COUNTEREXAMPLES IN PARTIAL DERIVATIVES

DAVID PIERCE

1. INTRODUCTION

If a function of two variables has both partial derivatives at a point, then the graph of
the function has tangent lines in the two coordinate directions at that point, and those
tangent lines span a plane. Assuming the function is f, and the point is (a,b), we can
understand the plane as the graph of L), where

Liap (2,y) = f(a,b) + Dy f(a,b)(x — a) + Dy f(a,b)(y — b).

In some cases, the plane is reasonably called a tangent plane; in other cases, it is not.
In the former cases, the function is differentiable at the point; in the latter, not.
Stewart’s Calculus (5th ed., 2003), § 15.4, p. 961, gives the example of the function f
given by
xy )
oy D # 00
0, if (xz,y) = (0,0).

Then f(z,0) = 0 for all z, so D; f(0,0) = 0. By symmetry, since f(z,y) = f(y,x), we
have D, f(0,0) = 0. Hence Lg)(x,y) = 0. But the graph of L is not tangent to the
graph of f over (0,0): that is, f is not differentiable at (0,0). This is simply because f
is not continuous at (0,0). This is worked out in the last two exercises of the section (41
and 42).

2. PARTIALLY DIFFERENTIABLE, CONTINUOUS, BUT NOT DIFFERENTIABLE

It may be useful to have an example of a continuous function, with partial derivatives,
that is not differentiable. The graph of such a function might consist of non-coplanar
straight lines through the origin. Those lines would intersect the circular cylinder given
by 22 +y? = 1 at various heights. An example of such a graph can be given in cylindrical
coordinates (§ 13.7, p. 875, of Stewart) by

4z = r(sin @ + sin 36), (%)

where

r?=x*4+4y% rsinf=y, rcosf=ux.

See Figure 1. The coefficient 4 is used in (*) so that it will not be needed in rectangular
coordinates. Indeed, we have

sin @ + sin 360 = sin 8 + sin 26 cos 6 + sin 6 cos 26
= sin @ + 2sin 6 cos® § + sin (2 cos*  — 1)

= 4sinf cos’ b,
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FIGURE 1

so that the graph defined by (x) is the graph of the function g given by

We then have

g(z,y) = 2?2 +y?

5172y

0, if (z,y) = (0,0).

l9(z, y)| < ly| < Va2 + 92
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so g is continuous at (0,0) by the Squeeze Theorem. Curiously, in his § 15.2, on p. 941,
Stewart mentions that the Squeeze Theorem holds for functions of several variables,
though without making a formal statement of the theorem in this context; then he im-
mediately proves in Example 4 that lim, ). (0,0) 32%y/(2* + y*) = 0, but without using
the Squeeze Theorem! The possibility of using the Squeeze Theorem in his example is
relegated to a marginal note.

In our present example, we still have Dy g(0,0) = 0 = D5 ¢(0,0), as in the example of
§ 1. However, since g(x,x) = /2, the graph of ¢ contains a line through the origin that is
not horizontal. Therefore g is not differentiable at (0,0). Stewart says, as Theorem 15.4.8,
that continuity of the partial derivatives is sufficient to ensure differentiability. The proof
is in an appendix. We may confirm that this condition fails in the present example: When

(x,y) # (0,0), then

_ 2xy(a?+y?) - 2x(2a?y) 2P 1

Dlg(x7y) - (x2+y2)2 - (x2+y2)27 Dlg(x7x) - 57
v (2 +y?) = 2y(aty) _ 2’2 —y?)

D2 g(l', y) - (12 + y2)2 = (1'2 + y2)2 5 D2 g(l’, O) =1.

3. DIFFERENT MIXED PARTIALS

In his § 15.3, p. 952, Stewart states Clairaut’s Theorem on the equality of mixed
partial derivatives. Again, the proof is in an appendix. Nowhere (as far as I can tell) is
an example offered where the hypotheses and conclusion of the theorem fail. Yet I found
students to be curious about such an example. Adams’s Calculus: a complete course (4th
ed., 1999) gives an example in an exercise (12.4.16, p. 720), without suggesting how the
example might be derived.

Yet the example can be derived as g was above. We look for a function h meeting two
conditions:

(1) The graph of h has the tangent plane (above the origin) given by z = 0.

(2) The intersection of the graph of h with a circular cylinder given by x? +y? = a? is
given by z = bsin 46 for some b depending on a. This should ensure that Dy f(x,0)
increases as x does, but Dy f(0,y) decreases as y increases: see Figure 2.

Our two conditions are met when h has the graph given by
2z = r? sin 46.
Since sin 46 = 2 sin 26 cos 20 = 2sin 6 cos f(cos? § — sin® §), we have

zy(z+y)(z—y)  azyl@®—y*) Py—ay® .
_ ( 2 )<2 ): (2 2 ): 2 5 if (x,y) # (0,0);
h(z,y) = 24y 24y 2+

0, if (z,y) = (0,0).
Away from (0,0), we have

(322 — y?)(2® + y?) — 2x(2® — xy?)
Dl h(ZE, y) = y ' (1'2 + y2)2

‘ at + dx?y? — yt
(22 + 2)?

Y

and therefore
D1 h(0,y) = —v.
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FIGURE 2

This holds even when y = 0, and so
Dy Dy A(0,y) = —1.
By symmetry, since h(y,x) = —h(z,y), we have
. xt + 4a?y? — ot

D2 h(l’,y) = _Dl h(y7l'> = (xg +y2)2

Y

Dy h(z,0) = x,
D; Do A(z,0) =1,
D1 Dy h(0,0) = 1 # Dy Dy h(0,0).

To confirm that the mixed partials are not continuous, we can compute, when (z,y) #
(0,0),

4 2,3 _ 5
Dy ) = EAEA
(% +122%y* = 5y*) (a® + y°) — dy(a'y + 42°y® — o°)

(@* + y?)?
26 4 924y? — a2yt — O
(% +y?)?

Dy Dy h(x,0) =1 # —1 = Dy Dy h(0,0).

Y

D, Dy h(l"; y) =

)
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