The Binomial Theorem

David Pierce

December 23, 2008
Edited July 6, 2018

Mathematics Department Mimar Sinan Fine Arts University Istanbul

mat.msgsu.edu.tr/~dpierce/
polytropy.com

I prepared these notes after teaching from § 12.11 'The Binomial Series' and § 12.12 'Applications of Taylor Polynomials' of Stewart's Calculus, 5th ed., 2003.

The Binomial Theorem learned in high-school is

$$
(1+x)^{k}=\sum_{n=0}^{k}\binom{k}{n} x^{n},
$$

where k is a positive integer or 0 , and

$$
\binom{k}{n}= \begin{cases}1, & \text { if } n=0 \\ \frac{k}{n} \cdot \frac{k-1}{n-1} \cdots \frac{k-n+1}{1}, & \text { if } n>0\end{cases}
$$

This definition of $\binom{k}{n}$ makes sense for all real numbers k. In particular, if k is an integer, and $0 \leqslant k<n$, then $\binom{k}{n}=0$. Therefore, again if k is a positive integer or 0 , we have

$$
\begin{equation*}
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n} \tag{*}
\end{equation*}
$$

Since the series here has the form of a Maclaurin series, it must be the Maclaurin series for $(1+x)^{k}$, and its radius of convergence is ∞. In particular, if $f(x)=(1+x)^{k}$, then

$$
\frac{f^{(n)}(0)}{n!}=\binom{k}{n}
$$

This equation also holds for all real k by direct computation:

$$
\begin{aligned}
f^{\prime}(x) & =k(1+x)^{k-1} \\
f^{\prime \prime}(x) & =k(k-1)(1+x)^{k-2} \\
& \cdots \\
f^{(n)}(x) & =k(k-1) \cdots(k-n+1)(1+x)^{k-n}
\end{aligned}
$$

So the series in $(*)$ is still the Maclaurin series for $(1+x)^{k}$. We ask:
(i) what is the radius R of convergence of this series?
(ii) when $|x|<R$, does ($*$) hold?

To answer (i), use the Ratio Test: if $a_{n}=\binom{k}{n} x^{n}$, then

$$
\begin{array}{r}
\frac{a_{n+1}}{a_{n}}=\frac{k(k-1) \cdots(k-n)}{(n+1)!} \cdot \frac{n!}{k(k-1) \cdots(k-n+1)} \cdot \frac{x^{n+1}}{x^{n}} \\
=\frac{k-n}{n+1} \cdot x .
\end{array}
$$

Since

$$
\lim _{n \rightarrow \infty}\left|\frac{k-n}{n+1} \cdot x\right|=|x| \cdot \lim _{n \rightarrow \infty}\left|\frac{-n+k}{n+1}\right|=|x|,
$$

we have $R=1$. So when $|x|<1$, then

$$
\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=g_{k}(x)
$$

for some function $g_{k}(x)$. But have we $g_{k}(x)=(1+x)^{k}$? This is question (ii). To answer it, note first that, if $n>0$, then

$$
\begin{aligned}
\binom{k-1}{n}= & \frac{k-1}{n} \frac{k-2}{n-1} \cdots \frac{k-n}{1} \\
& =\frac{k-n}{n} \frac{k-1}{n-1} \cdots \frac{k-n+1}{1}=\frac{k-n}{n}\binom{k-1}{n-1}
\end{aligned}
$$

so that

$$
\left.\begin{array}{rl}
\binom{k-1}{n}+\binom{k-1}{n-1}=\left(\frac{k-n}{n}+1\right.
\end{array}\right)\binom{k-1}{n-1} .
$$

Therefore

$$
\begin{aligned}
& (1+x) g_{k-1}(x)=(1+x) \sum_{n=0}^{\infty}\binom{k-1}{n} x^{n} \\
& =\sum_{n=0}^{\infty}\binom{k-1}{n} x^{n}+\sum_{n=0}^{\infty}\binom{k-1}{n} x^{n+1} \\
& =1+\sum_{n=1}^{\infty}\binom{k-1}{n} x^{n}+\sum_{n=1}^{\infty}\binom{k-1}{n-1} x^{n} \\
& \quad=1+\sum_{n=1}^{\infty}\binom{k}{n} x^{n}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=g_{k}(x)
\end{aligned}
$$

Now we can compute

$$
\begin{aligned}
& g_{k}{ }^{\prime}(x)=\sum_{n=0}^{\infty}\binom{k}{n} n x^{n-1}=\sum_{n=1}^{\infty}\binom{k}{n} n x^{n-1} \\
& =\sum_{n=0}^{\infty}\binom{k}{n+1}(n+1) x^{n}=k \sum_{n=0}^{\infty}\binom{k}{n+1} \frac{n+1}{k} \cdot x^{n} \\
& =k \sum_{n=0}^{\infty}\binom{k-1}{n} x^{n}=k \cdot g_{k-1}(x) .
\end{aligned}
$$

If we define

$$
h(x)=\frac{g_{k}(x)}{(1+x)^{k}},
$$

then $h(0)=1$, and

$$
h^{\prime}(x)=\frac{g_{k}^{\prime}(x)(1+x)^{k}-k(1+x)^{k-1} g_{k}(x)}{(1+x)^{2 k}}=0
$$

Hence h is constant, and $h(x)=1$ whenever $|x|<1$, and then $g_{k}(x)=(1+x)^{k}$. Thus, $(*)$ holds for all x, when k is a positive
integer or 0 , and when $|x|<1$, otherwise. For example,

$$
\begin{array}{r}
\frac{1}{1-x}=\sum_{n=0}^{\infty}\binom{-1}{n}(-x)^{n}=\sum_{n=0}^{\infty} \frac{-1}{n} \frac{-2}{n-1} \cdots \frac{-n}{1}(-1)^{n} x^{n} \\
=\sum_{n=0}^{\infty} x^{n}
\end{array}
$$

as we expect. Also

$$
\sqrt{1+x}=\sum_{n=0}^{\infty}\binom{1 / 2}{n} x^{n}
$$

Since

$$
\binom{k}{n+1}=\binom{k}{n} \frac{k-n}{n+1}
$$

we have

$$
\binom{1 / 2}{0}=1, \quad\binom{1 / 2}{1}=\frac{1}{2}
$$

and then

$$
\begin{aligned}
& \binom{1 / 2}{2}=\frac{1}{2} \cdot \frac{-1 / 2}{2}=-\frac{1}{8} \\
& \binom{1 / 2}{3}=-\frac{1}{8} \cdot \frac{-3 / 2}{3}=\frac{1}{16} \\
& \binom{1 / 2}{4}=\frac{1}{16} \cdot \frac{-5 / 2}{4}=-\frac{5}{128}
\end{aligned}
$$

and generally

$$
\binom{1 / 2}{n}=(-1)^{n+1} \cdot \frac{1 \cdot 3 \cdots(2 n-3)}{2^{n} n!}
$$

when $n>1$. Therefore

$$
\sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\cdots
$$

an alternating series when $x>0$. In particular,

$$
\sqrt{1+x} \approx 1+\frac{x}{2}
$$

when $|x|$ is small (this is the tangent-line approximation); to be precise, if $0<x<1$, then

$$
0<\sqrt{1+x}-\left(1+\frac{x}{2}\right) \leqslant \frac{x^{2}}{8}
$$

For a better approximation, again when $0<x<1$,

$$
\left|\sqrt{1+x}-\left(1+\frac{x}{2}-\frac{1}{8} x^{2}\right)\right| \leqslant \frac{x^{3}}{16}
$$

In Einstein's special theory of relativity,

$$
m=\frac{m_{0}}{\sqrt{1-v^{2} / \mathrm{c}^{2}}}
$$

where m is the mass of an object with velocity v whose rest mass is m_{0}, and c is the speed of light. The kinetic energy K
of the object is then given by

$$
\begin{aligned}
& K=\left(m-m_{0}\right) \mathrm{c}^{2}=m_{0} \mathrm{c}^{2}\left(\frac{1}{\sqrt{1-v^{2} / \mathrm{c}^{2}}}-1\right) \\
& =m_{0} \mathrm{c}^{2}\left(\left(1-\frac{v^{2}}{\mathrm{c}^{2}}\right)^{-1 / 2}-1\right) \\
& =m_{0} \mathrm{c}^{2}\left(\sum_{n=0}^{\infty}\binom{-1 / 2}{n}\left(\frac{-v^{2}}{\mathrm{c}^{2}}\right)^{n}-1\right) \\
& =m_{0} \mathrm{c}^{2} \sum_{n=1}^{\infty}(-1)^{n}\binom{-1 / 2}{n}\left(\frac{v^{2}}{\mathrm{c}^{2}}\right)^{n} \\
& =m_{0} \mathrm{c}^{2}\left(\frac{v^{2}}{2 \mathrm{c}^{2}}+\frac{3 v^{2}}{8 \mathrm{c}^{2}}+\cdots\right)
\end{aligned}
$$

In particular, for low velocities,

$$
K \approx \frac{1}{2} m_{0} v^{2}
$$

To be precise, by Taylor's Theorem,

$$
f(x)=f(0)+f^{\prime}(0) \cdot x+\frac{1}{2} f^{\prime \prime}(t) \cdot x^{2}
$$

for some t between x and 0 . If $f(x)=(1+x)^{-1 / 2}$, then $f^{\prime \prime}(x)=3(1+x)^{-5 / 2} / 4$, so that, if $-1<x<0$, then also $x<t<0$, and

$$
\left|f(x)-f(0)-f^{\prime}(0) x\right|=\frac{1}{2}\left|f^{\prime \prime}(t) x^{2}\right|<\frac{3 x^{2}}{8(1+x)^{5 / 2}}
$$

In our case, letting $x=-v^{2} / \mathrm{c}^{2}$, we have

$$
0<K-\frac{1}{2} m_{0} v^{2}<m_{0} \mathrm{c}^{2} \cdot \frac{3\left(v^{2} / \mathrm{c}^{2}\right)^{2}}{8\left(1-v^{2} / \mathrm{c}^{2}\right)^{5 / 2}}
$$

