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We are studying Hrushovski’s ‘Stable group theory and approximate sub-
groups’ []. Secondary sources include

• Notes by Lou van den Dries [],
• Terence Tao’s blog [].

These notes were first prepared for my talk on March  and then revised
afterwards. I consulted my notes from earlier talks by Piotr Kowalski
(February ) and Gönenç Onay (February  and March ; the three
sessions between then and March  were devoted to talks by Bruno
Poizat and Cédric Milliet on other matters).

The appendix contains notes that I wrote soon after March , in an
attempt to justify the trouble van den Dries [] takes to establish notation
for many-sorted structures.

I expect to speak again on April  and then to add to these notes (and
perhaps edit what is already here).
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. Setting

We fix a complete theory T . The signature of T may be many-sorted ;
this means there are variables for each sort, and function-symbols and
predicates ‘know’ which sorts their arguments can come from.

We let letters like x and y denote (finite) tuples of (distinct) variables.
In particular, x is of the form (xi : i < n), where each xi belongs to a sort
s(i).

Say M |= T . We denote by Mx the set of instantiations of x in M; that
is,

Mx =
∏

i<n

Ms(i).

Let A be a set of parameters from M. On the set of formulas in x over
A we have the interpretation map ϕ 7→ ϕM, where

ϕM = {a ∈Mx : M |= ϕ(a)};

the range of the map is called

DefA(Mx),

the set of subsets of Mx that are definable over A. We identify formulas
that have the same interpretation:

ϕ = ψ ⇐⇒ ϕM = ψM.

Since T is complete, this identification is independent of choice of M.
Considered under this identification, the set of formulas in x over A is

Lx(A),

and this is a Boolean algebra, the Lindenbaum algebra in x over A with
respect to M. This algebra is isomorphic to DefA(Mx) under ϕ 7→ ϕM:

(ϕ ∨ ψ)M = ϕM ∪ ψM, ⊤M =Mx,

(ϕ ∧ ψ)M = ϕM ∩ ψM, ⊥M = ∅.

Here ⊤ stands for
∧

i<n xi = xi, and ⊥ for its negation.





Like every Boolean algebra, Lx(A) has a Stone space,

Stx(A),

the set of ultrafilters of the algebra. First, a filter of Lx(A) is a nonempty
subset F such that

• F is closed under ∧;

• if ϕ ∈ F , then ϕ ∨ ψ ∈ F .

Then an ultrafilter is a maximal proper filter, equivalently a filter p such
that

• ϕ /∈ p if and only if ¬ϕ ∈ p.

One way to prove this equivalence is to note that Lx(A) is also an asso-
ciative ring with addition (ϕ,ψ) 7→ ¬(ϕ↔ ψ) and multiplication ∧; it is
in particular a Boolean ring because

ϕ ∧ ϕ = ϕ.

Then filters are duals of ideals: F is a filter if and only if {¬ϕ : ϕ ∈
F} is an ideal. Quotients of commutative rings by maximal ideals are
fields, and the only Boolean field is the two-element field. This gives the
characterization of ultrafilters.

There is an embedding ϕ 7→ [ϕ] of the Boolean algebra Lx(A) in the
algebra P(Stx(A)), where

[ϕ] = {p : ϕ ∈ p}.

In particular

[ϕ ∧ ψ] = [ϕ] ∩ [ψ], [⊤] = Stx(A), [¬ϕ] = Stx(A)r [ϕ].

We can formulate this condition as the closure of F under (ϕi : i < n) 7→
∧

i<n ϕi

for all n in ω. But in case n = 0, this nullary operation can be understood as the
formula ⊤ (since this formula is true if only if ϕi is true for each i in ∅. Thus this
formulation implies that F is nonempty.

Boolean rings are commutative and have characteristic 2: if squaring is the identity,
then x+ y = (x+ y)2 = x+ xy + yx+ y, so 0 = xy + yx.





Thus {[ϕ] : ϕ ∈ Lx(A)} is a basis of open sets for a topology on Stx(A),
and these basic open sets are also closed. The topology is compact.

Similarly, {ϕM : ϕ ∈ Lx(A)} is a basis for the A-topology onMx. Closed
sets in this topology can be called A-closed; open sets, A-open. Thus,

• the A-closed sets are are the
∧

-definable, or type-definable, sets
over A;

• the A-open sets are the
∨

-definable sets over A.

From Mx to Stx(A) there is a map a 7→ tp(a/A), where

tp(a/A) = {ϕ : a ∈ ϕM}.

This map is continuous with respect to the A-topology, because under
the map the inverse image of [ϕ] is ϕM. If the image of ϕM is [ϕ]—that
is, if the map is surjective—, then the map is also closed and open.

We can make the map surjective, and we can ensure that the inverse image
of a singleton is one orbit under Aut(M/A). We do this by replacing M

with a monster model or universal domain, U.

• U is |M|+-saturated (for all M that we shall consider), so we may
assume

M ≺ U.

• U is |M|+-homogeneous: for all A from M, if tp(a/A) = tp(b/A)
then a 7→ b extends to an automorphism of U.

One proof of this is as follows. Suppose Γ is a subset of Lx(A) such that, for every
finite subset ∆ of Γ, ⋂

ϕ∈∆

[ϕ] 6= ∅.

Since ∆ is finite, this means [
∧

ϕ∈∆ ϕ] 6= ∅, that is,
∧

ϕ∈∆ ϕ generates a proper

filter of Lx(A) (namely the set of formulas implied by
∧

ϕ∈∆ ϕ). This being so for

every finite subset ∆ of Γ, the set Γ itself generates a proper filter (namely the set
of formulas implied by

∧
ϕ∈∆ ϕ for some finite subset ∆ of Γ). This filter embeds

in an ultrafilter p, for the same reason that proper ideals embed in maximal ideals.
Thus

p ∈
⋂

ϕ∈Γ

[ϕ].

Therefore Stx(A) is compact. For the compactness of first-order logic, see note 
below.





. Keisler measures

Now M is just some structure, and A is a set of parameters from M.
A function µx from Lx(A) to the closed interval [0,∞] of R ∪ {∞} is a
Keisler measure if

µx(ϕ ∨ ψ) = µx(ϕ) + µx(ψ)

whenever ϕ and ψ are mutually contradictory, that is, ϕ ∧ ψ = ⊥; in a
word, µx is additive. Usually also

µx(⊤) = 1,

in which case µx is a probability measure and

µx(¬ϕ) = 1− µx(ϕ).

We may consider µx also as having domain DefA(Mx) (in which case the
term measure is more suggestive). We may also consider Keisler measures
on DefA(X) for some A-open subset X of Mx.

Example . If p ∈ Stx(A), we can define µx on Lx(A) by

µx(ϕ) =

{

1, if ϕ ∈ p,

0, otherwise,

or on DefA(Mx) by

µx(X) =

{

1, if p = tp(a/A) for some a in X,

0, otherwise.

Example . If M is finite and one-sorted, and x = (xi : i < n), we can
define

µM

x (ϕ) =
|ϕM|

|M |n
.

Thus µM
x is the counting measure on Lx(M). Given an infinite family

(Mi : i ∈ I) of finite structures (of the same signature), we can form an
ultraproduct N of the family, and then on Lx(N) we can define µx(ϕ)
as the standard part of the image of (µi

x(ϕ) : i ∈ I) in ∗[0, 1] or just ∗R.
Indeed, in the Ravello volume, Hrushovski [, Addendum, p. ] says:

This example, given by Hrushovski [, §., p. ], is mentioned on the last of
Pillay’s slides [].





In an ultraproduct k of finite fields, one has the nonstandard count-
ing measure; and one can let µ(V ) = st(|V |/|k|dim(V )) (the standard
part). . . This recovers the generalization of Lang–Weil in Kieffe and
[]. . .

What is going on is the following. We select a non-principal ultrafilter
of the Boolean algebra of subsets of I; elements of this ultrafilter will be
considered large. Then N is the Cartesian product of the structures M

i,
but with two elements identified if their entries agree on a large set of
indices. By the result called Łoś’s Theorem, a sentence is true in N if and
only if it is true in Mi for each i in a large set of indices. In particular,
∗R is the ultrapower that results when each M

i is R. In this case, ∗R can
be understood as the quotient of RI by a non-principal maximal ideal P .
By Łoś’s Theorem, ∗R is an ordered field, and it is non-Archimedean. If
S is the ring of its finite elements, and m is the ring of its infinitesimal
elements, then m is a maximal ideal of S, and the quotient map x 7→ x+m

from S to S/m is an isomorphism when restricted to the image of R in
∗R under x 7→ (x : i ∈ I) + P . Thus the standard part map from S to R

is induced; this is a ring homomorphism, and in particular µx is additive.

To make µx definable in N, for each formula ϕ(x, y), for each α in Q, we
introduce a new atomic formula, denoted by

Qαx ϕ(x, y),

and we expand each M
i so that

Qαx ϕ(x, y)
M

i

= {b ∈M i
y : µ

i
x(ϕ(x, b)) 6 α}.

Cited by Hrushovski as Chatzidakis, van den Dries, Macintyre, ‘Definable sets over
finite fields’, Paris  Logique prepublication ; but I have not yet been able to
obtain either version.

Now we can prove compactness of first-order logic. Say Γ is a set of sentences, and
every finite subset ∆ of Γ has a model, M∆. A certain ultraproduct of these M∆

will be a model of Γ. Indeed, writing Pf(Γ) for the set of these ∆, we let (∆) be
the set of all elements of Pf(Γ) that include ∆. Then (∆)∩(∆′) = (∆∪∆′). Thus
the sets (∆) generate a proper filter F of P(Pf(Γ)). Now we take the ultraproduct
N of the M∆ with respect to an ultrafilter that includes F . For each ∆ in Pf(Γ),
the set (∆) of indices is large, and ∆ is true in MΘ for each Θ in (∆); thus ∆ is
true in N. This is the proof of Bell and Slomson [, Thm ..], who trace it to a
 article by Morel, Scott, and Tarski.





Repeat ω times (so we have a formula Qαx ϕ(x, y) for every formula ϕ).
For every formula ϕ and every α in Q, the following are equivalent:

µx(ϕ(x, b)) 6 α,

{i : µi
x(ϕ(x, b)) 6 α} is large,

N |= Qαx ϕ(x, b).

Thus
µx(ϕ(x, b)) = inf{α : N |= Qαx ϕ(x, b)}.

We can take this as the definition of µx, and then we can establish addi-
tivity as in the Dedekind construction of R:

• If γ, δ ∈ R, then

inf{x ∈ Q : γ 6 x}+ inf{y ∈ Q : δ 6 y} = inf{z ∈ Q : γ + δ 6 z}.

• If ϕ(x, b) ∧ ψ(x, b) = ⊥, then the sentences

Qαx ϕ(x, b) ∧ Qβx ψ(x, b) → Qα+βx (ϕ(x, b) ∨ ψ(x, b),

¬Qαx ϕ(x, b) ∧ ¬Qβx ψ(x, b) → ¬Qα+βx (ϕ(x, b) ∨ ψ(x, b))

are true in each Mi and therefore in N.

A curiosity is that, while

µx(ϕ(x, b)) < α =⇒ N |= Qαx ϕ(x, b)

=⇒ µx(ϕ(x, b)) 6 α,

we need not have the converse of the second implication. That is, possibly
µx(ϕ(x, b)) = α, although N |= ¬Qαx ϕ(x, b), because µi

x(ϕ(x, b)) > α
for a large set of i.

Suppose now µx is a Keisler measure on Lx(U). If for all y and all
formulas ϕ(x, y) in no parameters, the value of µx(ϕ(x, b)) depends only
on tp(b/A), then µx is A-invariant. In this case, the function

b 7→ µx(ϕ(x, b))

The qualification that ϕ must have no parameters is not made explicit by Hrushovski
[, §., p. ].





on Uy has the factor b 7→ tp(b/A); the other factor can be called µϕ, so
that we have the following commutative diagram (where we rely on the
|A|+-saturation of U to be able to define µϕ on all of Sty(A)):

Uy

ϕ
//

tp

�� ��❄
❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

Lx(U)

µx

��
Sty(A) µϕ

// [0,∞]

Theorem. For a Keisler measure µx on Lx(U), the following are equiv-
alent:

. For each y disjoint from x, for each ϕ(x, y) in Lx,y(∅), the function
b 7→ µx(ϕ(x, b)) from Ux to [0,∞] is continuous with respect to the
A-topology on Ux.

. µx is A-invariant, and for each y disjoint from x, for each ϕ(x, y)
in Lx,y(∅), the induced function µϕ (from Sty(A) to [0,∞] such
that µx(ϕ(x, b)) = µϕ(tp(b/A))) is continuous.

Proof. In the presence of A-invariance, since the map b 7→ tp(b/A) is
continuous and open, continuity of the ‘diagonal’ maps b 7→ µx(ϕ(x, b))
with respect to the A-topology is equivalent to continuity of the µϕ.

If A-invariance fails, that is, tp(c/A) = tp(c′/A) for some c and c′ in Ux,
but

µx(ϕ(x, c)) 6 α < µx(ϕ(x, c
′)),

then {b : µx(ϕ(x, b)) 6 α} is not A-closed, since every A-closed (or A-
open) set contains both c and c′, or neither.

Under the equivalent conditions of the theorem, µx is called A-defin-

able. If we work with an arbitrary structure M instead of U, we may

Van den Dries [, p. ] uses µϕ for the whole function b 7→ µx(ϕ(x, b)). I use it here
for the factor mainly to have a label for the commutative diagram. Hrushovski
just calls the factor g.

Hrushovski just says µx is A-definable if it is A-invariant and in addition the maps
µϕ—his g—are continuous.





take the first condition as A-definability. This condition means just that
for each ϕ and each α in Q the sets

{b : µx(ϕ(x, b)) 6 α}, {b : µx(ϕ(x, b)) > α}

are A-closed. So we have this continuity in Example .

In Example , where

µx(ϕ) =

{

1, if ϕ ∈ p,

0, otherwise,

then we have A-definability of µx if and only if the sets

{b : ϕ(x, b) ∈ p}

are A-clopen, that is, A-definable. This condition is that p itself is defin-
able over A.

More generally, suppose B is another parameter set. If Ux =
∏

i<n Us(i),
we can let

Bx =
∏

i<n

(Us(i) ∩B).

This set has the A-topology induced from Ux, and then an A-definable

subset of Bx can be understood as an A-clopen subset.

Now suppose A ⊆ B. An element p of Stx(B) is called definable over
A [, Defn .] if for each y disjoint from x, for each ϕ(x, y) in Lx,y(∅),
there is a formula dx ϕ(x, y) in Ly(A) such that for all b in By

ϕ(x, b) ∈ p ⇐⇒ U |= dx ϕ(x, b).

We can define µx on Lx(B) as before; then this measure is A-definable
as before if and only if p is A-definable.

Theorem. Suppose A ⊆ B. All types in x over B are A-definable if and
only if all U-definable subsets of Bx are A-definable.

Proof. Exercise, or see [, §., ‘Definability of types’].





The present situation can be depicted in one big commutative diagram:

Lx,y(∅)×By

��

((PP
P

P

P

P

P

P

P

P

P

P

// Lx(B)

��

P(By)×By

((PP
P

P

P

P

P

P

P

P

P

P

P

Ly(A)×By

66

// L(B)

Here L(B) is the set of sentences over B modulo T , so it is the 2-element
Boolean algebra {⊥,⊤}. The first component of the main diagonal map
takes (ϕ(x, y), b) to (C, b), where C = {c ∈ By : ϕ(x, c) ∈ p}; the next
component takes this pair to ⊤ if and only if b ∈ C.

A type over A (that is, an element of some Stx(A)) is called simply
definable if it is A-definable. Then all types over ∅ are definable. The
following are equivalent:

. The theory T is stable (that is, κ-stable for some κ).
. All types over models of T are definable [, Cor. .].
. All types over all parameter sets are definable [, Cor ..].

So here is a hint that definable Keisler measures are a generalization of
types for unstable theories.

. Ideals

if µx is a Keisler measure on Lx(A), then the set {ϕ : µx(ϕ) = 0} is an
ideal of the Boolean ring Lx(A).

The forking ideal

Another example is the forking ideal. A formula ϕ forks over A if
ϕ 6= ⊥ and there are finitely many formulas θi such that

Gönenç talked about this on March .





• ϕ→
∨

i θi = ⊤, that is, T ⊢ ϕ→
∨

i θi;
• each θi divides over A.

For present purposes, one might say that ⊥ also forks, since as things are
the forking ideal in x over A will be the set

{ϕ ∈ Lx(U) : ϕ forks over A} ∪ {⊥}.

If ϕ(x, y) is a formula and b ∈ Uy, the formula ϕ(x, b) divides over
A if b belongs to an indiscernible sequence (bi : i < ω) over A such that
{ϕ(x, bi) : i < ω} is inconsistent. Recall that the indiscernibility means
that, for all m in ω, if

n(0) < · · · < n(m− 1) < ω, (∗)

then for all formulas ψ over A

T ⊢ ψ(b0, . . . , bm−1) ↔ ψ(bn(0), . . . , bn(m−1)).

So in (Q, <), every increasing sequence of elements is indiscernible over
∅. In a vector space, a basis is indiscernible as a set (under any ordering
it is an indiscernible sequence).

If {ϕ(x, bi) : i < ω} is inconsistent, then by compactness the subset
{ϕ(x, bi) : i < m} is inconsistent for some m in ω; that is, the for-
mula

∧

i<m ϕ(x, bi) is (‘identically’) false (in T ). By indiscernibility, if
(∗) holds, then

∧

i<m ϕ(x, bn(i)) is false. In short, {ϕ(x, bi) : i < ω} is
m-inconsistent.

Easily, if ϕ divides, so does ϕ ∧ ψ. However, if (bi : i < ω) and (ci : i <
ω) are indiscernible over A, it does not follow that (bici : i < ω) is
indiscernible; so it is not immediate that if ϕ and ψ divide, so does
ϕ ∨ ψ.

However, the definition of forking ensures that the forking formulas, along
with ⊥, do compose an ideal. Also, in stable theories, forking and dividing
are the same [, ch. ].

Probably ϕ has no parameters.





Possible properties

Now say X is an A-definable set. We may form the Boolean ring
DefU(X) of definable subsets of X. If X = θU for some θ in Lx(A), we
can define

LX(U) = {θ ∧ ϕ : ϕ ∈ Lx(U)}

and identify this with DefU(X). An ideal of the Boolean ring LX(U) is
A-invariant if for all formulas ϕ(x, y) and all b in Uy, the answer to the
question of whether ϕ(x, b) is in the ideal depends only on tp(b/A).

The forking ideal is invariant. If µx is A-invariant, then so is the ideal
{P : µx(P ) = 0} mentioned above.

Let I be an ideal of DefU(X). A subset Φ of LX(U) (that is, a partial
type in x defining a subset of X) is I-wide if Φ implies no formula in I,
that is, the filter generated by Φ does not intersect I. If I is the zero ideal
of a measure, then I-wideness of Φ means no element of Φ has measure
0. The filter

{θ ∧ ¬ϕ : ϕ ∈ I}

is the maximal I-wide partial type, unless I is the improper ideal.

We generalize to the case where X is merely A-open. If X =
⋃

iXi, the
Xi being definable over A, we let

LX(U) =
⋃

i

LXi
(U).

Then a subset I is an ideal if each I ∩ LXi
(U) is an ideal. This is

Hrushovski’s definition. Alternatively, it seems we could just define

LX(U) = {ϕ ∈ Lx(U) : ϕ
U ⊆ X}.

This may not be a Boolean algebra. It is still a Boolean ring, possibly
without a unit; so it has ideals and filters. If I is a proper ideal, then the
maximal I-wide partial type is

{ψ ∧ ¬ϕ : ψ ∈ LX(U) and ϕ ∈ I}.

Van den Dries [, p. ] allows X to be A-open. Hrushovski, and therefore we, do
this presently.





. S1 rank

In the Ravello volume, Hrushovski [, Defn ., p. ] defines S1(θ) for
formulas θ in Lx(U) (here U need only be ω-saturated):

. S1(θ) > 0 if |θU| > ω.
. S1(θ) > n+1 if for some set A of parameters, θ ∈ Lx(A) and there is

an indiscernible sequence (bi : i ∈ I) over A and a formula ϕ(x, y)

such that

S1(ϕ(x, b1) ∧ ϕ(x, b2)) < n, S1(θ ∧ ϕ(x, bi)) > n

for each i in I.

(Hrushovski has > for > and 6 for < in the second part of this definition.
He notes that S2(θ) can be defined the same way, but with S2(θ) > 0 if
S1(θ) > n for all n in ω.)

Compare with Morley rank:

. RM(θ) > 0 if |θU| > 0.
. RM(θ) > α+1 if there is a sequence (ψi : i < ω) of formulas (with

parameters) such that

ψi ∧ ψj
U = ∅, RM(θ ∧ ψi) > α

whenever i < j < ω.

Then S1(θ) is the least n such that S1(θ) 6> n+ 1.

(For a subset Γ of Lx(U), S1(Γ) is the least of the S1(θ) such that θ is
in the filter generated by Γ. Then S1(a/B) = S1(tp(a/B)). Similarly for
RM.)

Suppose θ in Lx(U) has Morley rank 1 and Morley degree 1 (that is, no
two disjoint definable subsets have lower rank). Then θ or θU is called
strongly minimal. Every definable subset of θU is finite or cofinite;
moreover, by compactness, for every ϕ(x, y), there is n in ω such that
θ ∧ ϕ(x, a)U is smaller than n or infinite. Hrushovski asserts the same in
case θ has S1 rank 1:

Presumably with no parameters?





Theorem ([, Lem. ., p. ]). Suppose θ in Lx(U) has S1 rank 1.
Then for every ϕ(x, y), there is n in ω such that θ ∧ ϕ(x, a)U is smaller
than n or infinite.

Proof. Suppose not, so that there are am for infinitely many m such that
θ∧ϕ(x, am)U has size m. Write θ∧ϕ(x, am)U as Dm. For every m, there
is a least m′ such that m < m′ and, for infinitely many n

Dm ∩Dm′ = Dm ∩Dn. (†)

Hence there is an infinite set of indices such that (†) holds whenever
m < m′ 6 n. In this case

Dm rDm′ = Dm rDn.

Thus the sets Dm rDm′ are disjoint. Therefore their sizes are bounded,
since S1(θ) = 1. This means that the sets Dm ∩Dm′ are unbounded in
size. But by (†) they form a chain:

Dm ∩Dm′ = Dm ∩Dm′ ∩Dm′′ ⊆ Dm′ ∩Dm′′ .

Perhaps by restricting the index set again, we may assume that the
differences

(Dm′ ∩Dm′′)r (Dm ∩Dm′)

are strictly increasing in size. Since they are disjoint, this contradicts
S1(θ) = 1.

According to Hrushovski [, p. ],

The fact that S1(F ) = 1 in the case of pseudo-finite fields was shown
in [], using an extension of the Lang–Weil estimates.

Hrushovski appeals to Ramsey’s theorem for this.
Apparently if the sizes were unbounded, by compactness we could assume that the

parameters composed an indiscernible sequence.
Hrushovski does not say this, but it seems to be needed.
See note .





If X has ordinal Morley rank α and has Morley degree 1 (that is, has no
two disjoint definable subsets of its rank), then there is a Keisler measure
on LX(U) given by

µ(ϕ) =

{

1, if RM(ϕ) = α,

0, otherwise,

and this determines the ideal {ϕ : µ(ϕ) = 0}. Even without the assump-
tion that dM(X) = 1, the set

{ϕ : RM(ϕ) < α}

is an ideal. Similarly
{ϕ : S1(ϕ) < n+ 1}

is an ideal. If S1(θ) = n + 1, then for all A such that θ ∈ Lx(A), for all
indiscernible (bi : i < ω) over A and all ϕ(x, y) [over A], if

S1(ϕ(x, b0) ∧ ϕ(x, b1)) < n,

then for some i in ω,
S1(θ ∧ ϕ(x, bi)) < n.

An arbitrary ideal I that is invariant over A is called an S1 ideal (or S1
ideal) over A if it has the foregoing property, that is, for any ϕ(x, y) over
A and any indiscernible (ai : i < ω) over A,

if ϕ(x, a0) ∧ ϕ(x, a1) ∈ I, then ϕ(x, a0) ∈ I (‡)

—equivalently, ϕ(x, ai) ∈ I for some and therefore all i in ω, by invari-
ance of I and indiscernibility of the sequence.

We can replace (‡) with the condition that for some or all n in ω

if
∧

i<2n

ϕ(x, ai) ∈ I, then ϕ(x, a0) ∈ I.

Thus every S1 ideal includes the forking ideal.

Piotr gave this example (with ‘finite’ for ‘ordinal’) on February .
Hrushovski [, Def. .] just as the conclusion as ϕ(x, ai) ∈ I for some i in ω; van

den Dries [, p. ] observes that it then holds for all i.
Gönenç showed this on March  by the method of [, Lem. ., p. ].





. The stabilizer theorem

We are now ready to state what appears to be the central result (Theorem
.) of Hrushovski’s paper. (It is van den Dries’s [, Thm .].)

We let G be a group definable over a model M0.

We let X be an arbitrary subset of G, and we define G̃ = 〈X〉 (van den
Dries calls this X̂ [, p. ]). Then

G̃ =
⋃

n∈ω

(X ∪X−1)6n,

where (X ∪ X−1)6n comprises the elements of G̃ that, as words in X,
have length n or less.

We can form the isomorphic Boolean rings DefU(G̃) and LG̃(U). But
(apparently) these are too big. Let

DefU(G̃)
∗ =

⋃

n∈ω

(DefU(G̃) ∩ P((X ∪X−1)6n)).

(The notation is mine, although van den Dries uses the star for restric-
tions to XX−1X. Hrushovski refers to elements of DefU(G̃) as definable,
though to avoid confusion one might call them ‘star-definable’.) We can
let LG̃(U)

∗ be the image of DefU(G̃)
∗ in LG̃(U).

Now let M be another model (probably M0 ⊆ M).

Suppose I is an ideal of LG̃(U)
∗ that is

• M-invariant and
• S1 over M.

Suppose also that I is invariant (or closed) under left and right translation
by elements of G̃, that is, for all g in G̃,

if ϕ(x) ∈ I, then ϕ(g−1x) and ϕ(xg−1) are in I.

Let q = tp(a/M) for some a in G̃, and suppose q is I-wide. That is,
suppose a /∈ ϕU for any ϕ in I, and let q = tp(a/M).





Suppose further that for some other realization b of q, both tp(a/bM)
and tp(b/aM) do not fork over M.

Then there will be a certain normal subgroup S of G̃ that is
∧

-definable
over M.

S (or rather its defining partial type) will be I-wide.

Hrushovski says S = (q−1q)2, which we may write as

S = q−1qq−1q;

and he says qq−1q is a coset of S. He says moreover that, as a consequence
of the theorem, S ⊆ XX−1XX−1, that is,

S ⊆ X−1XX−1X.

But where Hrushovski has q, van den Dries has q(X), which would seem
to mean the realizations of q that belong to X. (He does not write
q(X̂).)

A. Sorted structures

In the beginning, a structure is a set with distinguished elements, op-
erations, and relations. The set is the universe of the structure. If this
universe is A, then a relation is a subset of some Cartesian power An,
where n ∈ ω; and an operation is a function from some An to A. If R
is a relation on A, and ~b ∈ R, we write the atomic sentence

R~b.

In the binary case we usually write b R c when (b, c) ∈ R. If f is an
operation on A, then it is a certain kind of relation on A, namely a
relation for which it is meaningful to write another atomic sentence,

f~b = c,

when (~b, c) ∈ f . In the ternary case we may write b f c = d when
(b, c, d) ∈ f . We may allow f to be a nullary operation, in which case f by





itself denotes an element of A. We combine atomic formulas and quantify
their variables in the usual way, for the sake of describing structures.

This definition of structure turns out to be needlessly limiting.

On a field K, division is not an operation; it is only a ‘partial’ operation,
a function (x, y) 7→ x/y from K × (K r {0}) to K. We normally want a
binary operation ∗ to be ‘total’, so that x ∗ y is always meaningful. This
is a notational convenience, which we can achieve in the present case by
defining x/0 as 0. Alternatively, we can treat a field as two structures,
abelian groups (K,+) and (K×, · ), with the appropriate interactions,
including the function (x, y) 7→ x/y from K ×K× to K, and the relation
{(x, x) : x ∈ K r {0}} from K× to K.

A vector space is also a pair of structures, namely an abelian group V
of vectors and a field K of scalars; and there is an action of the latter
on the former, that is, a certain function from K × V to V . We could
treat this pair as a structure whose universe is the disjoint union of K
and V ; then each of these components would be a singulary relation on
the universe. It may however be considered ugly to introduce symbols for
these relations. Convention already supplies a way to keep the two sets
apart: we let boldface letters like v denote vectors, and plainface letters
like a denote scalars.

Given a group G, we may want to consider it together with all of its
quotient groups. If M < N , both being normal subgroups of G, then
there is a function xM 7→ xN from G/M onto G/N . Here we probably
do not want to treat the (disjoint) union of all of these quotients as the
universe of a structure, because, if there are infinitely many quotients,
then the Compactness Theorem would give us an elementary extension
with elements not in any of the original quotients.

We might restrict the last example so that the quotients of G are all de-
finable in G; then we might generalize so that, starting from a structure
A, for every definable relation R on A, for every definable equivalence re-
lation E on R, we consider a new structure whose universe is the quotient
R/E.

Now we can generalize the original definition. On an indexed family
(As : s ∈ S) of sets, a relation is a subset of

∏

i∈I Ai for some finite
subset I of S, and an operation is a function from

∏

i∈I Ai to As for





some finite subset of I of S and some s in S. A structure then is an
indexed family of sets with some relations and operations. The sets in the
family are sorts. In a formula, the arguments of a relation symbol or a
function symbol carry the information that they belong to the appropriate
sort. Thus there are no variables simply; there are s-variables for the
various indices s of sorts. There is also no requirement that the sorts be
disjoint, since our symbolism refers to an element of a sort only through
its index.
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