COUNTEREXAMPLES IN PARTIAL DERIVATIVES

DAVID PIERCE

1. Introduction

If a function of two variables has both partial derivatives at a point, then the graph of the function has tangent lines in the two coordinate directions at that point, and those tangent lines span a plane. Assuming the function is f, and the point is (a, b), we can understand the plane as the graph of $L_{(a, b)}$, where

$$
L_{(a, b)}(x, y)=f(a, b)+\mathrm{D}_{1} f(a, b)(x-a)+\mathrm{D}_{2} f(a, b)(y-b)
$$

In some cases, the plane is reasonably called a tangent plane; in other cases, it is not. In the former cases, the function is differentiable at the point; in the latter, not.

Stewart's Calculus (5th ed., 2003), § 15.4, p. 961, gives the example of the function f given by

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Then $f(x, 0)=0$ for all x, so $\mathrm{D}_{1} f(0,0)=0$. By symmetry, since $f(x, y)=f(y, x)$, we have $\mathrm{D}_{2} f(0,0)=0$. Hence $L_{(0,0)}(x, y)=0$. But the graph of L is not tangent to the graph of f over $(0,0)$: that is, f is not differentiable at $(0,0)$. This is simply because f is not continuous at $(0,0)$. This is worked out in the last two exercises of the section (41 and 4^{2}).

2. Partially differentiable, continuous, but not differentiable

It may be useful to have an example of a continuous function, with partial derivatives, that is not differentiable. The graph of such a function might consist of non-coplanar straight lines through the origin. Those lines would intersect the circular cylinder given by $x^{2}+y^{2}=1$ at various heights. An example of such a graph can be given in cylindrical coordinates (§ 13.7, p. 875, of Stewart) by

$$
\begin{equation*}
4 z=r(\sin \theta+\sin 3 \theta) \tag{*}
\end{equation*}
$$

where

$$
r^{2}=x^{2}+y^{2}, \quad r \sin \theta=y, \quad r \cos \theta=x .
$$

See Figure 1. The coefficient 4 is used in $(*)$ so that it will not be needed in rectangular coordinates. Indeed, we have

$$
\begin{aligned}
\sin \theta+\sin 3 \theta & =\sin \theta+\sin 2 \theta \cos \theta+\sin \theta \cos 2 \theta \\
& =\sin \theta+2 \sin \theta \cos ^{2} \theta+\sin \theta\left(2 \cos ^{2} \theta-1\right) \\
& =4 \sin \theta \cos ^{2} \theta,
\end{aligned}
$$

Date: April 9, 2008.

Figure 1
so that the graph defined by $(*)$ is the graph of the function g given by

$$
g(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

We then have

$$
|g(x, y)| \leqslant|y| \leqslant \sqrt{x^{2}+y^{2}}
$$

so g is continuous at $(0,0)$ by the Squeeze Theorem. Curiously, in his $\S 15.2$, on p. 941, Stewart mentions that the Squeeze Theorem holds for functions of several variables, though without making a formal statement of the theorem in this context; then he immediately proves in Example 4 that $\lim _{(x, y) \rightarrow(0,0)} 3 x^{2} y /\left(x^{2}+y^{2}\right)=0$, but without using the Squeeze Theorem! The possibility of using the Squeeze Theorem in his example is relegated to a marginal note.

In our present example, we still have $\mathrm{D}_{1} g(0,0)=0=\mathrm{D}_{2} g(0,0)$, as in the example of \S 1. However, since $g(x, x)=x / 2$, the graph of g contains a line through the origin that is not horizontal. Therefore g is not differentiable at (0,0). Stewart says, as Theorem $15 \cdot 4 \cdot 8$, that continuity of the partial derivatives is sufficient to ensure differentiability. The proof is in an appendix. We may confirm that this condition fails in the present example: When $(x, y) \neq(0,0)$, then

$$
\begin{array}{ll}
\mathrm{D}_{1} g(x, y)=\frac{2 x y\left(x^{2}+y^{2}\right)-2 x\left(x^{2} y\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}, & \mathrm{D}_{1} g(x, x)=\frac{1}{2} \\
\mathrm{D}_{2} g(x, y)=\frac{x^{2}\left(x^{2}+y^{2}\right)-2 y\left(x^{2} y\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, & \mathrm{D}_{2} g(x, 0)=1
\end{array}
$$

3. Different mixed partials

In his § $15 \cdot 3$, p. 952, Stewart states Clairaut's Theorem on the equality of mixed partial derivatives. Again, the proof is in an appendix. Nowhere (as far as I can tell) is an example offered where the hypotheses and conclusion of the theorem fail. Yet I found students to be curious about such an example. Adams's Calculus: a complete course (4th ed., 1999) gives an example in an exercise (12.4.16, p. 720), without suggesting how the example might be derived.

Yet the example can be derived as g was above. We look for a function h meeting two conditions:
(1) The graph of h has the tangent plane (above the origin) given by $z=0$.
(2) The intersection of the graph of h with a circular cylinder given by $x^{2}+y^{2}=a^{2}$ is given by $z=b \sin 4 \theta$ for some b depending on a. This should ensure that $\mathrm{D}_{2} f(x, 0)$ increases as x does, but $\mathrm{D}_{1} f(0, y)$ decreases as y increases: see Figure 2.
Our two conditions are met when h has the graph given by

$$
2 z=r^{2} \sin 4 \theta
$$

Since $\sin 4 \theta=2 \sin 2 \theta \cos 2 \theta=2 \sin \theta \cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$, we have

$$
h(x, y)= \begin{cases}\frac{x y(x+y)(x-y)}{x^{2}+y^{2}}=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}=\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Away from $(0,0)$, we have

$$
\begin{aligned}
\mathrm{D}_{1} h(x, y) & =y \cdot \frac{\left(3 x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)-2 x\left(x^{3}-x y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =y \cdot \frac{x^{4}+4 x^{2} y^{2}-y^{4}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

and therefore

$$
\mathrm{D}_{1} h(0, y)=-y
$$

Figure 2
This holds even when $y=0$, and so

$$
\mathrm{D}_{2} \mathrm{D}_{1} h(0, y)=-1
$$

By symmetry, since $h(y, x)=-h(x, y)$, we have

$$
\begin{gathered}
\mathrm{D}_{2} h(x, y)=-\mathrm{D}_{1} h(y, x)=x \cdot \frac{x^{4}+4 x^{2} y^{2}-y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \\
\mathrm{D}_{2} h(x, 0)=x \\
\mathrm{D}_{1} \mathrm{D}_{2} h(x, 0)=1 \\
\mathrm{D}_{1} \mathrm{D}_{2} h(0,0)=1 \neq \mathrm{D}_{2} \mathrm{D}_{1} h(0,0)
\end{gathered}
$$

To confirm that the mixed partials are not continuous, we can compute, when $(x, y) \neq$ (0, 0),

$$
\begin{gathered}
\mathrm{D}_{1} h(x, y)=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}, \\
\mathrm{D}_{2} \mathrm{D}_{1} h(x, y)= \\
=\frac{\left(x^{4}+12 x^{2} y^{2}-5 y^{4}\right)\left(x^{2}+y^{2}\right)-4 y\left(x^{4} y+4 x^{2} y^{3}-y^{5}\right)}{\left(x^{2}+y^{2}\right)^{3}} \\
= \\
\mathrm{D}_{2} \mathrm{D}_{1} h\left(x, 9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}\right. \\
\left(x^{2}+y^{2}\right)^{3}
\end{gathered}, 1 \neq-1=\mathrm{D}_{2} \mathrm{D}_{1} h(0,0) .
$$

