : Ai � ¬ϕ(a0, . . . , an−1)} ∈ P.

Then, letting a stand for (a0, . . . , an−1), we can write () simply as

M � ϕ(a) ⇐⇒ {i : Ai � ¬ϕ(a)} ∈ P,
All of the superscripts below are merely indices, not exponents.





—that is, ϕ(a) is true in M just in case, for a large set of i, it is true in
Ai. Writing ϕ(a) then simply as σ, we get

M � σ ⇐⇒ {i : Ai � ¬σ} ∈ P. ()

Again, this is true by definition when σ is an unnested atomic sentence
(in the expanded signature); for which other σ is it true?

Lemma . The equivalence () in σ is preserved under conjunction, in
that if it holds when σ is τ or ρ, then it holds when σ is τ ∧ ρ.

Proof. We use () and its converse (which is true by ()). If () holds
when σ is τ or ρ, then the following are equivalent:

M � τ ∧ ρ,
M � τ & M � ρ,

{i : Ai � ¬τ} ∈ P & {i : Ai � ¬ρ} ∈ P,
{i : Ai � ¬τ} ∪ {i : Ai � ¬ρ} ∈ P,

{i : Ai � ¬τ ∨ ¬ρ} ∈ P,
{i : Ai � ¬(τ ∧ ρ)} ∈ P.

Lemma . The equivalence () in σ is preserved under quantification,
in the sense that

if () holds when σ is ψ(a), for all parameters a, for some singulary
formula ψ (possibly with parameters),

then () holds when σ is ∃x ψ(x).

Proof. Under the given hypothesis, the following are equivalent:

M � ∃x ψ(x),
M � ψ(a) for some a,

{i : Ai � ¬ψ(a)} ∈ P for some a.

The last statement easily implies

{i : Ai � ¬∃x ψ(x)} ∈ P,





since for all a,

{i : Ai � ¬∃x ψ(x)} ⊆ {i : Ai � ¬ψ(a)}. ()

Conversely, there is some a for which this inclusion is an equation.

Suppose finally P is a maximal ideal of P(I), so that the set of com-
plements of elements of P is an ultrafilter of P(I). Then the reduced
product M is called more precisely an ultraproduct of (Ai : i ∈ I).
There is a trivial example: For some j in I, let P be the principal ideal
(I r {j}) of P(I), that is, P = {X ⊆ I : j /∈ I}. Then∏

i∈I
Ai/P ∼= Aj .

All ultraproducts are thus if I is finite; but if I is infinite, then P may
contain all finite subsets of I, so that (since it is proper) it must not be
principal.

Lemma . An ideal P of P(I) is maximal if and only if

X /∈ P ⇐⇒ Xc ∈ P. ()

Proof. The set P(I) can be considered as a ring in which sums are sym-
metric differences, and products are intersections. Then ideals as defined
above are just ideals in the ring-theoretic sense. The ring P(I) is then
a Boolean ring, because it satisfies the identity x2 = x. If P is a maxi-
mal ideal, then the quotient P(I)/P is a field as well as a Boolean ring;
therefore it must be a two-element field. Thus () holds. Conversely, any
ideal with this property must be maximal.

Immediately we have:

Lemma . If P is a maximal ideal of P(I), then () in σ is preserved
under negation.

Lemmas , , and  together yield:





Theorem  (Łoś). If P is a maximal ideal of P(I), then () holds for
all σ (with parameters).

As a special case, if each Ai is the same structure A, so that in particular∏
i∈I Ai is the Cartesian power AI , then the ultraproduct M (that is

AI/P ) is an ultrapower of A. The diagonal embedding a 7→ (a : i ∈ I)
of A in M is now an elementary embedding, that is, for all sentences σ
with parameters from A (or more precisely from the image of A in AI),

M � σ ⇐⇒ A � σ.

Considering the embedding as an inclusion (that is, identifying A with
its image in M), we may write then

A 4M.

 Fields

We now consider the case where each structure Ai is a field Ki. Write∏
i∈I

Ki = R;

this is a ring in the usual way. There is a map a 7→ supp(a) from R to
P(I) given by

supp(a) = {i : ai 6= 0};

here supp(a) is the support of a. If A ⊆ I, let χA be the element of R
be given by

χA(i) =

{
1, if i ∈ A,
0, if i /∈ A.

Lemma . The map Q 7→ supp[Q] is a one-to-one, inclusion-preserving
correspondence between ideals of R and ideals of P(I).

The usual reference is [] although the theorem is not given clearly there.





Proof. If A ⊆ supp(b), then A = supp(b · χA). Also

supp(b) ∪ supp(c) = supp(b+ c · χsupp(b)c).

Thus if Q is an ideal of R, then supp[Q] is an ideal of P(I). Moreover, if
supp(b) = supp(c), then an ideal of R contains b if and only if it contains
c; thus the map Q 7→ supp[Q] on the set of ideals of R is injective. Since
in general

supp(a · b) ⊆ supp(b),

supp(a+ b) ⊆ supp(a) ∪ supp(b),

if P is an ideal of P(I), then {a : supp(a) ∈ P} is an ideal Q of R such
that supp[Q] = P . Thus the map Q 7→ supp[Q] is surjective onto the set
of ideals of P(I).

Lemma . If Q is an ideal of R, and P = supp[Q], then∏
i∈I

Ki/P = R/Q

(the reduced product is equal to the ring-quotient).

Proof. Because

a− b ∈ Q ⇐⇒ a ≡ b (mod P ),

that is a+Q = a/P , the underlying sets of the reduced product and the
quotient are the same. The ring-structures are the same by ().

 Continuous functions

We now consider the special case when I = R and each Ki is R, so that∏
i∈I Ki is the Cartesian power RR. By the last lemma, a quotient of this

power by a maximal ideal is an ultrapower of R. Such an ultrapower is





a non-standard model of the theory of R (assuming the maximal ideal is
non-principal). Here R can be considered as an ordered field.

The power RR has the sub-ring C(R) of continuous real-valued functions
on R. The supports of its elements are open subsets of R, and every such
set is the support of some element of C(R).

Let Po(R) be the set of all open subsets of R. This set is a distributive
lattice, but not a Boolean ring or algebra; however, ideals can be defined
as before, by (), (), and ().

Lemma . The map Q 7→ supp[Q] is a surjection from the set of ideals
of C(R) to the set of ideals of Po(R). It takes proper ideals to proper
ideals.

Proof. Since

supp(f) ⊆ supp(g) =⇒ supp(f) = supp(f · g),
supp(f) ∪ supp(g) = supp(f2 + g2),

the support-map still takes ideals of C(R) to ideals of Po(R). Moreover,
it takes proper ideals to proper ideals. As before, every ideal P of Po(R)
is the image of some ideal of C(R), namely {f : supp(f) ∈ P}.

The same ideal of Po(R) may be the image of more than one ideal of
C(R). For example, the ideals generated respectively by x 7→ x and
x 7→ x2 have the same image, but are themselves different, since there is
no continuous function f such that x2 · f(x) = x for all x in R.

Since Po(R) is not closed under complementation, maximal ideals are
not characterized as before, by (); but an ideal P of Po(R) is maximal
if and only if

X /∈ P =⇒ ∃Y (Y ∈ P & X ∪ Y = R). ()
In real analysis we may quantify, not just over elements of R, but over sets of these
(as in the Completeness Axiom), over finite sequences of arbitrary length (as in the
definition of the Riemann integral), and so forth. We may then want to consider
an ultrapower, not just of R, but of a certain many-sorted structure, namely a
structure of which R is one sort, but also the power set of any finite Cartesian
product of sorts is a sort [].





Lemma . The map Q 7→ supp[Q] is a one-to-one correspondence be-
tween maximal ideals of C(R) and maximal ideals of Po(R).

Proof. Suppose Q is a maximal ideal of C(R). If X ∈Po(R)r supp[Q],
then X = supp(f) for some f in C(R)rQ. Since Q is maximal, for some
g in C(R) and h in Q,

fg + h = 1.

Therefore X ∪ supp(h) = R. Thus supp[Q] is maximal. Moreover, if
f ∈ Q and supp(f) = supp(g), then g ∈ Q by maximality of Q; thus the
support-map is injective on the set of maximal ideals of C(R). Finally, if
P is a maximal ideal of Po(R), then {f ∈ C(R) : supp(f) ∈ P} must be
a maximal ideal.

Given the maximal ideal Q of C(R), we shall establish a version of Łoś’s
Theorem for C(R)/Q. This is stated as Theorem  below; but the proof
is everything between here and there.

If ϕ is an n-ary equation in the signature of fields (that is, ϕ is a poly-
nomial equation in n variables over Z), then, writing f for a finite tuple
(f0, . . . , fn−1) of elements of C(R), and f+Q for (f0+Q, . . . , fn−1+Q),
we have

C(R)/Q � ϕ(f +Q) ⇐⇒ {x : R � ¬ϕ(f(x))} ∈ supp[Q]. ()

Moreover, this equivalence is preserved under conjunctions, just as in
Lemma . Similarly, it is preserved under disjunctions, by the following
rule, derivable from (): If P is a maximal ideal of Po(R), then

X ∈ P ∨ Y ∈ P ⇐⇒ X ∩ Y ∈ P. ()

But () is not preserved under negations: if ϕ is an inequation, then
() fails, because the set {x : R � ¬ϕ(f(x))} is then closed, so if it is
nonempty, it is simply not in supp[Q].

Nonetheless, we can use () in case ϕ is y 6 z to define the relation 6
on C(R)/Q:





Lemma . If Q is a maximal ideal of C(R), and C(R)/Q is linearly
ordered by the relation 6 given by

C(R)/Q � f +Q 6 g +Q ⇐⇒ {x : R � f(x) > g(x)} ∈ supp[Q];

and then C(R)/Q is an ordered field.

Proof. The relation 6 is well-defined, by the same argument by which
reduced products are well-defined. The relation is then reflexive, by ();
antisymmetric, by (); transitive, by () and (). It is linear, by ()
and (): since {x : R � f(x) > g(x) ∧ f(x) < g(x)} ∈ supp[Q], one of
{x : R � f(x) > g(x)} and {x : R � f(x) < g(x)} is in supp[Q]. Moreover,

f > 0 & g > 0

=⇒ {x : f(x) < 0} ∈ supp[Q] & {x : g(x) < 0} ∈ supp[Q]

=⇒ {x : f(x) < 0} ∪ {x : g(x) < 0} ∈ supp[Q]

=⇒ {x : f(x) < 0 ∨ g(x) < 0} ∈ supp[Q]

=⇒ {x : f(x) + g(x) < 0} ∈ supp[Q]

=⇒ f + g > 0

since f(x) + g(x) < 0 =⇒ f(x) < 0 ∨ g(x) < 0. Similarly

f > 0 & g > 0 =⇒ fg > 0.

We handle negations by observing that there is a maximal ideal P of
P(R) such that supp[Q] ⊆ P . The intersection P ∩Po(R) is an ideal
of Po(R) that includes supp[Q]. Moreover, an ideal of P(R) or Po(R)
is proper if and only if it does not contain R; therefore P ∩Po(R) is a
proper ideal of Po(R), so it is just supp[Q]. This gives us:

Lemma . If Q is a maximal ideal of C(R), and P is a maximal ideal
of P(R) such that supp[Q] ⊆ P , then

C(R)/Q � ϕ(f +Q) ⇐⇒ {x : R � ¬ϕ(f(x))} ∈ P ()

for all quantifier-free formulas ϕ in the signature of ordered fields. More-
over, this equivalence in ϕ is preserved under conjunction and negation
(and hence under disjunction).





We want to show that () is preserved under quantification.

If P is an arbitrary maximal ideal of P(R), it need not be the case that
P ∩Po(R) is a maximal ideal of Po(R). We do have:

Lemma . For a maximal ideal P of P(R), the intersection P ∩Po(R)
is a maximal ideal of Po(R) if and only if P contains an open neighbor-
hood of each of its closed elements.

Proof. This is a reworking of (). We have that P ∩Po(R) is maximal
if and only if, for all O in Po(R)r P , there is an open neighborhood of
Oc in P . By maximality of P , this condition is that for all closed sets F
in P , there is an open neighborhood of F in P .

The condition of the lemma need not be met. For example, an arbitrary
maximal ideal P of P(R) might contain {0}, but also (−∞,−ε)∪ (ε,∞)
for all positive ε, so that P (being proper) can contain no open neighbor-
hood of 0.

We continue to assume that Q is a maximal ideal of C(R), and P is
a maximal ideal of P(R) such that P ∩Po(R) = supp[Q]. Then the
inclusion of C(R) in RR induces an embedding of the quotient C(R)/Q
in the ultrapower RR/P . If we have () for all formulas ϕ, then not
only is the embedding of R in C(R)/Q elementary, but the embedding of
C(R)/Q in RR/P is elementary: this is () below.

Supposing () to hold when ϕ is ψ, we want to show that it holds when
ϕ is ∃y ψ. The analogue of () in the proof of Lemma  is now

{x : R � ¬∃y ψ(f(x), y)} ⊆ {x : R � ¬ψ(f(x), g(x))}, ()

or equivalently

{x : R � ψ(f(x), g(x))} ⊆ {x : R � ∃y ψ(f(x), y)}.

As before, we try to choose g so that this inclusion is an equation. How-
ever, this may not be possible, since we now have the further requirement
that g be continuous. For example, ψ(f(x), y) could be

(x > 0 ∧ y = 1) ∨ (x < 0 ∧ y = 0),





defining the graph of χ[0,∞), a non-continuous function. Nonetheless, we
shall still have what we want if we can make () ‘nearly’ an equation,
that is, find g so that

{x : R � ∃y ψ(f(x), y) ∧ ¬ψ(f(x), g(x))} ∈ P.

Indeed, it is sufficient to show that if

{x : R � ¬∃y ψ(f(x), y)} ∈ P, ()

then there is g in C(R) such that

{x : R � ¬ψ(f(x), g(x))} ∈ P. ()

Suppose for example ψ(f(x), y) is xy = 1, and () holds in this case.
Then {0} ∈ P , so P has an element (−ε, ε) by Lemma . If we define g
by

g(x) =

{
1/x, if |x| > ε,
x/ε2, if |x| < ε,

then g ∈ C(R), and () holds.

We suppose () for some ψ and f . By Tarski’s theorem on quantifier-
elimination in the theory of R as an ordered field, we may assume that
ψ is quantifier-free in the signature of ordered fields. Thus we may con-
sider ψ(f(x), y) as a Boolean combination of equations and inequalities of
polynomials in y whose coefficients are themselves polynomial functions
of the entries in f(x). In particular, these coefficients are continuous
functions of x. We may assume ψ(f(x), y) is a Boolean combination of
strict inequalities only, since

x = 0 ⇐⇒ x 6> 0 ∧ x 6< 0.

Lemma . A formula

g0(x) + g1(x) · y + · · ·+ gn(x) · yn > 0, ()

where the gi are in C(R), is equivalent in R to a Boolean combination of
such formulas in which n = 1 in each case.





Proof (sketch). The equation g0(x)+g1(x) ·y+ · · ·+gn(x) ·yn = 0 defines
the union of

{(x, y) : g0(x) = 0 ∧ · · · ∧ gn(x) = 0}
with the graphs of n functions h0, . . . , hn−1, where each hi is a continuous
function whose domain is the intersection of a closed subset and an open
subset of R. In particular, the domain of each hi is defined by a formula
ϕi(x), which is of the form f0(x) = 0 ∧ f1(x) > 0 for some f0 and f1
in C(R). Then () is equivalent to a Boolean combination of various
y < hi(x) and y > hj(x). But here the hi are not necessarily in C(R). If
hi extends to an element f of C(R), then we can replace y < hi(x) with
y < f(x) ∧ ϕi(x), so we are done. However, possibly hi approaches no
limit at boundary points of its domain. In that case, there will be some
f0 in C(R), positive on the domain of hi, such that f0 · hi does approach
a limit at the boundary points, so that it extends to an element f1 of
C(R). Then we can replace y < hi(x) with f0(x) · y < f1(x) ∧ ϕi(x).

So now we may assume ψ(f(x), y) is a (finite) disjunction∨
θ

θ(f(x), y),

where each θ(f(x), y) is a (finite) conjunction of formulas of the form
g(x) · y = h(x) and g(x) · y < h(x), where each g and each h is in C(R).
If () now holds, this means⋂

θ

{x : R � ¬∃y θ(f(x), y)} ∈ P,

and therefore, by (), for one of the θ,

{x : R � ¬∃y θ(f(x), y)} ∈ P. ()

Suppose first that one of the conjuncts of θ(f(x), y) is (equivalent to a
formula) of the form f(x) · y = g(x). If f has no real zeros, then

{x : R � ¬∃y θ(f(x), y)} = {x : R � ¬θ(f(x), h(x))}, ()

where h(x) = g(x)/f(x). However, f may in fact have real zeros. Still,
by (), we have {x : R � ¬∃y f(x) · y = g(x)} ∈ P , that is,

{x : f(x) = 0 ∧ g(x) 6= 0} ∈ P.





Therefore

{x : f(x) = 0 ∧ g(x) = 0} ∈ P ⇐⇒ {x : f(x) = 0} ∈ P.

Suppose first {x : f(x) = 0} ∈ P . Then some open neighborhood U of
this set is in P , by Lemma . In this case, there is h in C(R) that agrees
with g/f on the complement of U , and then we have, perhaps not (),
but still

{x : R � ¬θ(f(x), h(x))} ∈ P. ()

The other possibility is {x : f(x) = 0 ∧ g(x) = 0} /∈ P . In this case,
the equation f(x) · y = g(x) imposes no condition on y; that is, we can
remove the equation from ψ(f(x), y).

It thus remains only to consider the case where ψ(f(x), y) is a conjunction
of inequalities of the form f(x) · y < g(x). Again by () we have that
{x : R � ¬∃y f(x) · y < g(x)} ∈ P , that is,

{x : f(x) = 0 ∧ g(x) 6 0} ∈ P.

Therefore

{x : f(x) = 0 ∧ g(x) > 0} ∈ P ⇐⇒ {x : f(x) = 0} ∈ P.

If {x : f(x) = 0 ∧ g(x) > 0} /∈ P , then we can remove f(x) · y < g(x)
from ψ(f(x), y). If {x : f(x) = 0} ∈ P , then some open neighborhood
U of this set is in P , and there is h in C(R) that agrees with g/f on
the complement of U , so that in ψ(f(x), y) we can replace the inequality
f(x) · y < g(x) with

(f(x) > 0→ y < g(x)) ∧ (f(x) < 0→ y > g(x)).

or rather with

(f(x) > 0 ∧ y < g(x)) ∨ (f(x) < 0 ∧ y > g(x))

(these two equations are not equivalent; but they are interchangeable,
since it does not matter what happens when f(x) = 0). So now we
are reduced to the case where ψ(f(x), y) is a conjunction of formulas
of this form y < g(x) and y > g(x), along with quantifier-free formulas
in x alone. Two inequalities y > g0(x) and y > g1(x) can be replaced





with y > max(g0(x), g1(x)), and so forth. Then we may assume that
ψ(f(x), y) is of one of the three forms

g0(x) < y ∧ y < g1(x), g0(x) < y, y < g1(x),

in conjunction with a formula g2(x) = 0 ∧ g3(x) > 0. Under the first
form, we have () when h = (g0 + g1)/2; under the others, h = g0 ∓ 1.
In all cases then, () implies () for some g in C(R). So we do indeed
have () for all ϕ:

Theorem . If Q is a maximal ideal of C(R), and P is a maximal ideal
of P(R) such that supp[Q] ⊆ P , then

C(R)/Q � ϕ(f +Q) ⇐⇒ {x : R � ¬ϕ(f(x))} ∈ P

for all formulas ϕ in the signature of ordered fields. In particular

R 4 C(R)/Q 4 RR/P. ()

 Ideals

Here are some further observations about ideals of Po(R) and P(R).

We can require a maximal ideal P of P(R) to contain, for each countable
subset of R, an open set that includes it. Indeed, supposeX is a countable
subset of R. Then X ∩ ([−n,−n+ 1] ∪ [n− 1, n]) is included in an open
set Un of measure less than 1/n. We put

⋃
n∈N Un in P . Then m such

sets cannot cover [m,m+ 1]. So such sets can all be members of P .

The condition in Lemma  can be strengthened:

Lemma . For a maximal ideal P of P(R), the intersection P ∩Po(R)
is a maximal ideal of Po(R) if and only if P contains the closure of an
open neighborhood of each of its closed elements.

Proof. Suppose P contains a closed set F and a neighborhood V of F .
Each point a of F is at a positive distance da from V c; here

da = inf
x∈V c
|a− x|.





Now let
U =

⋃
a∈F

(
a− da

2
, a+

da
2

)
.

Then U is an open neighborhood of F , and U ⊆ V , so U ∈ P .

It is not the case that the closure of every element of P is in P . Indeed,
either Q or its complement is in P , but the closure of either of these is
R.
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