A DERIVATION OF THE EQUATION $\mathrm{e}^{\pi \mathrm{i}}+1=0$

DAVID PIERCE

Contents

O. Introduction 1

1. Bare Bones 2
2. Sinews 2
2.1. The real and the complex numbers 2
2.2. Trigonometric functions 2
2.3. The logarithm function 5
2.4. The exponential function 6
2.5. Power-series expansions 7
References 8

o. Introduction

The equation of the title, which is (2) below, is known as (a special case of) Euler's Formula. It combines the five constants $0,1, \pi$, e, and i (that is, $\sqrt{ }-1$) by means of the three operations of addition, multiplication, and exponentiation, and the relation of equality. The equation arises from an analysis of the complex numbers. I aim here to derive the equation for somebody with some experience in calculus. However, the argument is condensed, and will require work on the part of the reader.

In $\S 2$, I shall use some notation that is not so common as it might be [2, ch. 3, p. 45]. If one has an expression involving x, perhaps $x^{3}-14 \cdot \sin \log x$, then one sometimes speaks of the 'function'

$$
\begin{equation*}
f(x)=x^{3}-14 \cdot \sin \log x \tag{1}
\end{equation*}
$$

or even the 'function' $y=x^{3}-14 \cdot \sin \log x$. However, these are not strictly functions; they are equations. The latter equation does define a function, namely

$$
x \longmapsto x^{3}-14 \cdot \sin \log x
$$

This is the same as the function $y \mapsto y^{3}-14 \cdot \sin \log y$, the function $z \mapsto z^{3}-14 \cdot \sin \log z$, and so forth; repetition binds the variable in each case. We may give this function a one-letter name like f; in that case, (1) can be understood as a defining identity for f.

The derivative - if it exists - of a function f is the function denoted by f^{\prime}, namely

$$
x \longmapsto \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

One may also write $\mathrm{d} f(x) / \mathrm{d} x$ for the derivative of f. But I shall avoid this notation, because it is used sloppily, as (1) is [2, ch. 9, p. 140]. One tends to write, for example, $\mathrm{d} x^{2} / \mathrm{d} x=2 x$; that is, one treats $\mathrm{d} f(x) / \mathrm{d} x$ as $f^{\prime}(x)$, the derivative of f evaluated at x. Then one must distinguish $\mathrm{d} f(x) / \mathrm{d} x$ from $\mathrm{d} f(y) / \mathrm{d} y$, and one does not have an obvious related notation for $f^{\prime}(a)$ (although $\left.(\mathrm{d} f(x) / \mathrm{d} x)\right|_{x=a}$ is used). It would be more precise

[^0]to write, for example, $\mathrm{d} x^{2} / \mathrm{d} x=(x \mapsto 2 x)$, or even $\mathrm{d} x^{2} / \mathrm{d} x=(y \mapsto 2 y)$. Then $f^{\prime}(a)$ could be written as $(\mathrm{d} f(x) / \mathrm{d} x)(a)$.

1. Bare Bones

Use power-series expansions for the exponential, sine, and cosine functions:

$$
\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

and therefore

$$
\begin{aligned}
\mathrm{e}^{x \mathrm{i}} & =\sum_{n=0}^{\infty} \frac{(x \mathrm{i})^{n}}{n!} \\
& =\sum_{m=0}^{\infty} \frac{(x \mathrm{i})^{2 m}}{(2 m)!}+\sum_{m=0}^{\infty} \frac{(x \mathrm{i})^{2 m+1}}{(2 m+1)!} \\
& =\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{(2 m)!}+\mathrm{i} \cdot \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m+1}}{(2 m+1)!} \\
& =\cos x+\mathrm{i} \cdot \sin x .
\end{aligned}
$$

Thus the general Euler's formula:

$$
\mathrm{e}^{\mathrm{i} \cdot x}=\cos x+\mathrm{i} \cdot \sin x .
$$

Now let x be π; the result is $\mathrm{e}^{\pi \mathrm{i}}=-1$, or

$$
\begin{align*}
& \mathrm{e}^{\pi \mathrm{i}}+1=0 . \tag{2}\\
& \text { 2. SINEWS }
\end{align*}
$$

2.1. The real and the complex numbers. The real numbers compose a set \mathbb{R}; the complex, \mathbb{C}. One writes a typical complex number as

$$
x+\mathrm{i} \cdot y
$$

(or $x+y \mathrm{i}$), where x and y stand for real numbers. One does arithmetic with complex numbers according to the usual rules; but one can always replace i^{2} with -1 . One can identify $x+\mathrm{i} \cdot y$ with the point (x, y) of the Cartesian plane, $\mathbb{R} \times \mathbb{R}$ (Fig. 1); in particular, a real number x is identified with the point $(x, 0)$ on the X -axis, and i is identified with $(0,1)$ on the Y -axis. The rule of multiplication in $\mathbb{R} \times \mathbb{R}$ is then

$$
(x, y) \cdot(u, v)=(x u-y v, x v+y u) .
$$

This can be obtained from a multiplication of matrices:

$$
\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right) \cdot\left(\begin{array}{cc}
u & v \\
-v & u
\end{array}\right)=\left(\begin{array}{cc}
x u-y v & x v+y u \\
-y u-x v & -y v+x u
\end{array}\right) .
$$

Also, let us assign the following names:

$$
(0,0)=O, \quad(1,0)=A, \quad(x, y)=P, \quad(u, v)=Q, \quad(x u-y v, x v+y u)=R
$$

It will be shown in the next sub-section that

$$
\angle A O P+\angle A O Q=\angle A O R, \quad|O P| \cdot|O Q|=|O R| .
$$

Thus complex numbers provide a notation for certain geometrical effects.
2.2. Trigonometric functions. The geometric meaning of complex multiplication can be seen with trigonometry.

Figure 1. The Cartesian plane as \mathbb{C}.

Figure 2. Definition of sine and cosine.
2.2.1. Definitions. The trigonometric functions of sine and cosine can be defined in terms of the unit circle, which is given by

$$
\begin{equation*}
x^{2}+y^{2}=1 \tag{3}
\end{equation*}
$$

An arbitrary point on this circle has coordinates

$$
(\cos \theta, \sin \theta)
$$

where θ is the distance along the circle, in the counterclockwise direction, from $(1,0)$ to the point (Fig. 2). Alternatively, θ here is half the area of the sector of the circle bounded by the radii to $(1,0)$ and the other point. Then θ is also considered as the size, in 'radians', of the angle filled by this sector.

From (3) now follows the Pythagorean identity

$$
\begin{equation*}
\sin ^{2}+\cos ^{2}=1 \tag{4}
\end{equation*}
$$

Also, by definition,

$$
\pi
$$

is the distance halfway around the circle; so we have a table of values:

θ	0	$\pi / 2$	π	$3 \pi / 2$	2π
$\sin \theta$	0	1	0	-1	0
$\cos \theta$	1	0	-1	0	1

2.2.2. Complex multiplication. Again, we identify $(\cos \theta, \sin \theta)$ with the complex number

$$
\cos \theta+\mathrm{i} \cdot \sin \theta
$$

The claim of $\S 2.1$ is that to multiply by this number is to rotate (counterclockwise, about O or 0) through the angle of size θ. To prove this, it is enough to observe that:
(1) the claim is true when the multiplicand is 1 or i;
(2) $z \cdot(x+\mathrm{i} \cdot y)=(z \cdot 1) x+(z \cdot \mathrm{i}) y$.

Figure 3. Complex multiplication.
(See Fig. 3.)
2.2.3. Angle addition formulas. To rotate by α, then β, is to rotate by $\alpha+\beta$. Hence

$$
\begin{aligned}
\cos (\alpha+\beta)+\mathrm{i} \cdot \sin (\alpha+\beta)= & (\cos \alpha+\mathrm{i} \cdot \sin \alpha) \cdot(\cos \beta+\mathrm{i} \cdot \sin \beta) \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta+\mathrm{i} \cdot(\sin \alpha \cos \beta+\cos \alpha \sin \beta)
\end{aligned}
$$

yielding the identities

$$
\begin{align*}
& \cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta \tag{5}\\
& \sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta \tag{6}
\end{align*}
$$

2.2.4. Derivatives at 0 . One can observe geometrically that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \tag{7}
\end{equation*}
$$

(see Fig. 4.) Indeed, if $0<\theta<\pi / 2$, then $\sin \theta$ is the length of the straight line between $(\cos \theta, 0)$ and $(\cos \theta, \sin \theta)$; in this case, this length is bounded by two arcs of circles, one of radius $\cos \theta$, the other, 1 ; in particular,

$$
\theta \cos \theta<\sin \theta<\theta .
$$

(One can also understand this as relating the areas of two sectors and a triangle.) Therefore

$$
\cos \theta<\frac{\sin \theta}{\theta}<1
$$

This holds also if $-\pi / 2<\theta<0$. Since $\lim _{\theta \rightarrow 0} \cos \theta=1$, we have (7) by the 'Squeeze Theorem'.

By the definition of derivative, (7) means

$$
\begin{equation*}
\sin ^{\prime} 0=1 \tag{8}
\end{equation*}
$$

Similarly, and by (4), we have

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=\lim _{\theta \rightarrow 0} \frac{\cos ^{2} \theta-1}{\theta(\cos \theta+1)}=\lim _{\theta \rightarrow 0} \frac{-\sin ^{2} \theta}{\theta(\cos \theta+1)} \\
&=-\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\cos \theta+1}=-1 \cdot 0=0
\end{aligned}
$$

which means

$$
\begin{equation*}
\cos ^{\prime} 0=0 . \tag{9}
\end{equation*}
$$

Figure 4. $\sin \theta \approx \theta$ when $|\theta|$ is small.
2.2.5. Derivatives. Using (5) and (6), take the derivatives of $x \mapsto \cos (\alpha+x)$ and $x \mapsto$ $\sin (\alpha+x)$ and evaluate at 0 by means of (8) and (9):

$$
\begin{gather*}
\cos ^{\prime} \alpha=\cos ^{\prime}(\alpha+0)=\cos \alpha \cdot \cos ^{\prime} 0-\sin \alpha \cdot \sin ^{\prime} 0=-\sin \alpha \tag{10}\\
\sin ^{\prime} \alpha=\sin ^{\prime}(\alpha+0)=\sin \alpha \cdot \cos ^{\prime} 0+\cos \alpha \cdot \sin ^{\prime} 0=\cos \alpha \tag{11}
\end{gather*}
$$

Thus both sin and cos are solutions of the differential equation

$$
y^{\prime \prime}+y=0
$$

2.3. The logarithm function. The function $x \mapsto \log x$ is the unique function f defined on the interval $(0, \infty)$-namely, $\{x \in \mathbb{R}: 0<x<\infty\}$-such that:
(1) $f^{\prime}(x)=1 / x$ whenever $0<x<\infty$;
(2) $f(1)=0$.

This is the logarithm function. It sometimes denoted by $x \mapsto \ln x$, for logarithmus naturalis, but the mathematician works only with natural things anyway, so the ' n ' is redundant. (According to [1] Oxford English Dictionary [2nd ed., 1989], John Napier of Merchiston, in 1614, coined the Latin word logarithmus, from the Greek words λ ó $\gamma \circ \varsigma$ and

Since it has a positive derivative, \log is an increasing function; in particular, it is invertible.

The range of \log is all of \mathbb{R} (see Fig. 6). Indeed, by the Mean Value Theorem, since $\log ^{\prime} x=1 / x$, if j is a positive integer, then

$$
\log 2^{j+1}-\log 2^{j}=2^{j} \cdot \frac{\log 2^{j+1}-\log 2^{j}}{2^{j+1}-2^{j}}=2^{j} \cdot \frac{1}{c} \geqslant \frac{1}{2}
$$

for some c in the interval $\left(2^{j}, 2^{j+1}\right)$. Hence

$$
\log 2^{n}=\sum_{j=0}^{n-1}\left(\log 2^{j+1}-\log 2^{j}\right) \geqslant \frac{n}{2},
$$

so $\lim _{x \rightarrow \infty} \log x=\infty$. Similarly,

$$
\log 2^{-n}=\sum_{j=0}^{n-1}\left(\log 2^{-(j+1)}-\log 2^{-j}\right) \leqslant \frac{-n}{2}
$$

so $\lim _{x \rightarrow 0^{+}} \log x=-\infty$.

Figure 5. The logarithm function.

Figure 6. The range of \log is \mathbb{R}.
2.4. The exponential function. The inverse of \log is denoted by exp, so that

$$
\begin{equation*}
\exp 0=1 \tag{12}
\end{equation*}
$$

Since the range of \log is \mathbb{R}, so is the domain of exp. Therefore

$$
\begin{equation*}
x=\log \exp x \tag{13}
\end{equation*}
$$

for all x in \mathbb{R}. Also,

$$
\begin{equation*}
x=\exp \log x \tag{14}
\end{equation*}
$$

for all positive x. From (13), we can compute the derivative of exp by means of the Chain Rule:

$$
\begin{align*}
1=(\log \circ \exp)^{\prime} x= & \log ^{\prime}(\exp x) \cdot \exp ^{\prime} x=\frac{1}{\exp x} \cdot \exp ^{\prime} x \\
& \exp ^{\prime} x=\exp x \tag{15}
\end{align*}
$$

Thus exp is a solution of the differential equation

$$
y^{\prime}=y
$$

The notation e^{x} for $\exp x$ is justified as follows. When n is a positive integer, then

$$
x^{n}=\underbrace{x \cdots x}_{6^{n}} .
$$

Also, $x^{0}=1$, and $x^{-n}=1 / x^{n}$, and $x^{1 / n}=\sqrt[n]{x}$, and $x^{m / n}=\left(x^{1 / n}\right)^{m}$ if m is another integer. So x^{a} is defined for all rational numbers a (at least if $x>0$). Also, the derivative of $x \mapsto x^{a}$ is $x \mapsto a x^{a-1}$. Now let f_{a} be the function $x \mapsto \log \left(x^{a}\right)$. Then

$$
f_{a}^{\prime}(x)=\frac{1}{x^{a}} \cdot a x^{a-1}=\frac{a}{x}=(a \log)^{\prime} x
$$

but also $f_{a}(1)=0=a \log 1$; therefore $f_{a}=a \log$. Applying exp and using (14) gives

$$
\begin{equation*}
x^{a}=\exp (a \log x) \tag{16}
\end{equation*}
$$

We can take this as a definition of x^{a} when a is irrational. We also define

$$
\mathrm{e}=\exp 1,
$$

so that $\log \mathrm{e}=1$. Then (16) yields

$$
\begin{equation*}
\mathrm{e}^{x}=\exp (x \log \mathrm{e})=\exp x \tag{17}
\end{equation*}
$$

2.5. Power-series expansions. If f is a polynomial function $x \mapsto \sum_{i=0}^{n} a_{i} x^{i}$, then

$$
\begin{gathered}
f(0)=a_{0}, \quad f^{\prime}(0)=a_{1}, \quad f^{\prime \prime}(0)=2 a_{2}, \quad f^{\prime \prime \prime}(0)=6 a_{3}, \quad \ldots, \\
f^{(m)}(0)= \begin{cases}m!a_{m}, & \text { if } m \leqslant n \\
0, & \text { if } m>n\end{cases}
\end{gathered}
$$

Hence

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}
$$

One expects reasonable functions to be approximable by polynomials, in particular, by polynomials that share their first several derivatives at 0 (or some other point). More precisely, if f is an arbitrary differentiable function, then one expects

$$
f(x) \approx \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}
$$

with the approximation improving as n grows larger, so that, 'in the limit,'

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \tag{18}
\end{equation*}
$$

The expectation is not always realized; it is realized when $f=\exp$; by (12) and (15), we have

$$
\begin{equation*}
\exp x=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots \tag{19}
\end{equation*}
$$

We can use (19) to define $\exp x$ when x is a complex number.
As more special cases of (18), by (8), (9), (10), and (11), we have

$$
\begin{gather*}
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \tag{20}\\
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!} x^{2 n+1} \tag{21}
\end{gather*}
$$

From (19), (20), and (21), we have

$$
\exp (\mathrm{i} \cdot x)=\cos x+\mathrm{i} \cdot \sin x
$$

In particular, $\exp (\mathrm{i} \pi)=-1$, which by (17) yields (2).

References

[1] John Simpson et al., editors. Oxford English Dictionary. Oxford University Press, 2nd edition, 1989. http://dictionary.oed.com/ (accessed December 24, 2007).
[2] Michael Spivak. Calculus. 2nd ed. Berkeley, California: Publish Perish, Inc. XIII, 647 pp., 1980.
Mathematics Dept, Middle East Tech. Univ., Ankara o6531, Turkey
E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce/

[^0]: Date: March 17, 2006; revised, December 24, 2007.

