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. Introduction

If a function of two variables has both partial derivatives at a point, then the graph of
the function has tangent lines in the two coordinate directions at that point, and those
tangent lines span a plane. Assuming the function is f , and the point is (a, b), we can
understand the plane as the graph of L(a,b), where

L(a,b)(x, y) = f(a, b) + D1 f(a, b)(x − a) + D2 f(a, b)(y − b).

In some cases, the plane is reasonably called a tangent plane; in other cases, it is not.
In the former cases, the function is differentiable at the point; in the latter, not.

Stewart’s Calculus (th ed., ), § ., p. , gives the example of the function f
given by

f(x, y) =







xy

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Then f(x, 0) = 0 for all x, so D1 f(0, 0) = 0. By symmetry, since f(x, y) = f(y, x), we
have D2 f(0, 0) = 0. Hence L(0,0)(x, y) = 0. But the graph of L is not tangent to the
graph of f over (0, 0): that is, f is not differentiable at (0, 0). This is simply because f
is not continuous at (0, 0). This is worked out in the last two exercises of the section (
and ).

. Partially differentiable, continuous, but not differentiable

It may be useful to have an example of a continuous function, with partial derivatives,
that is not differentiable. The graph of such a function might consist of non-coplanar
straight lines through the origin. Those lines would intersect the circular cylinder given
by x2+y2 = 1 at various heights. An example of such a graph can be given in cylindrical

coordinates (§ ., p. , of Stewart) by

4z = r(sin θ + sin 3θ), (∗)

where

r2 = x2 + y2, r sin θ = y, r cos θ = x.

See Figure . The coefficient 4 is used in (∗) so that it will not be needed in rectangular
coordinates. Indeed, we have

sin θ + sin 3θ = sin θ + sin 2θ cos θ + sin θ cos 2θ

= sin θ + 2 sin θ cos2 θ + sin θ(2 cos2 θ − 1)

= 4 sin θ cos2 θ,
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so that the graph defined by (∗) is the graph of the function g given by

g(x, y) =







x2y

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

We then have

|g(x, y)| 6 |y| 6
√

x2 + y2,
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so g is continuous at (0, 0) by the Squeeze Theorem. Curiously, in his § ., on p. ,
Stewart mentions that the Squeeze Theorem holds for functions of several variables,
though without making a formal statement of the theorem in this context; then he im-
mediately proves in Example  that lim(x,y)→(0,0) 3x2y/(x2 + y2) = 0, but without using
the Squeeze Theorem! The possibility of using the Squeeze Theorem in his example is
relegated to a marginal note.

In our present example, we still have D1 g(0, 0) = 0 = D2 g(0, 0), as in the example of
§ . However, since g(x, x) = x/2, the graph of g contains a line through the origin that is
not horizontal. Therefore g is not differentiable at (0, 0). Stewart says, as Theorem ..,
that continuity of the partial derivatives is sufficient to ensure differentiability. The proof
is in an appendix. We may confirm that this condition fails in the present example: When
(x, y) 6= (0, 0), then

D1 g(x, y) =
2xy(x2 + y2) − 2x(x2y)

(x2 + y2)2
=

2xy3

(x2 + y2)2
, D1 g(x, x) =

1

2
;

D2 g(x, y) =
x2(x2 + y2) − 2y(x2y)

(x2 + y2)2
=

x2(x2 − y2)

(x2 + y2)2
, D2 g(x, 0) = 1.

. Different mixed partials

In his § ., p. , Stewart states Clairaut’s Theorem on the equality of mixed
partial derivatives. Again, the proof is in an appendix. Nowhere (as far as I can tell) is
an example offered where the hypotheses and conclusion of the theorem fail. Yet I found
students to be curious about such an example. Adams’s Calculus: a complete course (th
ed., ) gives an example in an exercise (.., p. ), without suggesting how the
example might be derived.

Yet the example can be derived as g was above. We look for a function h meeting two
conditions:

() The graph of h has the tangent plane (above the origin) given by z = 0.
() The intersection of the graph of h with a circular cylinder given by x2 +y2 = a2 is

given by z = b sin 4θ for some b depending on a. This should ensure that D2 f(x, 0)
increases as x does, but D1 f(0, y) decreases as y increases: see Figure .

Our two conditions are met when h has the graph given by

2z = r2 sin 4θ.

Since sin 4θ = 2 sin 2θ cos 2θ = 2 sin θ cos θ(cos2 θ − sin2 θ), we have

h(x, y) =







xy(x + y)(x − y)

x2 + y2
=

xy(x2 − y2)

x2 + y2
=

x3y − xy3

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Away from (0, 0), we have

D1 h(x, y) = y ·
(3x2 − y2)(x2 + y2) − 2x(x3 − xy2)

(x2 + y2)2

= y ·
x4 + 4x2y2 − y4

(x2 + y2)2
,

and therefore

D1 h(0, y) = −y.
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This holds even when y = 0, and so

D2 D1 h(0, y) = −1.

By symmetry, since h(y, x) = −h(x, y), we have

D2 h(x, y) = −D1 h(y, x) = x ·
x4 + 4x2y2 − y4

(x2 + y2)2
,

D2 h(x, 0) = x,

D1 D2 h(x, 0) = 1,

D1 D2 h(0, 0) = 1 6= D2 D1 h(0, 0).

To confirm that the mixed partials are not continuous, we can compute, when (x, y) 6=
(0, 0),

D1 h(x, y) =
x4y + 4x2y3 − y5

(x2 + y2)2
,

D2 D1 h(x, y) =
(x4 + 12x2y2 − 5y4)(x2 + y2) − 4y(x4y + 4x2y3 − y5)

(x2 + y2)3

=
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
,

D2 D1 h(x, 0) = 1 6= −1 = D2 D1 h(0, 0).
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