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. Introduction

The equation of the title, which is () below, is known as (a special case of) Euler’s
Formula. It combines the five constants 0, 1, π, e, and i (that is,

√
−1) by means of

the three operations of addition, multiplication, and exponentiation, and the relation
of equality. The equation arises from an analysis of the complex numbers. I aim here
to derive the equation for somebody with some experience in calculus. However, the
argument is condensed, and will require work on the part of the reader.

In § , I shall use some notation that is not so common as it might be [, ch. , p. ].
If one has an expression involving x, perhaps x3−14 ·sin log x, then one sometimes speaks
of the ‘function’

f(x) = x3 − 14 · sin log x, ()

or even the ‘function’ y = x3 − 14 · sin log x. However, these are not strictly functions;
they are equations. The latter equation does define a function, namely

x 7−→ x3 − 14 · sin log x.

This is the same as the function y 7→ y3−14 · sin log y, the function z 7→ z3 −14 · sin log z,
and so forth; repetition binds the variable in each case. We may give this function a
one-letter name like f ; in that case, () can be understood as a defining identity for f .

The derivative—if it exists—of a function f is the function denoted by f ′, namely

x 7−→ lim
h→0

f(x + h) − f(x)

h
.

One may also write d f(x)/ d x for the derivative of f . But I shall avoid this notation,
because it is used sloppily, as () is [, ch. , p. ]. One tends to write, for example,
d x2/ dx = 2x; that is, one treats d f(x)/ dx as f ′(x), the derivative of f evaluated at x.
Then one must distinguish d f(x)/ d x from d f(y)/ d y, and one does not have an obvious
related notation for f ′(a) (although (d f(x)/ dx)|x=a is used). It would be more precise
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to write, for example, d x2/ dx = (x 7→ 2x), or even d x2/ d x = (y 7→ 2y). Then f ′(a)
could be written as (d f(x)/ dx)(a).

. Bare Bones

Use power-series expansions for the exponential, sine, and cosine functions:

ex =

∞∑

n=0

xn

n!
,

and therefore

exi =
∞∑

n=0

(xi)n

n!

=
∞∑

m=0

(xi)2m

(2m)!
+

∞∑

m=0

(xi)2m+1

(2m + 1)!

=
∞∑

m=0

(−1)mx2m

(2m)!
+ i ·

∞∑

m=0

(−1)mx2m+1

(2m + 1)!

= cos x + i · sin x.

Thus the general Euler’s formula:

ei·x = cos x + i · sin x.

Now let x be π; the result is eπi = −1, or

eπi + 1 = 0. ()

. Sinews

.. The real and the complex numbers. The real numbers compose a set R; the
complex, C. One writes a typical complex number as

x + i · y
(or x + yi), where x and y stand for real numbers. One does arithmetic with complex
numbers according to the usual rules; but one can always replace i2 with −1. One can
identify x+i ·y with the point (x, y) of the Cartesian plane, R×R (Fig. ); in particular,
a real number x is identified with the point (x, 0) on the X-axis, and i is identified with
(0, 1) on the Y-axis. The rule of multiplication in R × R is then

(x, y) · (u, v) = (xu − yv, xv + yu).

This can be obtained from a multiplication of matrices:
(

x y
−y x

)

·
(

u v
−v u

)

=

(
xu − yv xv + yu
−yu − xv −yv + xu

)

.

Also, let us assign the following names:

(0, 0) = O, (1, 0) = A, (x, y) = P, (u, v) = Q, (xu − yv, xv + yu) = R.

It will be shown in the next sub-section that

∠AOP + ∠AOQ = ∠AOR, |OP | · |OQ| = |OR| .
Thus complex numbers provide a notation for certain geometrical effects.

.. Trigonometric functions. The geometric meaning of complex multiplication can
be seen with trigonometry.


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Figure . Definition of sine and cosine.

... Definitions. The trigonometric functions of sine and cosine can be defined in terms
of the unit circle, which is given by

x2 + y2 = 1. ()

An arbitrary point on this circle has coordinates

(cos θ, sin θ),

where θ is the distance along the circle, in the counterclockwise direction, from (1, 0)
to the point (Fig. ). Alternatively, θ here is half the area of the sector of the circle
bounded by the radii to (1, 0) and the other point. Then θ is also considered as the size,
in ‘radians’, of the angle filled by this sector.

From () now follows the Pythagorean identity

sin2 + cos2 = 1. ()

Also, by definition,
π

is the distance halfway around the circle; so we have a table of values:

θ 0 π/2 π 3π/2 2π
sin θ 0 1 0 −1 0
cos θ 1 0 −1 0 1

... Complex multiplication. Again, we identify (cos θ, sin θ) with the complex number

cos θ + i · sin θ.

The claim of § . is that to multiply by this number is to rotate (counterclockwise,
about O or 0) through the angle of size θ. To prove this, it is enough to observe that:

() the claim is true when the multiplicand is 1 or i;
() z · (x + i · y) = (z · 1)x + (z · i)y.


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Figure . Complex multiplication.

(See Fig. .)

... Angle addition formulas. To rotate by α, then β, is to rotate by α + β. Hence

cos(α + β) + i · sin(α + β) = (cos α + i · sin α) · (cos β + i · sin β)

= cos α cos β − sin α sin β + i · (sin α cos β + cos α sin β),

yielding the identities

cos(α + β) = cos α · cos β − sin α · sin β, ()

sin(α + β) = sin α · cos β + cos α · sin β. ()

... Derivatives at 0. One can observe geometrically that

lim
θ→0

sin θ

θ
= 1 ()

(see Fig. .) Indeed, if 0 < θ < π/2, then sin θ is the length of the straight line between
(cos θ, 0) and (cos θ, sin θ); in this case, this length is bounded by two arcs of circles, one
of radius cos θ, the other, 1; in particular,

θ cos θ < sin θ < θ.

(One can also understand this as relating the areas of two sectors and a triangle.) There-
fore

cos θ <
sin θ

θ
< 1.

This holds also if −π/2 < θ < 0. Since limθ→0 cos θ = 1, we have () by the ‘Squeeze
Theorem’.

By the definition of derivative, () means

sin′ 0 = 1. ()

Similarly, and by (), we have

lim
θ→0

cos θ − 1

θ
= lim

θ→0

cos2 θ − 1

θ(cos θ + 1)
= lim

θ→0

− sin2 θ

θ(cos θ + 1)

= − lim
θ→0

sin θ

θ
· lim

θ→0

sin θ

cos θ + 1
= −1 · 0 = 0,

which means

cos′ 0 = 0. ()


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Figure . sin θ ≈ θ when |θ| is small.

... Derivatives. Using () and (), take the derivatives of x 7→ cos(α + x) and x 7→
sin(α + x) and evaluate at 0 by means of () and ():

cos′ α = cos′(α + 0) = cos α · cos′ 0 − sin α · sin′ 0 = − sin α, ()

sin′ α = sin′(α + 0) = sin α · cos′ 0 + cos α · sin′ 0 = cos α. ()

Thus both sin and cos are solutions of the differential equation

y′′ + y = 0.

.. The logarithm function. The function x 7→ log x is the unique function f defined
on the interval (0,∞)—namely, {x ∈ R : 0 < x < ∞}—such that:

() f ′(x) = 1/x whenever 0 < x < ∞;
() f(1) = 0.

This is the logarithm function. It sometimes denoted by x 7→ ln x, for logarithmus

naturalis, but the mathematician works only with natural things anyway, so the ‘n’ is
redundant. (According to [] Oxford English Dictionary [nd ed., ], John Napier of
Merchiston, in , coined the Latin word logarithmus, from the Greek words lìgoc and
Ćrijmìc, as a name for the function we have just defined.)

Since it has a positive derivative, log is an increasing function; in particular, it is
invertible.

The range of log is all of R (see Fig. ). Indeed, by the Mean Value Theorem, since
log′ x = 1/x, if j is a positive integer, then

log 2j+1 − log 2j = 2j · log 2j+1 − log 2j

2j+1 − 2j
= 2j · 1

c
>

1

2

for some c in the interval (2j, 2j+1). Hence

log 2n =

n−1∑

j=0

(log 2j+1 − log 2j) >
n

2
,

so limx→∞ log x = ∞. Similarly,

log 2−n =

n−1∑

j=0

(log 2−(j+1) − log 2−j) 6
−n

2
,

so limx→0+ log x = −∞.

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Figure . The logarithm function.
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Figure . The range of log is R.

.. The exponential function. The inverse of log is denoted by exp, so that

exp 0 = 1. ()

Since the range of log is R, so is the domain of exp. Therefore

x = log exp x ()

for all x in R. Also,

x = exp log x ()

for all positive x. From (), we can compute the derivative of exp by means of the Chain
Rule:

1 = (log ◦ exp)′x = log′(exp x) · exp′ x =
1

exp x
· exp′ x,

exp′ x = exp x. ()

Thus exp is a solution of the differential equation

y′ = y.

The notation ex for exp x is justified as follows. When n is a positive integer, then

xn = x · · ·x
︸ ︷︷ ︸

n

.





Also, x0 = 1, and x−n = 1/xn, and x1/n = n

√
x, and xm/n = (x1/n)m if m is another

integer. So xa is defined for all rational numbers a (at least if x > 0). Also, the derivative
of x 7→ xa is x 7→ axa−1. Now let fa be the function x 7→ log(xa). Then

fa
′(x) =

1

xa
· axa−1 =

a

x
= (a log)′x,

but also fa(1) = 0 = a log 1; therefore fa = a log. Applying exp and using () gives

xa = exp(a log x). ()

We can take this as a definition of xa when a is irrational. We also define

e = exp 1,

so that log e = 1. Then () yields

ex = exp(x log e) = exp x. ()

.. Power-series expansions. If f is a polynomial function x 7→ ∑n
i=0 aix

i, then

f(0) = a0, f ′(0) = a1, f ′′(0) = 2a2, f ′′′(0) = 6a3, . . . ,

f (m)(0) =

{

m! am, if m 6 n;

0, if m > n.

Hence

f(x) =

n∑

k=0

f (k)(0)

k!
xk.

One expects reasonable functions to be approximable by polynomials, in particular, by
polynomials that share their first several derivatives at 0 (or some other point). More
precisely, if f is an arbitrary differentiable function, then one expects

f(x) ≈
n∑

k=0

f (k)(0)

k!
xk,

with the approximation improving as n grows larger, so that, ‘in the limit,’

f(x) =

∞∑

n=0

f (n)(0)

n!
xn. ()

The expectation is not always realized; it is realized when f = exp; by () and (), we
have

exp x =

∞∑

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+ · · · . ()

We can use () to define exp x when x is a complex number.
As more special cases of (), by (), (), (), and (), we have

cos x =

∞∑

n=0

(−1)n

(2n)!
x2n, ()

sin x =

∞∑

n=0

(−1)n+1

(2n + 1)!
x2n+1. ()

From (),(), and (), we have

exp(i · x) = cos x + i · sin x.

In particular, exp(iπ) = −1, which by () yields ().

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