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 Introduction

These notes are about the plane curves known as conic sections. The
mathematical presentation is mainly in the ‘analytic’ style whose ori-
gins are sometimes said to be the Geometry [] of René Descartes.
However, the features of conic sections presented in §  below were
apparently known to mathematicians of the eastern Mediterranean in
ancient times. Accordingly, §  below contains a review what I have
been able to find out about the ancient knowledge. I try to give refer-
ences to the original texts (or translations of them). Meanwhile, I list
some relevant approximate dates; the ancient dates are selected from
[, pp.  f.]:

b.c.e. : Menaechmus on conic sections;
: Euclid, Elements;

: Apollonius, Conics;

: death of Archimedes;
c.e. : Pappus, Mathematical Collections;

: Eutocius, commentaries on Archimedes;
: Descartes, Geometry.

The reader of these notes may agree that the conic sections are wor-
thy of study, independently of any application. However, Isaac New-
ton (–), for example, could not have developed his theory of
gravitation [] without knowing what the Ancients knew about conic
sections.

An inverse-square law of gravitation causes planetary orbits to be conic sections.
Newton showed this, apparently using such knowledge as can be found in Apol-
lonius. It may be that Newton inferred, from ancient secondary sources, that
the ancient scientists themselves were aware of an inverse-square law of gravity
[, § .].





 Background

. Definitions

A cone and its associated conic surface are determined by the fol-
lowing data:

) a circle, called the base of the cone;
) a point, called the vertex of the cone and the conic surface; the

vertex must not lie in the plane of the base.

The conic surface consists of the points on the lines that pass through
the vertex and the circumference of the base. The cone itself is the
solid figure bounded by the surface and the base. See Figure ..

b

b

vertex b

base

Figure .: A conic surface and cone

The definitions of cone and conic surface can be found at the begin-
ning of the treatise On Conic Sections [, , , ], by Apollonius of


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Perga. The axis of the cone is the line joining the vertex to the center
of the base. There is no assumption that the axis is perpendicular to
the base; if it is, then the cone is right; otherwise, the cone is oblique.

A conic section is the intersection of a plane with a conic surface.
The discovery of conic sections (as objects worthy of study) is gen-
erally attributed to Apollonius’s predecessor Menaechmus. However,
there are three kinds of conic sections: the ellipse, the parabola, and
the hyperbola. According to Eutocius [, pp. –], Apollonius
was the first mathematician to show that each kind of conic section
can be obtained from every conic surface. Indeed, the names of the
three kinds of conic sections appear [, p.  f., n. a] to be due to
Apollonius as well. The names are meaningful in Greek and reflect the
different geometric properties of the sections, in a way shown in § .

. Motivation

Menaechmus used conic sections to solve the problem of duplicating

the cube. Suppose a cube is given, with volume V ; how can a cube
be constructed with volume 2V ? We can give a symbolic answer: If
the side of the original cube has length s, then the new cube must have
side of length s 3

√
2. But how can a side of that length be constructed?

The corresponding problem for squares can be solved as follows. Sup-
pose AB is a diameter of a circle, and C is on AB, and D is on the
circumference of the circle, and CD ⊥ AB. Then the square on CD
is equal in area to the rectangle whose sides are AC and BC. More
symbolically, if lengths are as in Figure ., then

a

x
=
x

b
, or ab = x2,

so that
x2

a2
=
b

a
.

Perga or Perge was near what is now Antalya; its remains are well worth a visit.
See for example [, p.  f., n. a] or [, p. ].



 Conic Sections

b bb

b

A C B
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a b

x

Figure .: The method of finding a mean proportional

In particular, if b/a = 2, then a square with side of length x has area
twice that of a square with side of length a.

Suppose instead we have

a

x
=
x

y
=
y

b
. (.)

Then
x3

a3
=
x

a
· y
x
· b
y
=
b

a
.

If b/a = 2, then a cube with side of length x has volume twice that of
a cube with side of length a. In any case, the several lengths can be
arranged as in Figure .. There, angle ACB is right, and BCD and
ACE are diameters of the indicated circles.

The problem is, How can D and E be chosen on the extensions
of BC and AC so that the circles intersect as in Figure .? The
solution of Menaechmus (along with many other solutions) is given in
the commentary [, pp. -] by Eutocius on the second volume On

the Sphere and the Cylinder by Archimedes. In Figure ., if CDFE
is a rectangle, then F determines x and y. But by Equations (.),
rearranged, x and y must satisfy two equations,

ay = x2, bx = y2.
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Figure .: Two mean proportionals

Each of these equations determines a curve, and F is the intersection
of the two curves. The curves turn out to be conic sections, namely
parabolas. Points on the curve given by ay = x2 can be plotted as in
Figure ..

If one imagines that the circles in Figure . are not all in the same
plane, but serve as parallel bases of cones bounded by the same conic
surface, then one may be able to see how the curve arises as a section
of that surface. However, an alternative approach to the conic sections
was given by Pappus of Alexandria [, p. –]; it may have been
due originally to Euclid, although his works on conic sections are lost.
We can take the alternative approach as follows.



 Conic Sections
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Figure .: Construction of points of the parabola



 Equations

. Focus and directrix

A conic section ζ is determined by the following data:
) a line d, called the directrix of ζ;
) a point F (not on d), called the focus of ζ;
) a positive real number (or distance) e, called the eccentricity of

ζ.
Then ζ comprises the points P (in the plane of d and F ) such that

|PF | = e · |Pd|.
Some examples are in Figure ., with the same directrix and focus,
but various eccentricities. The examples are drawn (by computer) by
means of (.) below. (See also Figure ..)

Suppose we assign a rectangular coordinate system to the plane of ζ
in which F has the coordinates (h, k), and d is defined by

Ax+By + C = 0

(where A 6= 0 or B 6= 0). Then ζ is defined by

√

(x− h)2 + (y − k)2 = e · |Ax+By + C|√
A2 +B2

,

hence also by

(x− h)2 + (y − k)2 = e2 · (Ax+By + C)2

A2 +B2
. (.)

This equation is not very useful for showing the shape of ζ. By choosing
the rectangular coordinate system appropriately, we can ensure

(h, k) = (0, 0), B = 0, A = 1, C > 0.





 Conic Sections

b

88 44 2
2

1

1

2

1

4

Figure .: Conic sections of different eccentricities

Then C is the distance between the focus and the directrix, and (.)
becomes

x2 + y2 = e2(x+ C)2. (.)
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. The polar equation

Equation (.) is nicer than (.), but is still not the most useful rect-
angular equation for ζ. However, (.) becomes more useful when con-
verted to polar form. Recall the conversion-equations:

{

x = r cos θ,

y = r sin θ;







r2 = x2 + y2,

tan θ =
y

x
.

So the polar form of (.) is

r2 = e2(r cos θ + C)2,

which is equivalent to

±r = e(r cos θ + C). (.)

The plus-or-minus sign here is needed, unless we know that r always
has the sign of r cos θ+C, or always has the opposite sign. It does not.

However, note well that the same point can have different polar co-
ordinates; in particular, the same point has polar coordinates (r, θ) and
(−r, θ + π). We shall use this fact frequently. The equation

−r = e(r cos θ + C) (.)

is equivalent to
−r = e(−r cos(θ + π) + C).

Hence, if (s, ϕ) satisfies (.), then (−s, ϕ+ π) satisfies

r = e(r cos θ + C). (.)

So we can take either (.) or (.) as the polar equation for ζ. We can
also derive (.) directly from the original definition of ζ; see Figure ..

We can rewrite (.) as

r = er cos θ + eC, (.)



 Conic Sections

b

b

b

b

θ

C

r

|PF |

r cos θ

O

P

Q

d

F

|Pd|
C + r cos θ

r = |e(C + r cos θ)|

Figure .: Derivation of the polar equation of a conic section

r − er cos θ = eC,

r(1− e cos θ) = eC.

Since eC 6= 0, the factor 1− e cos θ will never be 0, so we can divide by
it, obtaining

r =
eC

1− e cos θ
. (.)

If we rewrite (.) the same way, we get

r =
eC

−1− e cos θ
. (.)

Again, either (.) or (.) by itself defines ζ.
The line through the focus and parallel to the directrix is defined

by θ = π/2. By (.) (or from the original definition of ζ), this line
meets ζ in two points, L0 and L1, whose coordinates are (eC, π/2) and
(eC,−π/2). It will be convenient to denote the distance |L0L1| by 2ℓ:
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this means defining
ℓ = eC.

Then (.), (.) and (.) can be rewritten as

r = er cos θ + ℓ, (.)

r =
ℓ

1− e cos θ
(.)

r =
ℓ

−1− e cos θ
. (.)

. Lines through the focus

By (.), each line θ = ϕ through the origin meets ζ in two points,
namely

(

ℓ

1− e cosϕ
,ϕ

)

and

(

ℓ

1 + e cosϕ
,ϕ+ π

)

,

unless e cosϕ = ±1. There are three possibilities, corresponding the
three kinds of conic sections:

. If 0 < e < 1, then |e cos θ| is never 1, so every line through the
origin meets ζ at two points, and these points are on opposite sides of
the origin; ζ is an ellipse. See Figure ..

. If e = 1, then every line through the origin meets ζ at two points,
which are are on opposite sides of the origin, unless the line is θ = 0:
This line meets ζ only at (ℓ/2, π), halfway between the focus and the
directrix. Now ζ is a parabola. See Figure ..

. Suppose e > 1. then cosα = 1/e for some α such that 0 <
α < π/2. If α < ϕ < 2π − α, then the line θ = ϕ meets ζ at two
points, on opposite sides of the origin, as in the ellipse and parabola.
If −α < ϕ < α, then the line θ = ϕ meets ζ at two points, on the same

side of the origin. Each of the lines θ = α and θ = −α meets ζ once,
at (ℓ/2, π + α) or (ℓ/2, π − α). Here ζ is an hyperbola. It is really
two curves:



 Conic Sections

b

b

bb b

b

b

θ

L0

L1

(

ℓ

1− e cos θ
, θ

)

(

ℓ

1 + e cos θ
, θ + π

)

V V ′

d

F

Figure .: The ellipse

b b

b

b

b

b

θ

L0

L1

(

ℓ

1− e cos θ
, θ

)

(

ℓ

1 + e cos θ
, θ + π

)

V

d

F

Figure .: The parabola

• ζ0, given by (.), where α < θ < 2π − α;

• ζ1, given by (.), where −α < θ < α; or by (.), where
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π − α < θ < π + α.

See Figure ..

b

b

b

b

b

b

b
b b

b

b

ϕψ

e cos θ = 1

e cos θ = 1

L0

L1

(

ℓ

1− e cosϕ
,ϕ

)

(

ℓ

1 + e cosϕ
,ϕ+ π

)

(

ℓ

1− e cosϕ
,ϕ

)

(

ℓ

−1− e cosψ
,ψ

)

VV ′

d

ζ0

ζ1

Figure .: The hyperbola

. Distances

The line through the focus F perpendicular to the directrix d is the
axis of ζ. Then ζ is symmetric about its axis, because of the original
definition, or by (.). A point of ζ that lies on the axis is a vertex

of ζ. Again, there are three cases:

. Say 0 < e < 1, so ζ is an ellipse. Then ζ has a vertex V , with
coordinates (ℓ/(1+e), π), and a vertex V ′, given by (ℓ/(1−e), 0). Since

0 < 1− e 6 1− e cos θ 6 1 + e,
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we have
ℓ

1 + e
6

ℓ

1− e cos θ
6

ℓ

1− e
. (.)

By (.) then, V is the point of ζ that is closest to the focus, and V ′

is the point furthest from F . Also,

|V V ′| = ℓ

1 + e
+

ℓ

1− e
=

2ℓ

1− e2
.

See Figure ..

b b bV F V ′

Figure .: Extreme points in the ellipse

. Say e = 1, so ζ is a parabola. Then it has a unique vertex, V , with
coordinates (ℓ/2, π). As in the case of the ellipse, so in the parabola,
V is the point of ζ closest to the focus; but there is no furthest point.
See Figure ..

. Say e > 1, so ζ is an hyperbola. Then it has two vertices, V and
V ′, with coordinates (ℓ/(e + 1), π) and (ℓ/(e − 1), π) respectively. As
before, suppose cosα = 1/e, where 0 < α < π/2. If −α < θ < α, then

1

e
< cos θ 6 1,

1 < e cos θ 6 e,
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b bV F

Figure .: Extreme point in the parabola

0 < e cos θ − 1 6 e− 1,

0 <
ℓ

e− 1
6

ℓ

e cos θ − 1
;

so V ′ is the point of ζ1 closest to the focus. If α < θ < 2π − α, then

−1 6 cos θ <
1

e
,

−e 6 e cos θ < 1,

−1 < −e cos θ 6 e,

0 < 1− e cos θ 6 e+ 1,

ℓ

e+ 1
6

ℓ

1− e cos θ
;

so V is the point of ζ0 closest to the focus. Finally,

|V V ′| = ℓ

e− 1
− ℓ

e+ 1
=

2ℓ

e2 − 1
.

See Figure ..



 Conic Sections

b b bV ′ V F

Figure .: Extreme points in the hyperbola

In both the ellipse and the hyperbola then, the distance between the
two vertices is 2ℓ/|e2 − 1|; this may also be denoted by 2a, so that

a =
ℓ

|e2 − 1| . (.)

. Areas

Let P be an arbitrary point with coordinates (r, θ) on ζ, and let the
foot of the perpendicular from P to the axis of ζ be Q (as in Figure .).
Then Q has coordinates (r cos θ, 0). We consider the position of Q with
respect to the vertices:

. If 0 < e < 1, then by (.) and (.)

ℓ

1 + e
6 r 6

ℓ

1− e
,

ℓ

1 + e
6 er cos θ + ℓ 6

ℓ

1− e
,
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− ℓe

1 + e
6 er cos θ 6

ℓe

1− e
,

− ℓ

1 + e
6 r cos θ 6

ℓ

1− e
;

so Q is between V and V ′, and

|V Q| = r cos θ +
ℓ

1 + e
,

|V ′Q| = ℓ

1− e
− r cos θ.

. If e = 1, then

ℓ

2
6 r = r cos θ + ℓ,

− ℓ

2
6 r cos θ,

|V Q| = r cos θ +
ℓ

2
.

. If e > 1, then there are two cases. (a) If P is on ζ0, then

ℓ

1 + e
6 r = er cos θ + ℓ,

− ℓe

1 + e
6 er cos θ,

− ℓ

1 + e
6 r cos θ,

|V Q| = r cos θ +
ℓ

e+ 1
,

|V ′Q| = r cos θ +
ℓ

e− 1
.

(b) If P is on ζ1, then

ℓ

e− 1
6 r = −(er cos θ + ℓ),
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ℓe

e− 1
6 −er cos θ,

ℓ

e− 1
6 −r cos θ,

|V Q| = −
(

r cos θ +
ℓ

e+ 1

)

,

|V ′Q| = −
(

r cos θ +
ℓ

e− 1

)

.

In either case, Q is not between V and V ′.
Now we can compute:

|PQ|2 = r2 sin2 θ

= r2 − r2 cos2 θ

= (er cos θ + ℓ)2 − r2 cos2 θ

= (r[e+ 1] cos θ + ℓ)(r[e− 1] cos θ + ℓ). (.)

There are two cases. (a) If e = 1, then this equation becomes

|PQ|2 = (2r cos θ + ℓ) · ℓ = 2ℓ · |V Q|. (.)

(b) If e 6= 1, then

|PQ|2 = (e2 − 1)

(

r cos θ +
ℓ

e+ 1

)(

r cos θ +
ℓ

e− 1

)

= |e2 − 1| · |V Q| · |V ′Q| (.)

= 2ℓ · |V
′Q|

|V V ′| · |V Q|.

Let V R be drawn perpendicular to the axis of ζ so that |V R| =
2ℓ. This line segment is called the latus rectum of ζ. This is the
term commonly used in English, although it is the Latin translation
of the original Greek found in Apollonius; however, the literal English
translation, ‘upright side,’ is used in []. Then the square with side PQ
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• is the area of the rectangle with sides V Q and V R, if ζ is a
parabola;

• falls short of this area, if ζ is an ellipse;
• exceeds this area, if ζ is an hyperbola.

This is what is suggested by the Greek names of the curves. See Fig-
ures . and ..

V
Q

P

R

b

b

V V ′

R

Q

P

b b

b

Figure .: Parabola and ellipse as determined by equations of areas
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V ′ V

P

Q

R

b b

b

V ′ V

P

Q

R

b b

b

Figure .: Hyperbola as determined by equations of areas

. The rectangular equations

For the parabola, choose a rectangular coordinate system in which V
is the origin and the X-axis is the axis of ζ. Then (.) becomes

y2 = 2ℓx.

This is the standard rectangular equation for a parabola. The focus is
at (ℓ/2, 0), and the directrix is given by x+ ℓ/2 = 0.
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For the ellipse and the hyperbola, let the origin of a rectangular
coordinate system be the midpoint O of V V ′: this is the center of the
conic section. Let the X-axis contain the vertices. Then the vertices
will have coordinates (±a, 0). By (.), the curve is symmetric about
the new Y -axis. In particular, the curve has, not just one focus, but
two foci; hence it has, not just one directrix, but two directrices, one
for each focus. The curve is now given by

y2 = |e2 − 1| · |x− a| · |x+ a| = |e2 − 1| · |x2 − a2|. (.)

Moreover, by the previous subsection, in the ellipse, e2− 1 and x2− a2
are both negative; in the hyperbola, positive. Hence (.) can be
written

y2 = (e2 − 1)(x2 − a2),

y2

a2(e2 − 1)
=
x2

a2
− 1,

x2

a2
+

y2

a2(1− e2)
= 1.

Recalling (.), we can write

x2

a2
± y2

aℓ
= 1, (.)

where the upper sign is for the ellipse, and the lower is for the hyper-
bola. We may let b be the positive number such that

b2 = aℓ, (.)

so that (.) becomes
x2

a2
± y2

b2
= 1. (.)

The Y -intercepts of the ellipse are (0,±b); the hyperbola has no Y -
intercepts. By (.) and (.),

e =

√

1∓ b2

a2
;



 Conic Sections

where again the upper sign is for the ellipse. Also,

|FO| = a∓ ℓ

1 + e
= a− a(1− e2)

1 + e
= a− a(1− e) = ae;

so the foci are at (±ae, 0). Likewise,

|dO| = ae± ℓ

e
= ae+

a(1− e2)

e
=
a

e
;

so the directrices are given by x± a/e = 0.
Finally, the hyperbola given by (.) does not meet the two lines

given by
x2

a2
− y2

b2
= 0.

These lines—given also by ay ± bx = 0—are the asymptotes of the
hyperbola. Their slopes are ±b/a. In general, a line through O meets
the hyperbola if and only if the slope of the line is less than b/a in
absolute value. Indeed, the equations







y = mx,
x2

a2
− y2

b2
= 1,

(.)

if solved simultaneously, yield

x2

a2
− m2x2

b2
= 1,

b2

a2
−m2 =

b2

x2
, (.)

b2

a2
−m2 > 0,

m2 <
b2

a2
,

|m| < b

a
;
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and if the last inequality holds, then there is a simultaneous solution,
obtainable from (.) and then (.).

The two hyperbolas x2/a2 − y2/b2 = ±1 have the same asymp-
totes. Also, their foci are at the same distance from the center, namely√
a2 + b2. Such hyperbolas are conjugate. The ellipse x2/a2+y2/b2 =

1 is tangent to them at their vertices. See Figure ..
The segment joining the two vertices of an ellipse is the major axis

of the ellipse; the minor axis passes through the center, but is per-
pendicular to the major axis.

A circle can be described as an ellipse of eccentricity 0. Strictly,
however, a circle is not a conic section by the definition given in § ..
The circle does not have a directrix. However, the circle is a kind of
‘limit’ of the ellipses with the same focus and latus rectum, as the di-
rectrix moves indefinitely far away (which means the eccentricity tends
to 0). See Figure ..



 Conic Sections
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Figure .: Conjugate hyperbolas
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Figure .: The circle as a limit of conics



Bibliography

[] Apollonius of Perga. Apollonius of Perga: Treatise on Conic Sec-

tions. University Press, Cambridge, UK, . Edited by T. L.
Heath in modern notation, with introductions including an essay
on the earlier history of the subject.

[] Apollonius of Perga. On conic sections. Great Books of the West-
ern World, no. . Encyclopaedia Britannica, Inc., Chicago, Lon-
don, Toronto, .

[] Apollonius of Perga. Conics. Books I–III. Green Lion Press, Santa
Fe, NM, revised edition, . Translated and with a note and
an appendix by R. Catesby Taliaferro, with a preface by Dana
Densmore and William H. Donahue, an introduction by Harvey
Flaumenhaft, and diagrams by Donahue, edited by Densmore.

[] Archimedes. The Two Books On the Sphere and the Cylinder, vol-
ume I of The Works of Archimedes. Cambridge University Press,
Cambridge, . Translated into English, together with Euto-
cius’ commentaries, with commentary, and critical edition of the
diagrams, by Reviel Netz.

[] Carl B. Boyer. A history of mathematics. John Wiley & Sons Inc.,
New York, .

[] Julian Lowell Coolidge. A history of the conic sections and quadric

surfaces. Dover Publications Inc., New York, .

[] René Descartes. The Geometry of René Descartes. Dover Publica-
tions, Inc., New York, . Translated from the French and Latin
by David Eugene Smith and Marcia L. Latham, with a facsimile
of the first edition of .





March , , : 

[] Isaac Newton. The Principia: Mathematical Principles of Natural

Philosophy. University of California Press, Berkeley, CA, . A
new translation by I. Bernard Cohen and Anne Whitman, assisted
by Julia Budenz. Preceded by “A guide to Newton’s Principia” by
Cohen.

[] Lucio Russo. The Forgotten Revolution. Springer-Verlag, Berlin,
. How science was born in  BC and why it had to be
reborn. Translated from the  Italian original by Silvio Levy.

[] Ivor Thomas, editor. Selections Illustrating the History of Greek

Mathematics. Vol. I. From Thales to Euclid. Number  in Loeb
Classical Library. Harvard University Press, Cambridge, Mass.,
. With an English translation by the editor.

[] Ivor Thomas, editor. Selections Illustrating the History of Greek

Mathematics. Vol. II. From Aristarchus to Pappus. Number 
in Loeb Classical Library. Harvard University Press, Cambridge,
Mass, . With an English translation by the editor.


