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I prepared these notes after teaching from § 12.11 ‘The Bino-
mial Series’ and § 12.12 ‘Applications of Taylor Polynomials’
of Stewart’s Calculus, 5th ed., 2003.

The Binomial Theorem learned in high-school is
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where k is a positive integer or 0, and
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This definition of (S) makes sense for all real numbers k. In
particular, if k£ is an integer, and 0 < k£ < n, then (ﬁ) = 0.
Therefore, again if k is a positive integer or 0, we have
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Since the series here has the form of a Maclaurin series, it
must be the Maclaurin series for (1 + z)*, and its radius of
convergence is oo. In particular, if f(z) = (1 + z)¥, then
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This equation also holds for all real k£ by direct computation:
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So the series in (*) is still the Maclaurin series for (1 + z)*.
We ask:

(i) what is the radius R of convergence of this series?

(ii) when |z| < R, does () hold?



To answer (i), use the Ratio Test: if a,, = (ﬁ) ", then
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we have R = 1. So when |z| < 1, then
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for some function gx(x). But have we gp(z) = (1 + z)*? This
is question (ii). To answer it, note first that, if n > 0, then
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Therefore
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then h(0) =1, and
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Hence h is constant, and h(z) = 1 whenever |z| < 1, and then
gr(z) = (14+x)*. Thus, (*) holds for all , when k is a positive



integer or 0, and when |z| < 1, otherwise. For example,
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as we expect. Also
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when n > 1. Therefore
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an alternating series when x > 0. In particular,
x
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when |z| is small (this is the tangent-line approximation); to
be precise, if 0 < x < 1, then
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For a better approximation, again when 0 < x < 1,
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In Einstein’s special theory of relativity,
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where m is the mass of an object with velocity v whose rest
mass is myg, and c is the speed of light. The kinetic energy K



of the object is then given by
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In particular, for low velocities,
K~ imozﬂ.
To be precise, by Taylor’s Theorem,
1
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for some ¢ between x and 0. If f(z) = (1 + 2)~/2, then
f"(x) = 3(1 4+ 2)7°/2/4, so that, if —1 < z < 0, then also
r<t<0,and
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In our case, letting z = —v?/c?, we have
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