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• This part of the proof involves a verging assumed in

Prop. 8, just as the earlier part assumed the verging of Prop.
7. The verging of Prop. 8 has already been described
(vol. i. p. 350 n. b) in connexion with Pappus's comments
on it.

' Archimedes goes on to show that the theorem is true
even if the tangent touches the spiral in its second or some
higher turn, not at the extremity of the turn ; and in Props.
18 and 19 he has shown that the theorem is true if the tangent
should touch at an extremity of a turn.

194



ARCHIMEDES

Now arc KMP : arc =XA : ; [Prop. 14:<:;
which is impossible. Therefore ZA is not greater

than the arc. In the same way as above it

may be shown to be not less "
; therefore it is equal.''

(y) Semi-Regular Solids

Pappus, Collection v. 19, ed. Hultsch 1. 352. 7-354. 10

Although many solid figures having all kinds of

surfaces can be conceived, those which appear to be
regularly formed are most deserving of attention.

Those include not only the five figures found in

the godlike Plato, that is, the tetrahedron and the

cube, the octahedron and the dodecahedron, and
fifthly the icosahedron," but also the solids, thirteen

in number, which were discovered by Archimedes **

and are contained by equilateral and equiangular, but

not similar, polygons.

As Pappus (ed. Hultsch 302. 14-18) notes, the theorem can
be established without recourse to propositions involving

solid loci (for the meaning of which see vol. i. pp. 348-349),

and proofs involving only " plane " methods have been
developed by Tannery, Memoires scientifiques, i., 1912,

pp. 300-316 and Heath, H.O.M. ii. 556-561. It must remain
a puzzle why Archimedes chose his particular method of

proof, especially as Heath's proof is suggested by the figures

of Props. 6 and 9 ; Heath (loc. cit., p. 557) says " it is scarcely

possible to assign any reason except his definite predilection

for the form of proof by reductio ad absurdum based ulti-

mately on his famous ' Lemma ' or Axiom."
• For the five regular solids, see vol. i. pp. 216-225.
' Heron (Definitions 104, ed. Heiberg 66. 1-9) asserts that

two were known to Plato. One is that described as Pg
below, but the other, said to be bounded by eight squares

and six triangles, is wrongly given.
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" For the purposes of . 6, the thirteen polyhedra will be
designated as Pj, P^ . . . ^^.

" Kepler, in his Harmonice mundi {Opera, 1864, v. 123-

126), appears to have been the first to examine these figures
systenaatically, though a method of obtaining some is given
in a scholium to the Vatican ms. of Pappus. If a solid angle
of a regular solid be cut by a plane so that the same length
is cut off from each of the edges meeting at the solid angle,
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ARCHIMEDES

The first is a figure of eight bases, being contained

by four triangles and four hexagons [Pi]."

After this come three figures of fourteen bases, the

first contained by eight triangles and six squares [i*2]>

the second by six squares and eight hexagons [P3],

and the third by eight triangles and six octagons

After these come two figures of twenty-six bases,

the first contained by eight triangles and eighteen

squares [P^], the second by twelve squares, eight

hexagons and six octagons [Pg].

After these come three figures of thirty-two bases,

the first contained by twenty triangles and twelve

pentagons [P•,], the second by twelve pentagons and
twenty hexagons [Pg]' ^^^ ^^^ third by twenty
triangles and twelve decagons [P9].

After these comes one figure of thirty-eight bases,

being contained by thirty-two triangles and six

squares [Pio]•

After this come two figures of sixty-two bases,

the first contained by twenty triangles, thirty squares
and twelve pentagons [^], the second by thirty

squares, twenty hexagons and twelve decagons [PujJ.

After these there comes lastly a figure of ninety-

two bases, which is contained by eighty triangles

and twelve pentagons [P13].*

the section is a regular polygon which is a triangle, square or
pentagon according as the solid angle is composed of three,
four or five plane angles. If certain equal lengths be cut off

in this way from all the solid angles, regular polygons will

also be left in the faces of the solid. This happens (i)

obviously when the cutting planes bisect the edges of the
solid, and (ii) when the cutting planes cut off a smaller length
from each edge in such a way that a regular polygon is

left in each face with double the number of sides. This
method gives (1) from the tetrahedron, P^; (2) from the
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(g) System of expressing Large Numbers

Archim. Aren. 3, Archim. ed. Heiberg ii. 236. 17-240. 1
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cube, Pg and P^ ; (3) from the octahedron, Pj and P, ; (4)
from the icosahedron, P^ and Pg ; (5) from the dodecahedron,
P, and Pg. It was probably the method used by Plato.

Four more of the semi-regular solids are obtained by first

cutting all the edges symmetrically and equally by planes
parallel to the edges, and then cutting off angles. This
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(g) System of expressing Large Numbers

Archimedes, Sand-Reckoner 3, Archim. ed.

Heiberg ii. 236. 17-240. 1

Such are then the assumptions I make ; but I

think it would be useful to explain the naming of

the numbers, in order that, as in other matters,

those who have not come across the book sent to

Zeuxippus may not find themselves in difficulty

through the fact that there had been no preliminary

discussion of it in this book. Now we already have

names for the numbers up to a myriad [10*], and
beyond a myriad we can count in myriads up to a

myriad myriads [10^]. Therefore, let the aforesaid

numbers up to a myriad myriads be called numbers

of the first order [numbers from 1 to 10^], and let a

myriad myriads of numbers of the first order be called

a unit of numbers of the second order [numbers from
10^ to 10^®], and let units of the numbers of the second

order be enumerable, and out of the units let there

be formed tens and hundreds and thousands and
myriads up to a myriad myriads. Again, let a myriad

myriads of numbers of the second order be called a

unit of numbers of the third order [numbers from 10^^

to 10^*], and let units of numbers of the third order

be enumerable, and from the units let there be formed

tens and hundreds and thousands and myriads up
to a myriad myriads. In the same manner, let a

myriad myriads of numbers of the third order be

gives (1) from the cube, Pg and P, ; (2) from the icosahedron,

Pi\ ; (3) from the dodecahedron, Pij.

The two remaining solids are more difficult to obtain ;

Pjo is the snub cube in which each soHd angle is formed by
the angles of four equilateral triangles and one square;

Pi8 is the snub dodecahedron in which each solid angle is

formed by the angles of four equilateral triangles and one

regular pentagon. 200


