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. Introduction

If a function of two variables has both partial derivatives at a point, then the graph of
the function has tangent lines in the two coordinate directions at that point, and those
tangent lines span a plane. Assuming the function is f , and the point is (a, b), we can
understand the plane as the graph of L(a,b), where

L(a,b)(x, y) = f(a, b) + D1 f(a, b)(x − a) + D2 f(a, b)(y − b).

In some cases, the plane is reasonably called a tangent plane; in other cases, it is not.
In the former cases, the function is differentiable at the point; in the latter, not.

Stewart’s Calculus (th ed., ), § ., p. , gives the example of the function f
given by

f(x, y) =







xy

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Then f(x, 0) = 0 for all x, so D1 f(0, 0) = 0. By symmetry, since f(x, y) = f(y, x), we
have D2 f(0, 0) = 0. Hence L(0,0)(x, y) = 0. But the graph of L is not tangent to the
graph of f over (0, 0): that is, f is not differentiable at (0, 0). This is simply because f
is not continuous at (0, 0). This is worked out in the last two exercises of the section (
and ).

. Partially differentiable, continuous, but not differentiable

It may be useful to have an example of a continuous function, with partial derivatives,
that is not differentiable. The graph of such a function might consist of non-coplanar
straight lines through the origin. Those lines would intersect the circular cylinder given
by x2+y2 = 1 at various heights. An example of such a graph can be given in cylindrical

coordinates (§ ., p. , of Stewart) by

4z = r(sin θ + sin 3θ), (∗)

where

r2 = x2 + y2, r sin θ = y, r cos θ = x.

See Figure . The coefficient 4 is used in (∗) so that it will not be needed in rectangular
coordinates. Indeed, we have

sin θ + sin 3θ = sin θ + sin 2θ cos θ + sin θ cos 2θ

= sin θ + 2 sin θ cos2 θ + sin θ(2 cos2 θ − 1)

= 4 sin θ cos2 θ,
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so that the graph defined by (∗) is the graph of the function g given by

g(x, y) =







x2y

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

We then have

|g(x, y)| 6 |y| 6
√

x2 + y2,
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so g is continuous at (0, 0) by the Squeeze Theorem. Curiously, in his § ., on p. ,
Stewart mentions that the Squeeze Theorem holds for functions of several variables,
though without making a formal statement of the theorem in this context; then he im-
mediately proves in Example  that lim(x,y)→(0,0) 3x2y/(x2 + y2) = 0, but without using
the Squeeze Theorem! The possibility of using the Squeeze Theorem in his example is
relegated to a marginal note.

In our present example, we still have D1 g(0, 0) = 0 = D2 g(0, 0), as in the example of
§ . However, since g(x, x) = x/2, the graph of g contains a line through the origin that is
not horizontal. Therefore g is not differentiable at (0, 0). Stewart says, as Theorem ..,
that continuity of the partial derivatives is sufficient to ensure differentiability. The proof
is in an appendix. We may confirm that this condition fails in the present example: When
(x, y) 6= (0, 0), then

D1 g(x, y) =
2xy(x2 + y2) − 2x(x2y)

(x2 + y2)2
=

2xy3

(x2 + y2)2
, D1 g(x, x) =

1

2
;

D2 g(x, y) =
x2(x2 + y2) − 2y(x2y)

(x2 + y2)2
=

x2(x2 − y2)

(x2 + y2)2
, D2 g(x, 0) = 1.

. Different mixed partials

In his § ., p. , Stewart states Clairaut’s Theorem on the equality of mixed
partial derivatives. Again, the proof is in an appendix. Nowhere (as far as I can tell) is
an example offered where the hypotheses and conclusion of the theorem fail. Yet I found
students to be curious about such an example. Adams’s Calculus: a complete course (th
ed., ) gives an example in an exercise (.., p. ), without suggesting how the
example might be derived.

Yet the example can be derived as g was above. We look for a function h meeting two
conditions:

() The graph of h has the tangent plane (above the origin) given by z = 0.
() The intersection of the graph of h with a circular cylinder given by x2 +y2 = a2 is

given by z = b sin 4θ for some b depending on a. This should ensure that D2 f(x, 0)
increases as x does, but D1 f(0, y) decreases as y increases: see Figure .

Our two conditions are met when h has the graph given by

2z = r2 sin 4θ.

Since sin 4θ = 2 sin 2θ cos 2θ = 2 sin θ cos θ(cos2 θ − sin2 θ), we have

h(x, y) =







xy(x + y)(x − y)

x2 + y2
=

xy(x2 − y2)

x2 + y2
=

x3y − xy3

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Away from (0, 0), we have

D1 h(x, y) = y ·
(3x2 − y2)(x2 + y2) − 2x(x3 − xy2)

(x2 + y2)2

= y ·
x4 + 4x2y2 − y4

(x2 + y2)2
,

and therefore

D1 h(0, y) = −y.
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This holds even when y = 0, and so

D2 D1 h(0, y) = −1.

By symmetry, since h(y, x) = −h(x, y), we have

D2 h(x, y) = −D1 h(y, x) = x ·
x4 + 4x2y2 − y4

(x2 + y2)2
,

D2 h(x, 0) = x,

D1 D2 h(x, 0) = 1,

D1 D2 h(0, 0) = 1 6= D2 D1 h(0, 0).

To confirm that the mixed partials are not continuous, we can compute, when (x, y) 6=
(0, 0),

D1 h(x, y) =
x4y + 4x2y3 − y5

(x2 + y2)2
,

D2 D1 h(x, y) =
(x4 + 12x2y2 − 5y4)(x2 + y2) − 4y(x4y + 4x2y3 − y5)

(x2 + y2)3

=
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
,

D2 D1 h(x, 0) = 1 6= −1 = D2 D1 h(0, 0).

Mathematics Dept, Middle East Technical University, Ankara , Turkey

E-mail address : dpierce@metu.edu.tr

URL: http://www.math.metu.edu.tr/~dpierce/


