A DERIVATION OF THE EQUATION e™ +1 =0
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0. INTRODUCTION

The equation of the title, which is (2) below, is known as (a special case of) Euler’s
Formula. It combines the five constants 0, 1, 7, e, and i (that is, v/—1) by means of
the three operations of addition, multiplication, and exponentiation, and the relation
of equality. The equation arises from an analysis of the complex numbers. I aim here
to derive the equation for somebody with some experience in calculus. However, the
argument is condensed, and will require work on the part of the reader.

In § 2, I shall use some notation that is not so common as it might be [2, ch. 3, p. 45].
If one has an expression involving x, perhaps 22 — 14 -sin log z, then one sometimes speaks
of the ‘function’

f(z) =2* — 14 -sinlogz, (1)
or even the ‘function’ y = 2% — 14 - sinlog . However, these are not strictly functions;
they are equations. The latter equation does define a function, namely

x — x° — 14 - sinlog x.

This is the same as the function y — y® — 14 -sin log y, the function z — 23 — 14 -sinlog z,

and so forth; repetition binds the variable in each case. We may give this function a

one-letter name like f; in that case, (1) can be understood as a defining identity for f.
The derivative—if it exists—of a function f is the function denoted by f’, namely

St h) = fz)
oo fi L

One may also write d f(x)/dx for the derivative of f. But I shall avoid this notation,
because it is used sloppily, as (1) is |2, ch. 9, p. 140]. One tends to write, for example,
d2z?/dz = 2z; that is, one treats d f(z)/dx as f'(z), the derivative of f evaluated at .
Then one must distinguish d f(x)/dz from d f(y)/ dy, and one does not have an obvious
related notation for f’(a) (although (d f(z)/dx)|,_, is used). It would be more precise
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to write, for example, dz?/dz = (x — 2z), or even dz?/dx = (y — 2y). Then f'(a)
could be written as (d f(z)/dx)(a).

1. BARE BONES

Use power-series expansions for the exponential, sine, and cosine functions:

and therefore

(L1 ymy2m o0 (L1 )my2mt
-yt (2)m)! “';)((zgzﬂ)!
=cosT +1-sinx.
Thus the general Euler’s formula:
¢ =cosx +i-sinz.
Now let x be 7t; the result is e™ = —1, or

e+ 1=0. (2)
2. SINEWS

2.1. The real and the complex numbers. The real numbers compose a set R; the
complex, C. One writes a typical complex number as

rT+i-y
(or  + yi), where x and y stand for real numbers. One does arithmetic with complex
numbers according to the usual rules; but one can always replace i2 with —1. One can
identify x 41-y with the point (z,y) of the Cartesian plane, R x R (Fig. 1); in particular,
a real number z is identified with the point (z,0) on the X-axis, and i is identified with
(0,1) on the Y-axis. The rule of multiplication in R x R is then

(,y) - (u,v) = (zu —yv, v+ Yu).
This can be obtained from a multiplication of matrices:
(x y)(u v)_(xu—yv :mH—yu)
-y T —U U —Yyu — v —Yv+au )’
Also, let us assign the following names:
0,00=0, (1,0)=A4, (x,y)=P, (u,v)=@Q, (2u—yv,2v+yu)=R.
It will be shown in the next sub-section that
LAOP + LAOQ = LAOR, |OP| - |0Q| = |OR].
Thus complex numbers provide a notation for certain geometrical effects.

2.2. Trigonometric functions. The geometric meaning of complex multiplication can

be seen with trigonometry.
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FIGURE 1. The Cartesian plane as C.
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FIGURE 2. Definition of sine and cosine.

2.2.1. Definitions. The trigonometric functions of sine and cosine can be defined in terms
of the unit circle, which is given by

oy’ =1 (3)
An arbitrary point on this circle has coordinates
(cos@, sinb),

where 0 is the distance along the circle, in the counterclockwise direction, from (1,0)
to the point (Fig. 2). Alternatively, 0 here is half the area of the sector of the circle
bounded by the radii to (1,0) and the other point. Then 6 is also considered as the size,
in ‘radians’, of the angle filled by this sector.

From (3) now follows the Pythagorean identity

sin® + cos® = 1. (4)
Also, by definition,
s
is the distance halfway around the circle; so we have a table of values:
0 |0|n/2| m |3m/2]|2m
sine‘o‘ 1 ‘0 ‘ —1 ‘O

cos@|1| 0 | -1 0 1

2.2.2. Complex multiplication. Again, we identify (cos#,sin ) with the complex number
cosf +1i-sinf.

The claim of § 2.1 is that to multiply by this number is to rotate (counterclockwise,

about O or 0) through the angle of size 6. To prove this, it is enough to observe that:

(1) the claim is true when the multiplicand is 1 or i;
(2) 2 (@ +i9) = (z- D+ (z -y,
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zcosf —ysind +i- (ysinf + x cos )
Ly rT+i-y
_ysine_i_i.xcose..:u 0--..._..,_,’

!

F1GURE 3. Complex multiplication.

(See Fig. 3.)
2.2.3. Angle addition formulas. To rotate by «, then 3, is to rotate by a + 3. Hence

cos(a+ ) +1-sin(a+ ) = (cosa +1i-sina) - (cos +1-sinf)
= cosacos —sinasin f+1- (sinacos 5 + cos asin 3),

yielding the identities

cos(a+ ) = cosa - cos f —sina - sin 3, (5)
sin(a + 3) = sina - cos 8 + cos a - sin 3. (6)
2.2.4. Derivatives at 0. One can observe geometrically that
sin 0
li =1
lim — (7)

(see Fig. 4.) Indeed, if 0 < 6 < 7t/2, then siné is the length of the straight line between
(cosf,0) and (cos,sin#); in this case, this length is bounded by two arcs of circles, one
of radius cos 6, the other, 1; in particular,

fcosf <sinf < 6.

(One can also understand this as relating the areas of two sectors and a triangle.) There-
fore
sin 0
7
This holds also if —7t/2 < 6 < 0. Since limg_,gcosé = 1, we have (7) by the ‘Squeeze
Theorem’.
By the definition of derivative, (7) means

cosf < < 1.

sin'0 = 1. (8)
Similarly, and by (4), we have
cos —1 . cos?f—1 , —sin? 6
020 6 0-00(cosO+1) #-00(cosf+ 1)
S L L LA

00 6 6—0cosfh + 1

which means
cos'0 = 0. (9)

4



(cos B, sin 0)

6 cos 4

(cos@,0) (1,0) X

FIGURE 4. sinf =~ 6 when |6| is small.

2.2.5. Derivatives. Using (5) and (6), take the derivatives of z — cos(a + x) and z +—
sin(a + z) and evaluate at 0 by means of (8) and (9):

cos’ @ = cos’(a+0) = cosar - cos’ 0 — sina - sin’ 0 = —sin a, (10)
sin’ @ = sin’(a + 0) = sina - cos’ 0 + cos a - sin’ 0 = cos . (11)
Thus both sin and cos are solutions of the differential equation

y'+y=0

2.3. The logarithm function. The function x +— log z is the unique function f defined
on the interval (0, 00)—mnamely, {z € R: 0 < < co}—such that:

(1) f'(z) = 1/x whenever 0 < z < o0;
(2) f(1)=0.
This is the logarithm function. It sometimes denoted by x +— Inz, for logarithmus
naturalis, but the mathematician works only with natural things anyway, so the ‘n’ is
redundant. (According to [1] Oxzford English Dictionary |2nd ed., 1989|, John Napier of
Merchiston, in 1614, coined the Latin word logarithmus, from the Greek words Adyog and
gewdude, as a name for the function we have just defined.)
Since it has a positive derivative, log is an increasing function; in particular, it is
invertible.
The range of log is all of R (see Fig. 6). Indeed, by the Mean Value Theorem, since
log’ x = 1/x, if j is a positive integer, then

, , - log 2/t —log 27 11
J+1 _ J — 97 . =92 .= Z
log 2 log2) =2 5+ — 9 2 022
for some ¢ in the interval (27,27*1). Hence
n—1
log 2" — I og29) > 2
og Z(logQ log 27) 5
7=0
so lim, ., logz = oo. Similarly,
n—1
log 2~ — log 27U+ _1og277) < —-n
og ;;;(Og 0g277) < —,

so lim,_,g+ logx = —o0.
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FIGURE 5. The logarithm function.

FIGURE 6. The range of log is R.

2.4. The exponential function. The inverse of log is denoted by exp, so that

exp0 = 1. (12)
Since the range of log is R, so is the domain of exp. Therefore
x =logexpx (13)
for all x in R. Also,
xr =explogx (14)

for all positive x. From (13), we can compute the derivative of exp by means of the Chain
Rule:
1

exp &

1 = (logoexp)x = log'(expx) - exp’ z = ~exp’ ,

exp’ T = exp . (15)
Thus exp is a solution of the differential equation
Y =uy.

The notation e for exp x is justified as follows. When n is a positive integer, then



Also, 2° = 1, and 27" = 1/2", and 2"/™ = /z, and ™" = (z'/™)™ if m is another
integer. So z® is defined for all rational numbers a (at least if x > 0). Also, the derivative
of ¥ +— 2% is & — ax®!. Now let f, be the function z — log(z®). Then

1
f(x) = — - ax"' = 4 _ (alog)'z,
xo T

but also f,(1) = 0 = alog1; therefore f, = alog. Applying exp and using (14) gives

% = exp(alogz). (16)
We can take this as a definition of x® when a is irrational. We also define
e=-expl,
so that loge = 1. Then (16) yields
e” = exp(zloge) = expx. (17)

2.5. Power-series expansions. If f is a polynomial function z — Y  a;z", then
f(0)=ag, f'(0)=ay, [f"(0)=2ay, f"(0)=6as, ...,

! if m < n:
(m)o — m ama 1 X )
F0) {0, if m>n.

Hence

nof(k)
fy =3 0

One expects reasonable functions to be approximable by polynomials, in particular, by
polynomials that share their first several derivatives at 0 (or some other point). More
precisely, if f is an arbitrary differentiable function, then one expects

no£k)
PR UMY

k!
k=0

with the approximation improving as n grows larger, so that, ‘in the limit,’

— /() ,
The expectation is not always realized; it is realized when f = exp; by (12) and (15), we
have

& n 2 2?3

x x
pum —_— = 1 _— B — LR
exp ;n! +x+2+6—|— (19)
We can use (19) to define exp x when x is a complex number.

As more special cases of (18), by (8), (9), (10), and (11), we have

[e.e]

—1)" 2n
cosx = nEZO ((Qn;! ", (20)
. - G (_1)n+1 2n+1
sinz = nE:O @n 1 D 1)!:5 : (21)

From (19),(20), and (21), we have
exp(i-z) =cosz +1-sinz.

In particular, exp(irt) = —1, which by (17) yields (2).
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