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Preface

There have been several versions of the present text.

1. The first draft was my record of the first semester of the gradu-
ate course in algebra given at Middle East Technical University in
Ankara in 2008—9. I had taught the same course also in 2003—4. The
main reference for the course was Hungerford’s Algebra [19).

2. I revised my notes when teaching algebra a third time, in 2009—
10. Here I started making some attempt to indicate how theorems
were going to be used later. What is now §1.4 (the development
of the natural numbers from the Peano Axioms) was originally pre-
pared for a course called Non-Standard Analysis, given at the Nesin
Mathematics Village, Sirince, in the summer of 2009. I built up the
foundational Chapter 1 around this section.

3. Another revision, but only partial, came in preparation for a
course at Mimar Sinan Fine Arts University in Istanbul in 2013—4. 1
expanded Chapter 1, out of a desire to give some indication of how
mathematics, and especially algebra, could be built up from some
simple axioms about the relation of membership—that is, from set
theory. This building up, however, is not part of the course proper.

4. The present version of the notes represents a more thorough-going
revision, made during and after the course at Mimar Sinan. I try to
make more use of examples, introducing them as early as possible.
The number theory that has always been in the background has been
integrated more explicitly into the text (see page 43). I have tried
to distinguish more clearly between what is essential to the course



and what is not; the starred sections comprise most of what is not
essential.

All along, I have treated groups, not merely as structures satisfying
certain axioms, but as structures isomorphic to groups of symme-
tries of sets. The equivalence of the two points of view has been
established in the theorem named for Cayley (in §2.1, on page 66).
Now it is pointed out (in that section) that standard structures like
(Qt,1,7",.) and (Q,0,—,4), are also groups, even though they
are not obviously symmetry groups. Several of these structures are
constructed in Chapter 1. (In earlier editions they were constructed
later.)

Symmetry groups as such are investigated more thoroughly now, in
§82.2 and 2.3, before the group axioms are simplified in §2.4.

Rings are defined in Part I, on groups, so that their groups of units
are available as examples of groups, especially in §5.1 on semidirect
products (page 170). Also rings are needed to produce rings of
matrices and their groups of units, as in §3.1 (page 97).

I give many page-number references, first of all for my own conve-
nience in the composition of the text at the computer. Thus the
capabilities of Leslie Lamport’s ATEX program in automating such
references are invaluable. Writing the text could hardly have been
contemplated in the first place without Donald Knuth’s original TEX
program. I now use the scrbook document class of KOMA-Script,
“developed by Markus Kohm and based on earlier work by Frank
Neukam” [28, p. 236].

Ideally every theorem would have an historical reference. This is a
distant goal, but I have made some moves in this direction.

The only exercises in the text are the theorems whose proofs are not
already supplied. Ideally more exercises would be supplied, perhaps
in the same manner.
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Introduction

Published around 300 B.C.E., the Elements of Euclid is a model of
mathematical exposition. Each of its thirteen books consists mainly
of statements followed by proofs. The statements are usually called
Propositions today [7, 8], although they have no particular title
in the original text [6]. By their content, they can be understood
as theorems or problems. Writing six hundred years after Euclid,
Pappus of Alexandria explains the difference 34, p. 566]:

Those who wish to make more skilful distinctions in geometry find
it worthwhile to call

® a problem (mpéPAnua), that in which it is proposed
(TrpoPdMAeTat) to do or construct something;

® atheorem (Becopnua), that in which the consequences and
necessary implications of certain hypotheses are investigated
(BewpeiTan).

For example, Euclid’s first proposition is the the problem of con-
structing an equilateral triangle. His fifth proposition is the theo-
rem that the base angles of an isosceles triangle are equal to one
another.

Each proposition of the present notes has one of four titles: Lemma,
Theorem, Corollary, or Porism. Each proposition may be fol-
lowed by an explicitly labelled proof, which is terminated with a box
0. If there is no proof, the reader is expected to supply her or his
own proof, as an exercise. No propositions are to be accepted on
faith.

10
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Nonetheless, for an algebra course, some propositions are more im-
portant than others. The full development of the foundational Chap-
ter 1 below would take a course in itself, but is not required for
algebra as such.

In these notes, a proposition may be called a lemma if it will be
used to prove a theorem, but then never used again. Lemmas in
these notes are numbered sequentially. Theorems are also numbered
sequentially, independently from the lemmas. A statement that can
be proved easily from a theorem is called a corollary and is numbered
with the theorem. So for example Theorem 14 on page 37 is followed
by Corollary 14.1.

Some propositionss can be obtained easily, not from a preceding the-
orem itself, but from its proof. Such propositions are called porisms
and, like corollaries, are numbered with the theorems from whose
proofs they are derived. So for example Porism 121.1 on page 143
follows Theorem 121.

The word porism and its meaning are explained, in the 5th century
C.E., by Proclus in his commentary on the first book of Euclid’s
Elements [30, p. 212]:

“Porism” is a term applied to a certain kind of problem, such as
those in the Porisms of Euclid. But it is used in its special sense
when as a result of what is demonstrated some other theorem
comes to light without our propounding it. Such a theorem is
therefore called a “porism,” as being a kind of incidental gain re-
sulting from the scientific demonstration.

The translator explains that the word porism comes from the verb
Tropi{w, meaning to furnish or provide.

The original source for much of the material of these notes is Hunger-
ford’s Algebra [19], or sometimes Lang’s Algebra [23], but there are
various rearrangements and additions. The back cover of Hunger-
ford’s book quotes a review:



12 Introduction

Hungerford’s exposition is clear enough that an average graduate
student can read the text on his own and understand most of it.

I myself aim for logical clarity; but I do not intend for these notes to
be a replacement for lectures in a classroom. Such lectures may am-
plify some parts, while glossing over others. As a graduate student
myself, I understood a course to consist of the teacher’s lectures,
and the most useful reference was not a printed book, but the notes
that I took in my own hand. I still occasionally refer to those notes
today.

Hungerford is inspired by category theory, of which his teacher Saun-
ders Mac Lane was one of the creators. Categories are defined in
the present text in §4.5 (page 154). The spirit of category theory is
seen at the beginning of Hungerford’s Chapter I, “Groups™

There is a basic truth that applies not only to groups but also to
many other algebraic objects (for example, rings, modules, vec-
tor spaces, fields): in order to study effectively an object with a
given algebraic structure, it is necessary to study as well the func-
tions that preserve the given algebraic structure (such functions
are called homomorphisms).

Hungerford’s term object here reflects the usage of category the-
ory. Taking inspiration from model theory, the present notes will
often use the term structure instead. Structures are defined in §1.6
(page 45). The examples of objects named by Hungerford are all
structures in the sense of model theory, although not every object
in a category is a structure in this sense.

When a word is printed in boldface in these notes, the word is a
technical term whose meaning can be inferred from the surrounding
text.



1. Mathematical foundations

As suggested in the Introduction, the full details of this chapter are
not strictly part of an algebra course, but are logically presupposed
by the course.

One purpose of the chapter is to establish the notation whereby
N={1,2,3,...}, w={0,1,2,... }.

The elements of w are the von-Neumann natural numbers,* so that
if n € w, then

n={0,...,n—1}.

In particular, n is itself a set with n elements. When n = O, this
means n is the empty set. A cartesian power A™ can be understood
as the set of functions from n to A. Then a typical element of A™ can
be written as (ag, .. ., a,_). Most people write (a,,...,a,) instead,;
and when they want an n-element set, they use {1,...,n}. Thisis a
needless complication, since it leaves us with no simple abbreviation
for an n-element set.

*The letter w is not the minuscule English letter called double w, but the
minuscule Greek omega, which is probably in origin a double o. Obtained
with the control sequence \upomega from the upgreek package for IATEX, the
w used here is upright, unlike the standard slanted w (obtained with \omega).
The latter w might be used as a variable (as for example on page 221).
We shall similarly distinguish between the constant 7t (used for the ratio of
the circumference to the diameter of a circle, as well as for the canonical
projection defined on page 133 and the coordinate projections defined on
pages 141 and 157) and the variable 7 (pages 74 and 219).

13



14 1. Mathematical foundations

Another purpose of this chapter is to review the construction, not
only of the sets N and w, but the sets Q*, Q, Z, R*, and R derived
from them. We ultimately have certain structures, namely:

® the semigroup (N, +);
® the monoids (w,0,+) and (N, 1,);

i the groups (QJ’_; la_l7')7 (Q705 _a+)7 (Z7O7 _7+)7 (R+7 ] 7_I ) ')a
and (R, 0, —, +);

® the T.ans (Z7 Oa ) +7 I ) ')a (Q7 Oa ) +7 I ) ')a and (Ra Oa ) +a l ) )

1.1. Sets and geometry

Most objects of mathematical study can be understood as sets. A
set is a special kind of collection. A collection is many things, con-
sidered as one. Those many things are the members or elements
of the collection. The members compose the collection, and the col-
lection comprises them.? Each member belongs to the collection
and is in the collection, and the collection contains the member.

Designating certain collections as sets, we shall identify some prop-
erties of them that will allow us to do the mathematics that we
want. These properties will be expressed by azioms. We shall use
versions of the so-called Zermelo—Fraenkel Axioms with the Axiom
of Choice. The collection of these axioms is denoted by ZFC. Most
of these axioms were described by Zermelo in 1908 [39].

We study study sets axiomatically, because a naive approach can
lead to contradictions. For example, one might think naively that
there was a collection of all collections. But there can be no such

2Thus the relations named by the verbs compose and comprise are converses
of one another; but native English speakers often confuse these two verbs.
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collection, because if there were, then there would be a collection of
all collections that did not contain themselves, and this collection
would contain itself if and only if it did not. This result is the
Russell Paradox, described in a letter [31] from Russell to Frege
in 1902.

The propositions of Euclid’s Elements concern points and lines in
a plane and in space. Some of these lines are straight lines, and
some are circles. Two straight lines that meet at a point make an
angle. Unless otherwise stated, straight lines have endpoints. It is
possible to compare two straight lines, or two angles: if they can
be made to coincide, they are equal to one another. This is one of
Euclid’s so-called common notions. If a straight line has an endpoint
on another straight line, two angles are created. If they are equal
to one another, then they are called right angles. One of Euclid’s
postulates is that all right angles are equal to one another. The
other postulates tell us things that we can do: Given a center and
radius, we can draw a circle. From any given point to another, we
can draw a straight line, and we can extend an existing straight line
beyond its endpoints; indeed, given two straight lines, with another
straight line cutting them so as to make the interior angles on the
same side together less than two right angles, we can extend the first
two straight lines so far that they will intersect one another.

Using the common notions and the postulates, Euclid proves propo-
sitions: the problems and theorems discussed in the Introduction
above. The common notions and the postulates do not create the
plane or the space in which the propositions are set. The plane or the
space exists already. The Greek word yewpeTpia has the original
meaning of earth measurement, that is, surveying. People knew how
to measure the earth long before Euclid’s Elements was written.

Similarly, people were doing mathematics long before set theory was
developed. Accordingly, the set theory presented here will assume
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that sets already exist. Where Euclid has postulates, we shall have
axioms. Where Euclid has definitions and common notions and cer-
tain unstated assumptions, we shall have definitions and certain log-
ical principles.

It is said of the Elements,

A critical study of Euclid, with, of course, the advantage of present
insights, shows that he uses dozens of assumptions that he never
states and undoubtedly did not recognize. [20, p. 87]

One of these assumptions is that two circles will intersect if each
of them passes through the center of the other. (This assumption
is used to construct an equilateral triangle.) But it is impossible
to state all of one’s assumptions. We shall assume, for example,
that if a formal sentence Va ¢(x) is true, what this means is that
©(a) is true for arbitrary a. This means ¢(b) is true, and ¢(c) is
true, and so on. However, there is nothing at the moment called a
or b or ¢ or whatever. For that matter, we have no actual formula
called . There is nothing called x, and moreover there will never be
anything called = in the way that there might be something called
a. Nonetheless, we assume that everything we have said about ¢, «,
a, b, and ¢ makes sense.

The elements of every set will be sets themselves. By definition,
two sets will equal if they have the same elements. There will be an
empty set, denoted by

I,

this will have no elements. If a is a set, then there will be a set
denoted by
{a},

with the unique element a. If b is also a set, then there will be a set
denoted by
aUb,
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whose members are precisely the members of a and the members of
b. Thus there will be sets a U {b} and {a} U {b}; the latter is usually
written as

{a,b}.

If ¢ is another set, we can form the set {a,b} U {c}, which we write
as

{a7 b’ C}’

and so forth. This will allow us to build up the following infinite
sequence:

@, {@2}, {@,{}}, {@,{@},{@,{@}}},

By definition, these sets will be the natural numbers O, I, 2, 3,
... To be more precise, they are the von Neumann natural num-
bers [38].

1.2. Set theory

1.2.1. Notation
Our formal axioms for set theory will be written in a certain logic,
whose symbols are:
1) variables, as z, y, and z;
2) the symbol € denoting the membership relation;
3) the Boolean connectives of propositional logic:
a) the singulary connective — (“not”), and

b) the binary connectives V (“or”), A (“and”), = (“implies”),
and < (“if and only if”);
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4) parentheses;
5) quantification symbols 3 (“there exists”) and V (“for all”).

We may also introduce constants, as a, b, and ¢, or A, B, and C, to
stand for particular sets. A variable or a constant is called a term.
If ¢t and u are terms, then the expression

teu

is called an atomic formula. It means ¢ is a member of u. From
atomic formulas, other formulas are built up recursively by use of
the symbols above, according to certain rules, namely,

1) if ¢ is a formula, then so is —;

2) if ¢ and 1 are formulas, then so is (¢ * 1), where * is one of
the binary Boolean connectives;

3) if ¢ is a formula and x is variable, then Jdx ¢ and Vx ¢ are
formulas.

The formula = t € u says t is not a member of u. We usually
abbreviate the formula by

t ¢ u.

The expression Vz (z € © = z € y) is the formula saying that every
element of = is an element of y. Another way to say this is that x
is a subset of y, or that y includes x. We abbreviate this formula
by3

z Cy.

3The relation C of being included is completely different from the relation €
of being contained. However, many mathematicians confuse these relations
in words, using the word contained to describe both.
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The expression x C y Ay C x is the formula saying that z and y
have the same members, so that they are equal by the definition
foretold above (page 16); in this case we use the abbreviation

x=y.

All occurrences of z in the formulas Jz ¢ and Vz ¢ are bound,*
and they remain bound when other formulas are built up from these
formulas. Occurrences of a variable that are not bound are free.

1.2.2. Classes and equality

A singulary?5 formula is a formula in which only one variable occurs
freely. If ¢ is a singulary formula with free variable x, we may write
© as

o(x).
If a is a set, then by replacing every free occurrence of x in ¢ with
a, we obtain the formula

¢(a),

which is called a sentence because it has no free variables. This
sentence is true or false, depending on which set a is. If the sentence
is true, then a can be said to satisfy the formula ¢. There is a
collection of all sets that satisfy ¢: we denote this collection by

{z: ()}

4The word bound here is the past participle of the verb to bind. There is another
verb, to bound, which is also used in mathematics, but its past participle is
bounded. The two verbs to bind and to bound are apparently unrelated. The
verb to bind has been part of English since the beginning of that language
in the tenth century. The verb to bound is based on the noun bound, which
entered Middle English in the 12th century from the Old French noun that
became the modern borne.

5The word unary is more common, but less etymologically correct.
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Such a collection is called a class. In particular, it is the class
defined by the formula ¢. If we give this class the name C, then
the expression

reC

means just o(x).

A formula in which only two variables occur freely is binary. If ¢
is such a formula, with free variables x and y, then we may write v
as

Y(z,y).

We shall want this notation for proving Theorem 1 below. If needed,
we can talk about ternary formulas x(z,y, z), and so on.

The definition of equality of sets can be expressed by the sentences

VeVy (z=y= (a €z acy)), (1.1)
VeVy ((a€x & acy)=z=y), (1.2)

where a is an arbitrary set. The Equality Axiom is that equal sets
belong to the same sets:

VeVy (z=y= (z€asyca)). (1.3)

The meaning of the sentences (1.1) and (1.3) is that equal sets satisfy
the same atomic formulas.

Theorem 1. Fqual sets satisfy the same formulas:
vz vy (:c =y = (p(2) & </>(y)))- (1.4)

Proof. Suppose a and b are equal sets. By symmetry, it is enough
to show

p(a) = »(b) (1.5)
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for all singulary formulas ¢(z). As noted, we have (1.5) whenever
©(z) is an atomic formula x € ¢ or ¢ € x. If we have (1.5) when ¢
is 9, then we have it when ¢ is —. If we have (1.5) when ¢ is 1) or
X, then we have it when ¢ is (¢ * x), where % is one of the binary
connectives. If we have (1.5) when ¢(z) is of the form (x, c), then
we have it when (z) is Yy ¥(z,y) or Jy ¢(x,y). Therefore we do
have (1.5) in all cases. O

The foregoing is a proof by induction. Such a proof is possible
because formulas are defined recursively. See §1.4 below (page 34).
Actually we have glossed over some details. This may cause confu-
sion; but then the details themselves could cause confusion. What
we are really proving is all of the sentences of one of the infinitely
many forms

YV Yy (x =y= (SD(CE) A 90(7:’)))’
Va Vy V2 (x =y = (p(z,2) & oy, Z))>’ (1.6)
Va Vy Vz V2 (:v =y = (o(z,2,2) < ¢y, 2, Zl)))a

where no constant occurs in any of the formulas . Assuming a = b,
it is enough to prove every sentence of one of the forms

p(a) = ¢(b),

We have tried to avoid writing all of this out, by allowing constants
to occur implicitly in formulas, and by understanding Vz ¢(x) to
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mean ¢(a) for arbitrary a, as suggested above (page 16). We could
abbreviate the sentences in (1.6) as

Ve VyVz, ...Vz, (:U:y:>
(cp(:c,z],...,zn) @gp(y,z],...,zn))). (1.7)

However, we would have to explain what n was and what the dots
of ellipsis meant. The expression in (1.7) means one of the formulas
in the infinite list suggested in (1.6), and there does not seem to be
a better way to say it than that.

The sentence (1.4) is usually taken as a logical axiom, like one of
Euclid’s common notions. Then (1.1) and (1.3) are special cases of
this axiom, but (1.2) is no longer true, either by definition or by
proof. So this too must be taken as an axiom, which is called the
Extension Axiom.

In any case, all of the sentences (1.1), (1.2), (1.3), and (1.4) end
up being true. They tell us that equal sets are precisely those sets
that are logically indistinguishable. We customarily treat equality
as identity. We consider equal sets to be the same set. If a = b, we
may say simply that a is b.

Similarly, in ordinary mathematics, since 1/2 = 2/4, we consider
1/2 and 2/4 to be the same. In ordinary life they are distinct: 1/2
is one thing, namely one half, while 2/4 is two things, namely two
quarters. In mathematics, we ignore this distinction.

As with sets, so with classes, one includes another if every element
of the latter belongs to the former. Hence if formulas ¢(z) and ¢ (y)
define classes C and D respectively, and if

Va (p(x) = ¥(2)),



1.2. Set theory 23

this means D includes C, and we write
CCD.

If also C includes D, then the two classes are equal, and we write
C =D;

this means Vz (p(z) < ¢(z)). Likewise set and a class can be
considered as equal if they have the same members. Thus if again
C is defined by ¢(x), then the expression

a=C
means Vz (z € a < ¢(2)).

Theorem 2. Fvery set is a class.
Proof. The set a is the class {z: = € a}. O

However, there is no reason to expect the converse to be true.

Theorem 3. Not ecvery class is a set.

Proof. There are formulas ¢(x) such that
Vy —Vz (z €y & o(x)).
Indeed, let ¢(z) be the formula = ¢ x. Then

Yy =(y €y & ¢(y)). O

More informally, the argument is that the class {x: © ¢ z} is not
a set, because if it were a set a, then a € a < a ¢ a, which is a
contradiction. This is what was given above as the Russell Paradox
(page 15). Another example of a class that is not a set is given by
the Burali-Forti Parador on page 58 below.
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1.2.3. Construction of sets

We have established what it means for sets to be equal. We have
established that sets are examples, but not the only examples, of the
collections called classes. However, we have not officially exhibited
any sets. We do this now. The Empty Set Axiom is

e Vyy ¢ x.

As noted above (page 16), the set whose existence is asserted by this
axiom is denoted by @. This set is the class {z: = # z}.

We now obtain the sequence O, 1, 2, ..., described above (page 17).
We use the Empty Set Axiom to start the sequence. We continue
by means of the Adjunction Axiom: if a and b are sets, then the
set denoted by a U {b} exists. Formally, the axiom is

Ve Vy zVw (w €z w e xVw=y).

In writing this sentence, we follow the convention whereby the con-
nectives V and A are more binding than = and <, so that, for
example, the expression

(wezeowezVw=y)

means the formula (w cze (wezVw= y))

We can understand the Adjunction Axiom as saying that, for all sets
a and b, the class {z: ¢ € a V z = b} is actually a set. Adjunction
is not one of Zermelo’s original axioms of 19o8; but the following is
Zermelo’s Pairing Axiom:

Theorem 4. For any two sets a and b, the set {a,b} exists:

VeVy IzVw (w ez w=aVw=y).
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Proof. By Empty Set and Adjunction, @U{a} exists, but this is just
{a}. Then {a} U {b} exists by Adjunction again. O

The theorem is that the class {z: 2 = a V & = b} is always a set.
Actually Zermelo does not have a Pairing Axiom as such, but he
has an Elementary Sets Axiom, which consists of what we have
called the Empty Set Axiom and the Pairing Axiom.5

Every class C has a union, which is the class
{z:y (zeyryeC)}.

This class is denoted by
Uc.

This notation is related as follows with the notation for the classes
involved in the Adjunction Axiom:

Theorem 5. For all sets a and b, a U {b} = J{a, {b}}.

We can now use the more general notation

aUb= U{cub}.

The Union Axiom is that the union of a set is always a set:

VxEIyyzU:z:.

The Adjunction Axiom is a consequence of the Empty-Set, Pairing,
and Union Axioms. This why Zermelo did not need Adjunction as
an axiom. We state it as an axiom, because we can do a lot of
mathematics with it that does not require the full force of the Union

6Zermelo also requires that for every set a there be a set {a}; but this can be
understood as a special case of pairing.
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Axiom. We shall however use the Union Axiom when considering
unions of chains of structures (as on page 92 below).

Suppose A is a set and C is the class {z: ¢(z)}. Then we can form
the class
ANC,

which is defined by the formula 2 € A A ¢(x). The Separation
Axiom is that this class is a set. Standard notation for this set is

{z € A: p(z)}. (1.8)

However, this notation is unfortunate. Normally the formula z € A
is read as a sentence of ordinary language, namely “x belongs to A”
or “z is in A.” However, the expression in (1.8) is read as “the set of
x in A such that ¢ holds of z”; in particular, z € A here is read as
the noun phrase “x in A” (or “z belonging to A,” or “x that are in
A or something like that).”

Actually Separation is a scheme of axioms, one for each singulary
formula :
Vo Iy Vz (2 €y ez €z np(z)).

In most of mathematics, and in particular in the other sections of
these notes, one need not worry too much about the distinction
between sets and classes. But it is logically important. It turns out
that the objects of interest in mathematics can be understood as
sets. Indeed, we have already defined natural numbers as sets. We
can talk about sets by means of formulas. Formulas define classes
of sets, as we have said. Some of these classes turn out to be sets

7 Ambiguity of expressions like z € A (is it a noun or a sentence?) is common in
mathematical writing, as for example in the abbreviation of Ve (¢ > 0 = )
as (Ve > 0) . Such ambiguity is avoided in these notes. However, certain
ambiguities are tolerated: letters like a and A stand sometimes for sets,
sometimes for names for sets.
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themselves; but again, there is no reason to expect all of them to
be sets, and indeed by Theorem 3 (page 23) some of them are not
sets. Sub-classes of sets are sets, by the Separation Axiom; but some
classes are too big to be sets. The class {: x = z} of all sets is not
a set, since if it were, then the sub-class {z: z ¢ x} would be a set,
and it is not.

Every set a has a power class, namely the class {x: ¢ C a} of all
subsets of a. This class is denoted by

P(a).
The Power Set Axiom is that this class is a set:
Vo Jyy = P(x).

Then Z(a) can be called the power set of a. In the main text,
after this chapter, we shall not explicitly mention power sets until
page 216. However, the Power Set Axiom is of fundamental impor-
tance for allowing us to prove Theorem g on page 30 below.

We want the Axiom of Infinity to be that the collection {0, 1,2,...}
of natural numbers as defined on page 17 is a set. It is not obvious
how to formulate this as a sentence of our logic. However, the in-
dicated collection contains O, which by definition is the empty set;
also, for each of its elements n, the collection contains also n U {n}.
Let I be the class of all sets with these properties: that is,

I={2:0cznVy(ycz=yU{yt )}

Thus, if it exists, the set of natural numbers will belong to I. Fur-
thermore, the set of natural numbers will be the smallest element of
I. But we still must make this precise. For an arbitrary class C, we
define

ﬂC:{J;:Vy(yECéxEy)}.

This class is the intersection of C.
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Theorem 6. If a and b are two sets, then

anb= ﬂ{a,b}.

If a € C, then
ﬂCga,

so in particular (\C is a set. However, (& is the class of all sets,
which is not a set.

We can now define®
w = ﬂ I (1.9)
Theorem 7. The following conditions are equivalent.
1. 1#£ 0.
2. w 1s a set.

3. wel

Any of the equivalent conditions in the theorem can be taken as
the Axiom of Infinity. This does not by itself establish that w has
the properties we expect of the natural numbers; we still have to do
some work. We shall do this in §1.5 (p. 43).

The Axiom of Choice can be stated in any of several equiva-
lent versions. One of these versions is that every set can be well-
ordered: that is, the set can be given a linear ordering (as defined
on page 42 below) so that every nonempty subset has a least element
(as in Theorem 23 on page 43). However, we have not yet got a way
to understand an ordering as a set. An ordering is a kind of binary
relation, and a binary formula can be understood to define a binary

8Some writers define () C only when C is a nonempty set. This would make
our definition of w invalid without the Axiom of Infinity.
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relation. But we cannot yet use our logical symbolism to say that
such a relation exists. We shall be able to do so in the next section.
We shall use the Axiom of Choice:

to establish that every set has a cardinality (page 58);

to prove Theorem 204, that every PID is a UFD (page 230);

to prove Zorn’s Lemma (page 238;

hence to prove Stone’s theorem on representations of Boolean

rings (page 240).

The Axiom can also used to show:

® that direct sums are not always the same as direct products

(page 148);
® that nonprincipal ultraproducts of fields exist (page 248).

For the record, we have now named all of the axioms given by Zer-
melo in 1908: (I) Extension, (II) Elementary Sets, (III) Separation,
(IV) Power Set, (V) Union, (VI) Choice, and (VII) Infinity. Zer-
melo assumes that equality is identity: but his assumption is our
Theorem 1. In fact Zermelo does not use logical formalism as we
have. We prefer to define equality with (1.1) and (1.2) and then
use the Axioms of (i) the Empty Set, (ii) Equality, (iii) Adjunc-
tion, (iv) Separation, (v) Union, (vi) Power Set, (vii) Infinity, and
(viii) Choice. But these two collections of definitions and axioms are
logically equivalent.

Apparently Zermelo overlooked one axiom, the Replacement Aziom,
which was supplied in 1922 by Skolem [32] and by Fraenkel.9 We
shall give this axiom in the next section.

91 have not been able to consult Fraenkel’s original papers. However, according
to van Heijenoort [36, p. 291], Lennes also suggested something like the
Replacement Axiom at around the same time (1922) as Skolem and Fraenkel,
but Cantor had suggested such an axiom in 1899.
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An axiom never needed in ordinary mathematics is the Founda-
tion Axiom. Stated originally by von Neumann [37], it ensures that
certain pathological situations, like a set containing itself, are im-
possible. It does this by declaring that every nonempty set has an
element that is disjoint from it: Vo Jy (z £ F =y € x AzNy = D).
We shall never use this.

The collection called ZFC is Zermelo’s axioms, along with Replace-
ment and Foundation. If we leave out Choice, we have what is called
ZF.

1.3. Functions and relations

Given two sets a and b, we define

(a7 b) = {{a}> {a> b}}

This set is the ordered pair whose first entry is a and whose second
entry is b. The purpose of the definition is to make the following
theorem true.

Theorem 8. Two ordered pairs are equal if and only if their first
entries are equal and their second entries are equal:

(a,0) = (x,y) ©a=xzNb=y.

If A and B are sets, then we define
AxB={z:3z3Jy (= (z,y) Ao € ANy € B)}.
This is the cartesian product of A and B.

Theorem g. The cartesian product of two sets is a set.
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Proof. If a € A and b € B, then {a} and {a,b} are elements of
P(AUB), so (a,b) € Z(F(AU B)), and therefore

AxBC P(P(AUB)). O

An ordered triple (z,y,z) can be defined as ((z,y),z), and so
forth.

A function or map from A to B is a subset f of A x B such that,
for each a in A, there is exactly one b in B such that (a,b) € f.
Then instead of (a,b) € f, we write

fla) =10. (1.10)

We have then
A={z: Jy f(x) =y},

that is, A = {x: Jy (z,y) € f}. The set A is called the domain of
f. A function is sometimes said to be a function on its domain. For
example, the function f here is a function on A. The range of f is
the subset

{y: 3z f(z) =y}
of B. If this range is actually equal to B, then we say that f is

surjective onto B, or simply that f is onto B. Strictly speaking,
it would not make sense to say f was surjective or onto, simply.

A function f is injective or one-to-one, if
Ve Vz (f(z) = f(z) =z = 2).

The expression f(x) = f(z) is an abbreviation of Jy (f(z) = y A
f(2) = y), which is another way of writing Jy ((z,y) € f A (2,y) €
f) An injective function from A onto B is a bijection from A to
B.
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If it is not convenient to name a function with a single letter like f,
we may write the function as

where the expression f(z) would be replaced by some particular
expression involving x. As an abbreviation of the statement that f
is a function from A to B, we may write

f:A— B. (1.11)

Thus, while the symbol f can be understood as a noun, the expres-
sion f: A — B is a complete sentence. If we say, “Let f: A — B,”
we mean let f be a function from A to B.

If f: A— Band D C A, then the subset {y: 3z (x € DAy = f(x)}
of B can be written as one of*°

{f(z): z € D}, fID].
This set is the image of D under f. Similarly, we can write
AxB={(z,y): z € ANy € B}.

Then variations on this notation are possible. For example, if f: A —
B and D C A, we can define

fI1D=A{(z,y) € f: v € D}.
Theorem 10. If f: A— B and D C A, then
f1D:D—>B
and, for all z in D, (f | D)(z) = f(x).

1°The notation f(D) is also used, but the ambiguity is dangerous, at least in
set theory as such.
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If f: A— B and g: B — C, then we can define
gof={(z,2): 3y (f(z) =y Agly) = 2)};
this is called the composite of (g, f).
Theorem 11. If f: A— B and g: B — C, then
gof:A—C.
If also h: C — D, then

ho(gof)=(hog)of.
We define

idg = {(z,x): z € A};
this is the identity on A.

Theorem 12. id4 is a bijection from A to itself. If f: A — B,
then

foida=f, idpof = f.

If f is a bijection from A to B, we define
7 =A{.): f@) =y}
this is the inverse of f.

Theorem 13.

1. The inverse of a bijection from A to B is a bijection from B
to A.
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2. Suppose f: A— Bandg: B— A. Then f is a bijection from
A to B whose inverse is g if and only if

go f=ida, fog=idp.

In the definition of the cartesian product A x B and of a functions
from A to B, we may replace the sets A and B with classes. For
example, we may speak of the function x — {z} on the class of
all sets. If F is a function on some class C, and A is a subset of
C, then by the Replacement Axiom, the image F[A] is also a
set. For example, if we are given a function n — G, on w, then by
Replacement the class {G,,: n € w} is a set. Then the union of this
class is a set, which we denote by

U G..

new

A singulary operation on A is a function from A to itself; a binary
on A is a function from A x A to A. A binary relation on A is a
subset of A x A; if R is such, and (a,b) € R, we often write

a Rb.

A singulary operation on A is a particular kind of binary relation on
A; for such a relation, we already have the special notation in (1.10).
The reader will be familiar with other kinds of binary relations, such
as orderings. We are going to define a particular binary relation on
page 40 below and prove that it is an ordering.

1.4. An axiomatic development of the natural
numbers

In the preceding sections, we sketched an axiomatic approach to set
theory. Now we start over with an axiomatic approach to the natural
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numbers alone. In the section after this, we shall show that the set
w does actually provide a model of the axioms for natural numbers
developed in the present section.

For the moment though, we forget the definition of w. We forget
about starting the natural numbers with O. Children learn to count
starting with 1, not 0. Let us understand the natural numbers to
compose some set called N. This set has a distinguished initial
element, which we call one and denote by

.

On the set N there is also a distinguished singulary operation of
succession, namely the operation

n—n-+l,

where n + | is called the successor of n. Note that some other ex-
pression like S(n) might be used for this successor. For the moment,
we have no binary operation called + on N.

I propose to refer to the ordered triple (N, I, n+ n+ 1) as an iter-
ative structure. In general, by an iterative structure, I mean any
set that has a distinuished element and a distinguished singulary
operation. Here the underlying set can be called the universe of
the structure. For a simple notational distinction between a struc-
ture and its universe, if the universe is A, the structure itself might
be denoted by a fancier version of this letter, such as the Fraktur
version 2. See Appendix A (p. 262) for Fraktur versions, and their
handwritten forms, for all of the Latin letters.

The iterative structure (N, I,n — n + 1) is distinguished among
iterative structures by satisfying the following axioms.

1. | is not a successor: | #n+ 1.
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2. Succession is injective: if m + 1 =n + |, then m = n.

3. The structure admits proof by induction, in the following
sense. Every subset A of the universe must be the whole uni-
verse, provided A has the following two closure properties:

a) 1 € A, and
b) for all n, if n € A, then n+ 1 € A.

These axioms seem to have been discovered originally by Dedekind |5,
IT, VI (71), p. 67]; but they were written down also by Peano [29],
and they are often known as the Peano axioms.

Suppose (4, b, f) is an iterative structure. If we successively compute
b, f(b), f(f(b)), f(f(f(b))), and so on, either we always get a new
element of A, or we reach an element that we have already seen. In
the latter case, if the first repeated element is b, then the first Peano
axiom fails. If it is not b, then the second Peano axiom fails. The
last Peano axiom, the Induction Axiom, would ensure that every
element of A was reached by our computations. None of the three
axioms implies the others, although the Induction Axiom implies
that exactly one of the other two axioms holds [16].

The following theorem will allow us to define all of the usual opera-
tions on N. The theorem is difficult to prove. Not the least difficulty
is seeing that the theorem needs to be proved.**

Homomorphisms will be defined generally on page 47, but meanwhile
we need a special case. A homomorphism from (N, I, n—n+ 1)
to an iterative structure (A, b, f) is a function h from N to A such
that

1) h(1) =10, and
2) h(n+ 1) = f(h(n)) for all n in N.

1Peano did not see this need, but Dedekind did. Landau discusses the matter
[22, pp. ix—=x].
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Theorem 14 (Recursion). For every iterative structure, there is
exactly one homomorphism from (N, I, n+— n+ 1) to this structure.

Proof. Given an iterative structure (A,b, f), we seek a homomor-
phism h from (N, 1,z + n + 1) to (A,b,f). Then h will be a
particular subset of N x A. Let B be the set whose elements are the
subsets C' of N x A such that, if (n,y) € C, then either

1) (n,y) = (1,b) or else
2) C has an element (m,x) such that (n,y) = (m+ I, f(z)).

In particular, {(1,b)} € B. Also, if C € B and (m,z) € C, then
CU{(m+ 1, f(@) € B.

Let R =|JB; so R is a subset of N x A. We may say R is a relation
from N to A. If (n,y) € R, then (as suggested on page 34 above) we
may write also

n Ry.

Since {(1,b)} € B, we have | R b. Also, if m R x, then (m,z) €
C for some C in B, so CU{(m + 1, f(z))} € B, and therefore
(m+ 1) R f(z). Thus R is the desired function h, provided R is
actually a function from N to A. Proving that R is a function from
N to R has two stages.

1. Let D be the set of all n in N for which there is y in A such
that m R y. Then we have just seen that 1 € D, and if n € D,
then n 4+ | € D. By induction, D = N. Thus if R is a function, its
domain is N.

2. Let E be the set of all n in N such that, for all y in A, if n Ry
and n R z, then y = z. Suppose | Ry. Then (1,y) € C for some C
in B. Since | is not a successor, we must have y = b, by definition
of B. Therefore 1 € E. Suppose n € E, and (n + 1) R y. Then
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(n+ 1,y) € C for some C in B. Again since | is not a successor,
we must have

(n+1,y) =(m+1,f(x))

for some (m,x) in C. Since succession is injective, we must have
m = n. Thus, y = f(z) for some x in A such that n R x. Since
n € E, we know z is unique such that n R x. Therefore y is unique
such that (n+ 1) Ry. Thus n+ | € E. By induction, £ = N.

So R is the desired function h. Finally, h is unique by induction. O

Note well that the proof uses all three of the Peano Axioms. The
Recursion Theorem is often used in the following form.

Corollary 14.1. For every set A with a distinguished element b, and
for every function F' from N x B to B, there is a unique function H
from N to A such that

1) H(1)=0b, and
2) Hn+ 1) = F(n,H(n)) for all n in N.

Proof. Let h be the unique homomorphism from (N, 1,7 — n+1) to
(Nx A, (1,b), f), where f is the operation (n,z) — (n+ 1, F(n,z))).
In particular, h(n) is always an ordered pair. By induction, the first
entry of h(n) is always n; so there is a function H from N to A such
that h(n) = (n,H(n)). Then H is as desired. By induction, H is
unique. O

We can now use recursion to define, on N, the binary operation
(z,y) >z +y
of addition, and the binary operation

(z,y) =z y
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of multiplication. More precisely, for each n in N, we recursively
define the operations x — n+x and x — n-x. The definitions are:

n+l=n+1, n+(m+1)=mn+m)+1, (1.12)
1.12
n-1=mn, n-(m+1)=n-m+n.
The definition of addition might also be written as n+ 1 = S(n)

and n + S(m) = S(n+m). In place of z - y, we often write xy.

Lemma 1. For all n and m in N,

l+n=n+1, (m+1)+n=(m+n)+1.

Proof. Induction. O

Theorem 15. Addition on N is
1) commutative: n+m =m+n; and

2) associative: n+ (m+k)=(n+m)+k.

Proof. Induction and the lemma. O

Theorem 16. Addition on N allows cancellation: if n+x = n+y,
then x = y.

Proof. Induction, and injectivity of succession. O

The analogous proposition for multiplication is Corollary 22.1 be-
low.

Lemma 2. For all n and m in N,

1 -n=n, (m+1)-n=m-n+n.
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Proof. Induction. O

Theorem 17. Multiplication on N is
1) commutative: nm = mn;
2) distributive over addition: n(m + k) = nm + nk; and

3) associative: n(mk) = (nm)k.
Proof. Induction and the lemma. O

Landau [22] proves using induction alone that 4+ and - exist as given
by the recursive definitions above. However, Theorem 16 needs more
than induction. So does the existence of the factorial function
defined by

=1, (n+1)=nl-(n+1).
So does exponentiation, defined by

n =n, n =n"" n.

The usual ordering < of N is defined recursively as follows. First note
that m < n means simply m < n or m = n. Then the definition of
< is:

1) m £ | (that is, = m < 1);
2) m <n+ 1 if and only if m < n.

In particular, n < n + 1. Really, it is the sets {x € N: z < n} that
are defined by recursion:

{reNiz< 1} =g,
{reNrz<n+l}={zeNz<nuU{n} ={zeN:z<n}
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We now have < as a binary relation on N; we must prove that it is
an ordering.

Theorem 18. The relation < is transitive on N, that is, if k <m
and m < n, then k < n.

Proof. Induction on n. O

Theorem 19. The relation < is irreflexive on N: m £ m.

Proof. Since every element k of N is less than some other element
(namely k + 1), it is enough to prove

k<n=kk

We do this by induction on n. The claim is vacuously true when
n = |. Suppose it is true when n =m. If k <m + |, then k <m
or k =m. If k < m, then by inductive hypothesis k £ k. If k = m,
but k < k, then k < m, so again k £ k. Thus the claim holds when
n =m + |. By induction, it holds for all n. O

Lemma 3. | <m.

Proof. Induction. O

Lemma 4. If k <m, thenk+ 1 <m.

Proof. The claim is vacuously true when m = 1. Suppose it is
true when m = n. Say k < n+ 1. Then k < n. If k = n, then
k+1=n+1l,s0k+1 <n+1. If k<n,thenk+ 1 < n by
inductive hypothesis, so k+ 1 < n+ | by transitivity (Theorem 18),
and therefore £+ | < n+ 1. Thus the claim holds when m =n+ 1.
By induction, the claim holds for all m. O
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Theorem 2o0. The relation < is total on N: either k < m or
m<k.

Proof. By Lemma 3, the claim is true when & = 1. Suppose it is
true when k = ¢. If m £ ¢+ 1, then m £ ¢. In this case, we have
both m # £ and m &£ £. Also, by the inductive hypothesis, ¢ < m,
so £ < m, and hence £ + | < m by Lemma 4. O

Because of Theorems 18, 19, and 20, the relation < is a linear
ordering of N, and N is linearly ordered by <.

Theorem 21. For all m and n in N, we have m < n if and only if
the equation
mtz=mn (1.13)

is soluble in N.

Proof. By induction on k, if m + k = n, then m < n. We prove
the converse by induction on n. We never have m < 1. Suppose
for some r that, for all m, if m < r, then the equation m +z = r
is soluble. Suppose also m < r+ 1. Then m < r or m = r. In the
former case, by inductive hypothesis, the equation m + x = r has
a solution k, and therefore m + (k+ 1) = r+ 1. If m = r, then

m+ 1 =r+ 1. Thus the equation m+x = r+ | is soluble whenever
m < r+ 1. By induction, for all n in N, if m < n, then (1.13) is
soluble in N. O

Theorem 22. If k < {, then

k+m<{l+4+m, km < fm.

Here the first conclusion is a refinement of Theorem 16; the second
yields the following analogue of Theorem 16 for multiplication.
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Corollary 22.1. If km = ¢m, then k = /4.

Theorem 23. N is well-ordered by <: every nonempty set of natural
numbers has a least element.

Proof. Suppose A is a set of natural numbers with no least element.
Let B be the set of natural numbers n such that, if m < n, then
m ¢ A. Then | € B, since otherwise 1 would be the least element of
A. Suppose m € B. Then m + | € B, since otherwise m + | would
be the least element of A. By induction, B =N, so A = @. O

The members of N are the positive integers; the full set Z of
integers will be defined formally in §1.7 below, on page 52. As
presented in Books VII-IX of Euclid’s Elements, number theory is
a study of the positive integers; but a consideration of all integers is
useful in this study, and the integers that will constitute a motivating
example, first of a group (page 63), and then of a ring (page 94).
Fundamental topics of number theory developed in the main text
are:

® greatest common divisors, the Euclidean algorithm, and num-
bers prime to one another (sub-§3.2.4, page 117);

® prime numbers, Fermat’s Theorem, and Euler’s generalization
of this (§3.5, page 127);

® Chinese Remainder Theorem, primitive roots (§4.7, page 167);

® Euclid’s Lemma (§7.2, page 214);

® the Fundamental Theorem of Arithmetic (§7.4, page 226).

1.5. A construction of the natural numbers

For an arbitrary set a, let

a =auU{a}.
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If A belongs to the class I defined in (1.9) on page 28, then O € A,
and A is closed under the operation z — 2/, and so (4,0,’) is an
iterative structure. In particular, by the Axiom of Infinity, w is a
set, so (w,0,’) is an iterative structure.

Theorem 24. The structure (w,0,") satisfies the Peano Azioms.

Proof. There are three things to prove.

1. In (w,0,”), the initial element O is not a successor, because for
all sets a, the set a’ contains a, so it is nonempty.

2. (w,0,’) admits induction, because, if A C w, and A contains O
and is closed under © — 2/, then A € I, so (I C A, that is, w C A.

3. It remains to establish that z — 2’ is injective on w. On page 40,
we used recursion to define a relation < on N so that

me 1, m<n+lSm<nVm=n. (1.14)

Everything that we proved about this relation required only these
properties, and induction. On w, we do not know whether we have
recursion, but we have (1.14) when < is € and | is O: that is, we
have

m ¢ 0, men &menVm=n.

Therefore € must be a linear ordering of w, by the proofs in the
previous section. We also have Lemma 4 for €, that is, if n in w,
and m € n, then either m’ = n or m’ € n. In either case, m’ € n'.
Thus, if m # n, then either m € n or n € m, and so m’ € n’ or
n' € m’, and therefore m’ # n'. O

Given sets A and B, we define

ANB={x€ A: x ¢ B}.
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As a corollary of the foregoing theorem, we have that the iterative
structure (w ~\ {0}, 1,’) also satisfies the Peano Axioms. We may
henceforth assume that (N, 1,z — x + 1) is this structure. In par-
ticular,

N=w\ {0}.

Thus we no longer need the Peano Axioms as axioms; they are the-
orems about (N, I,z + z+ 1) and (w,0,").

We extend the definitions of addition and multiplication on N to
allow their arguments to be O:

n+0=n=0+n, n-0=0=0-n.
Theorem 25. Addition and multiplication are commutative and as-

sociative on w, and multiplication distributes over addition.

In particular, the equations (1.12) making up the recursive defini-
tions of addition and multiplication on N are still valid on w. The
same goes for factorials and exponentiation when we define

0o=1, nl=1.

1.6. Structures

For us, the point of using the von-Neumann definition of the natu-
ral numbers is that, under this definition, a natural number n is a
particular set, namely {O,...,n — 1}, with n elements. We denote
the set of functions from a set B to a set A by

AB.
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In particular then, A™ is the set of functions from {O,...,n — 1}
into A. We can denote such a function by one of

(Tgy. oy Tp_1), (z;: 1 <m),

so that
A":{(xo,...,zn_]): QSlGA}

Thus, A% can be identified with A x A, and A' with A itself. There
is exactly one function from O to A, namely O; so

A% = {0} =1.

An n-ary relation on A is a subset of A™; an n-ary operation on
A is a function from A™ to A. Relations and operations that are
2-ary, l-ary, or O-ary can be called binary, singulary, or nullary,
respectively; after the appropriate identifications, this agrees with
the terminology used in §1.3. A nullary operation on A can be
identified with an element of A.

Generalizing the terminology used at the beginning of §1.4, we define
a structure as a set together with some distinguished relations and
operations on the set; as before, the set is the universe of the struc-
ture. Again, if the universe is A, then the whole structure might be
denoted by %; if B, then B.

The signature of a structure comprises a symbol for each distin-
guished relation and operation of the structure. For example, we
have so far obtained N as a structure in the signature {1,+,-, <}.
We may then write out this structure as

(Na 1 a+7 ) <)

In this way of writing the structure, an expression like + stands
not for the symbol of addition, but for the actual operation on N. In
general, if s is a symbol of the signature of 2, then the corresponding
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relation or operation on A can, for precision, be denoted by s%, in
case there is another structure around with the same signature. We
use this notation in writing the next definition, and later on page
107.

A homomorphism from a structure 2 to a structure B of the same
signature is a function h from A to B that preserves the distinguished
relations and operations: this means

h(f*(xo, ... 20 1)) = [P (A(xo),- .. Ay 1)),
(.%o,.. -axn—l) € Rm = (h(fﬂo), : "h(xn—l)) € R%v (1'15)

for all n-ary operation-symbols f and relation-symbols R of the sig-
nature, for all n in w. To indicate that h is a homomorphism from
2 to B, we may write

h: A — B

(rather than simply h: A — B). We have already seen a special
case of a homomorphism in the Recursion Theorem (Theorem 14 on
page 37 above).

Theorem 26. If h: A — B and g: B — €, then

goh: A —C.

A homomorphism is an embedding if it is injective and if the con-
verse of (1.15) also holds. A surjective embedding is an isomor-
phism.

Theorem 2%. The function ida is an isomorphism from 2 to itself.
The following are equivalent conditions on a bijective homomorphism

h from A to B:

1) B is an isomorphism from A to B,
2) h=" is a homomorphism from B to 2,
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3) h=" is an isomorphism from B to .

If there is an isomorphism from a structure 2 to a structure B, then
these two structures are said to be isomorphic to one another, and
we may write

A =B,

In this case 2 and B are indistinguishable as structures, and so
(out of laziness perhaps) we may identify them, treating them as
the same structure. We have already done this, in a sense, with
(N, 1,z — 2+ 1) and (w ~ {0}, 1,’). However, we never actually
had a set called N, until we identified it with w ~ {O}.

A substructure of a structure B is a structure 2 of the same sig-
nature such that A C B and the inclusion z — z of A in B is an
embedding of 2 in B.

Model theory studies structures as such. Universal algebra
studies algebras, which are sets with distinguished operations, but
no distinguished relations (except for equality). In other words, an
algebra is a structure in a signature with no symbols for relations
(except equality).

We shall study mainly the algebras called groups and the algebras
called rings. Meanwhile, we have the algebra (N, I,+,-), and we
shall have more examples in the next section.

A reduct of a structure is obtained by ignoring some of its op-
erations and relations, while the universe remains the same. The
original structure is then an expansion of the reduct. For example,
(N,+) is a reduct of (N,+,-, <), and the latter is an expansion of
the former.
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1.7. Constructions of the integers and rationals

The following theorem is an example of something like localization,
which will be the topic of §7.5 (p. 233). One learns the theorem
implicitly in school, when one learns about fractions (as on page 22
above). Perhaps fractions are our first encounter with nontrivial
equivalence-classes.

Let ~ be the binary relation on N x N given by*?
(a,b) = (z,y) & ay = bx. (1.16)

Lemma 5. The relation =~ on N x N is an equivalence-relation.

If (a,b) € NxN, let its equivalence-class with respect to ~ be denoted

by a/b or
a

g.

Let the set of all such equivalence-classes be denoted by
Q*.

This set comprises the positive rational numbers.

Theorem 28. There are well-defined operations +, ~', and - on
QT given by the rules

12As a binary relation on N X N, the relation = is a subset of (N X N)z, which
we identify with N4.
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axr

a
by by
There is a linear ordering < of QT given by

a
- < —$Say < bx.
by

The structure (N, +, -, <) embeds in (Q*,+, -, <) under the map x
x/1. Addition and multiplication are commutative and associative
on QT, and multiplication distributes over addition. Moreover,

|

|l = = (m)l z
—.Z=Z =z = 1.1
Iy vy y y (27)
Finally, | | |
LD P AN (1.18)
| b1 Ty | b y

The operations on Q7 in the theorem are said to be well defined
because it is not immediately obvious that they exist at all. It is
possible that a/b = ¢/d although (a,b) # (c¢,d). In this case one
must check that (for example) (ay + bx)/(by) = (cy + dz)/(dy). See
page 109 below.

Because multiplication is commutative and associative on QF, and
(1.17) holds, the structure (QF,1/1,7',.) is an abelian group.
Because in addition Q7 is linearly ordered by <, and (1.18) holds,
the structure (Qt, 1/1,~!,. <) is an ordered group.

In the theorem, the natural number n is not a rational number, but
n/1 is a rational number. However, we henceforth identify n and
n/1: we treat them as the same thing. Then we have N C Qt.

In the definition (1.16) of =, if we replace multiplication with ad-
dition, then instead of the positive rational numbers, we obtain the
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integers. Probably this construction of the integers is not learned in
school. If it were, possibly students would never think that —x is
automatically a negative number. In any case, by applying this con-
struction of the integers to the positive rational numbers, we obtain
all of the rational numbers as follows. Let ~ be the binary relation
on QT x QT given by

(a,b) ~ (z,y) ©at+y=b+a (1.19)
Lemma 6. The relation ~ on Q1 x Q% is an equivalence-relation.
If (a,b) € QT x QT, let its equivalence-class with respect to ~ be

denoted by
a—b.

Let the set of such equivalence-classes be denoted by
Q.

Theorem 29. There are well-defined operations —, +, and - on Q
given by the rules

—(m—y):y—x,

(@a=b)+(z-y)=(atz)-(0+y),
(@a—=b)-(z —y) = (az + by) — (ay + b).

There is a dense linear ordering < of Q given by
a—b<zr—-—y&sSat+y<b+ua.

The structure (Q%, +, -, <) embeds in (Q, +, -, <) under the map x
(x4 1)—1. The structure (Q, 1 — 1, —,+,<) is an ordered group.
Moreover, multiplication is also commutative and associative on Q,
and it distributes over addition.
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We identify QT with its image in Q. Now we can refer to the elements
of Q as the rational numbers. We denote | — | by

0.
Then QT = {z € Q: 0 < x}. We can now define
Z={x—y: (z,y) € Nx N}
this is the set of integers.

Theorem go. The structure (Z,0,—,+,1,-,<) is a well-defined
substructure of (Q,0,—,+,1,-,<). The structure (Z,0, —, +, <) is
an ordered group.

We can also think of Q as arising from Z by the same construction
that gives us QT from N. This gives us the following.

Theorem 31. There is a surjective function (x,y) — x/y from the
product Z. x (Z ~ {0}) to Q such that

Then

There is an operation x — x~' on Q ~ {0} given by
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Then (Q~ {0}, 1,7",.) is a commutative group. Finally,
O<zAO0<y=0<x-y. (1.20)
Because (Q,0, —, 1, <) is an ordered group, and (Q~. {0}, 1,~',.)is

a commutative group, and multiplication distributes over addition in
Q, and (1.20) holds, the structure (Q,0, —,+, |, -, <) is an ordered
field. However, the ordering of QQ is not complete, that is, there are
subsets with upper bounds, but no suprema (least upper bounds).
An example is the set {z € Q: 0 <z Az? < 2}.

1.8. A construction of the reals

There is a technique due to Dedekind for completing (Q, <) to obtain
the completely ordered set (R, <). As Dedekind says explicitly [5,
pPp. 39—40], the original inspiration for the technique is the definition
of proportion found in Book V of Euclid’s Elements.

In the geometry of FEuclid, let us refer to the collection of straight
lines that are equal to a given straight line (in the sense of page 15
above) as the length of that straight line. Two lengths of straight
lines can be added together by taking two particular lines with those
lengths and setting them end to end. Then lengths of straight lines
compose the set of positive elements of an ordered group. Therefore
individual lengths can be multiplied, that is, taken several times.
Indeed, if A is a length, and n € N, we can define the multiple nA
of = recursively:

1A= A, (n+ 1)A=nA+ A

It is assumed that, for any two lengths A and B, some multiple of
A is greater than B: this is the archimedean property. If C and
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D are two more lengths, then A has to B the same ratio that C has
to D, provided that, for all £ and m in N,

kA > mB < kC > mD.

In this case, the four lengths A, B, C, and D are proportional, and
we may write

A:B::C:D.

We can write the condition for this proportionality as
X + T +
—€Q:aB<yA; =¢—€Q":aD < yC
Y Y

Dedekind’s observation is that such sets can be defined indepen-
dently of all geometrical considerations. Indeed, we may define a
positive real number as a nonempty, proper subset C of Q" such
that

1) ifa € C and b € QT and b < a, then b € C, and
2) if C has a supremum in Q*, this supremum does not belong
to C.

Let the set of all positive real numbers be denoted by
RT.
Theorem 32. The set RT is completely ordered by proper inclusion.
There are well-defined operations +, ~', and - on QT given by the
rules
C+D={z+y:x2€CAye D},
Cl'={z7" 2eQ Ay (ye QT N CAYy <)},
C-D={z-y:xe€CAye D}

Then (QF, +, ", -) embeds in (R, +,~",-) undery — {x € Qt: z <
y}-
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Let us identify QT with its image in Rt. We may also write C on
RT as <.

For every n in w, an n-ary operation f on RT is continuous if, for
every (4;: i <n)in (RT)™, for every € in QT, there is (;: i < n) in
(Q*)™ such that, for all (X;: 4 <n) in (RT)", if

/\Ai—éi < X; <Ai+6i7
i<n
then
flAiri<n)—e< f(X;ri<n) < f(A4i:i<n)+e
Theorem 33. The operations +, ~', and - on RY are continuous.
Every composite of continuous functions on RY is continuous.

Lemma 7. The only continuous singulary operation on RT that is
1 on Q is | everywhere.

Theorem 34. The structure (R*, 1, -, <) is an ordered group,
and addition is commutative and associative on RT, and multiplica-
tion distributes over addition on RY.

Now define ~ on Rt x RT as in (1.19). Just as before, this is an
equivalence relation. The set of its equivalence-classes is denoted
by

R.
Just as before, we obtain the ordered field (R, 0, —, +, -1,.,<). But
now, the ordering is complete. We identify RT with its image in R.
The elements of R are the real numbers.

Lemma 8. For every n in N, for every element A of a completely
and densely ordered group, the equation

nX=A

is soluble in the group.
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Theorem 35. Suppose (G,0,—,+,<) is a completely and densely
ordered group, and w is a positive element of G, and b is an ele-
ment of RT such that 1 < b. Then there is an isomorphism from
(G,0,—,+,<) to (R*, 1,7, <) taking u to b.

By the previous theorem, the completely ordered groups (R, 0, —, +, <
yand (RT, 1,~! -, <) are isomorphic, and indeed for every b in Rt
such that b > 1, there is an isomorphism taking | to b. This iso-
morphism is denoted by

T b7,

and its inverse is
x — log, z.

Theorem 36 (Intermediate Value Theorem). If f is a continuous
singulary operation on R, and f(a) - f(b) < O, then f has a zero
between a and b.

Hence for example the function z — 22 — 2 must have a zero in
R between | and 2. More generally, if A C R, then the set of
polynomial functions over A is obtained from the set of constant
functions taking values in A, along with —, +, -, and the projections
(g, %n_1) > x;, by closing under taking composites. Then all
polynomial functions over R are continuous, and so the Intermedi-
ate Value Theorem applies to the singulary polynomial functions.
Therefore the ordered field R is said to be real-closed. However,
there are smaller real-closed ordered fields: we establish this in the
next section.

1.9. Countability

A set is countable if it embeds in w; otherwise the set is uncount-
able.
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Theorem 37. The sets N, Z, and Q are all countable.

Theorem 38. #(w) is uncountable.

Proof. Suppose f is an injection from w to £ (w). Then the subset
{z: 2 ¢ f(x)} of wis not in the range of f, by a variant of the Russell
Paradox: if {x: = ¢ f(z)} = f(a), then a € f(a) & a ¢ f(a). O

Theorem 39. The set R is uncountable.

Proof. We shall use the notation whose properties will be established
in sub-§2.3.3 (p. 84). For every subset A of w, let g(A) be the set
of rational numbers x such that, for some n in w,

2
T< D 3
keEANn

Then g(A) is a real number by the original definition. The function
A g(A) from Z(w) to R is injective. O

However, suppose we let A™ be the smallest field that contains all
zeros from R of singulary polynomial functions over A. If we define
Ap=Qand A4, = A, then | J,,c ,, An Will contain all zeros from
R of singulary polynomial functions over itself. In fact | J A, will
be Q™. But this field is countable.

new

We can say more about a set than whether it is countable or un-
countable. The main reason for doing this here is that it provides a
good example of a classification: see §3.7 on page 136 below. A class
is transitive if it properly includes all of its elements. A transitive
set is an ordinal if it is well-ordered by the relation of membership.
Then all of the elements of w are ordinals, and so is w itself. The
class of all ordinals can be denoted by

ON.
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Theorem 40. The class ON is transitive and well-ordered by mem-
bership.

In particular, ON cannot contain itself; so it is not a set. This result
is the Burali-Forti Paradox [1].

Theorem 41. Every well-ordered set (A,<) is isomorphic to a
unique ordinal. The isomorphism is a certain function f on A, and
this function is determined by the rule

f) ={f(z): x <b}.

There are three classes of ordinals.

1. A successor is an ordinal o for some ordinal o.
2. The least ordinal, O, is in a class by itself.
3. A limit is an ordinal that is neither O nor a successor.

Then w is the least limit ordinal.

Two sets are equipollent if there is a bijection between them. An
ordinal is a cardinal if it is the least ordinal that is equipollent with
it.

Theorem 42. Every element of w is a cardinal. So is w itself.
The class of cardinals can be denoted by
CN.

By the Axiom of Choice, every set is equipollent with some unique
cardinal. This is the cardinality or size of that set. The cardinality
of an arbitrary set A is denoted by

|-
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A countable set has cardinality w or less; uncountable sets have car-
dinality greater than w. The finite sets are those whose cardinalities
are less then w; other sets are infinite.

Theorem 43. A set is infinite if and only if it is in bijection with
a proper subset of itself.

Theorem 44. There is a bijection from ON to CN \ w (the class
of infinite cardinals).

The bijection of the theorem is denoted by
o N,

Thus w = Vg, and |R| = R, for some ordinal « that is greater than
0. The Continuum Hypothesis is that |R| = N, but we shall make
no use of this.
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Part I.

Groups



2. Basic properties of groups and rings

We define both groups and rings in this chapter. We define rings
(in §2.5, page 92), because at the beginning of the next chapter
(§3.1, page 97) we shall define certain groups—namely general linear
groups—in terms of rings.

2.1. Groups

Given a set A, we may refer to a bijection from A to itself as a
symmetry or permutation of A. Let us denote the set of these
symmetries by

Sym(A).
This set can be equipped with:

1) the element id 4, which is the identity on A;
2) the singulary operation f +— f~!, which is inversion;
3) the binary operation (f,g) — f o g, which is composition.

(The functions id 4, =", and fog are defined in §1.3, page 30). The
structure or algebra denoted by

(Sym(A),ida, - o)

is the complete group of symmetries of A. A substructure of
this can be called simply a group of symmetries of A. (Structures,
substructures, and algebras are defined in §1.6, page 45.)

61
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We may use the expression Sym(A) to denote the whole structure
(Sym(A),id4, ~',0). Then, when we speak of a subgroup of Sym(A),
we mean a subset that contains the identity and is closed under in-
version and composition.

Theorem 45. For all sets A, for all elements f, g, and h of a group
of symmetries of A,

foida =f,

idgof = f,
fof !l =ida,
o f=ida,

(fog)oh=fol(goh).
Proof. Theorems 12, 13, and 11 in §1.3 (page 30). O

A group is a structure with the properties of a group of symmetries
given by the last theorem, Theorem 45. That is, a group is a struc-
ture (G,e,~',-) in which the following equations are identities (are
true for all values of the variables):
r-e=ux,
e-xr=ux,

z-x! =e,

2! - x=e,

(-y)-z=2-(y-2).

We may say also that these equations are the azioms of groups: this
means that their generalizations (Vx x - e = 2 and so forth) are true
in every group, by definition. According to these axioms, in every
group (G,e, '),
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1) the binary operation - is associative,
2) the element e is an identity with respect to -,
3) the singulary operation —! is inversion with respect to - and e.

The identity and the inversion will turn out to be uniquely deter-
mined by the binary operation, by Theorem 68 on page 89g.

A group is called abelian if its binary operation is commutative. If
A has at least three elements, then Sym(A) is not abelian. How-
ever, every one-element set {a} becomes an abelian group when we
define

e =a, a ' =a, a-a=a.

This group is a trivial group. All trivial groups are isomorphic
to one another. Therefore, as suggested on page 48, we tend to
identify them with one another, referring to each of them as the
trivial group.

Besides symmetry groups and the trivial group, we have four exam-
ples of groups from §1.7 (page 49), namely

(Q+7 ]7_13')a (Q707_7+)7 (2707_a+)7 (@\{0}7 ]7_13')7
and three examples from §1.8 (page 53):
(RJralvil»')v (R,O,—,+)7 (R\{O}»laila‘)

These seven examples are all abelian. Four of them are the origin of
a terminological convention. In an arbitrary group (G,e, ~',-), the
operation - is usually called multiplication. We usually write g - h
as gh. The element ¢g~' is the inverse of g. The element e is the
identity, and it is sometimes denoted by | rather than e.

Evidently the groups of rational numbers, of integers, and of real
numbers use different notation. These groups are said to be written
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additively. Additive notation is often used for abelian groups, but
almost never for other groups. It will be useful to have one more
example of an abelian group. Actually there will be one example for
each positive integer. If a and b are arbitrary integers for which the
equation

ar=2>

has a solution in Z, then we say that a divides b, or a is a divisor
or factor of b, or b is a multiple of a, and we may write

a|b.

Using the notation due to Gauss [9, p. 1], for a positive integer n
and arbitrary integers a and b we write

a=b (mod n)

if n | a—b. In this case we say a and b are congruent with respect
to the modulus n. This manner of speaking is abbreviated by
putting the Latin word modulus into the ablative case: a and b are
congruent modulo n.* Still following Gauss, we may say too that a
is a residue of b with respect to the modulus n.

Theorem 46. Let n € N.

1. Congruence modulo n is an equivalence-relation on 7Z.

2. Ifa=x and b=y (mod n), then

—a=-z & at+b=zr+y & ab=zy (modn).

*The ablative case of Latin corresponds roughly to the -den hali of Turkish.
Gauss writes in Latin; however, instead of modulo n, he says secundum
modulum n, “according to the modulus n” [10, p. 2].
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Thus congruence modulo n is an example of a congruence in the
sense to be defined on page 110. The set of congruence-classes of
integers modulo n can be denoted by

L,

If a is some integer, we can denote its congruence-class modulo n by
something like [a] or @, or more precisely by

a + nZ.
(This is a coset in the sense to be defined in §3.4, page 124.)
Theorem 47. For every positive integer n, the function
T+ x+nZ

from {0,....n— 1} to Z, is a bijection.

Proof. f0<i<j<mn,then | <j—1i<mn,andsonz >j—ifor
all  in N. By Theorem 22 (page 42),

1% 7 (mod n).

Thus the given map is injective. If k& € Z, let a be its least non-
negative residue (which exists by Theorem 23). Then a < n (since
otherwise O < a —n < a, and a — n is also a residue of k). Thus

a+nZ=k+nZ.

So the given map is surjective. O

Again given a positive integer n, we may treat an arbitary integer as
a name for its own congruence-class modulo n. In particular, by the
last theorem, we may consider Z,, as being the set {O,...,n — 1},
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where these n elements are understood to be distinct. By Theo-
rem 46, we have a well-defined structure (Z,,0,—,+, 1,-), where O
and | stand for their respective congruence-classes nZ and | + nZ.
The following theorem is then easy to prove. In fact the formal
verification will be made even easier by Theorem 84 on page 110.

Theorem 48. For each n in N, the structure (Z,,0,—,+) is an
abelian group.

The (multiplicative) groups of positive rational numbers, of nonzero
rational numbers, of positive real numbers, and of nonzero real num-
bers, and the (additive) groups of integers, rational numbers, real
numbers, and integers with respect to some modulus, are not ob-
viously symmetry groups. But they can be embedded in symmetry
groups, in the sense of §1.6 (page 45). Indeed, every element g of a
group G (written multiplicatively) determines a singulary operation
Ag on G, given by
Ag(z) = gz.

Then we have the following.

Theorem 49 (Cayley). For every group (G,e,~',-), the function
T Ay

embeds (G, e, -1 -) in the group (Sym(G),idg, —1,0) of symmetries.

Proof. We first observe that
Ae = idg, Ag-h = Ag © Ap,
because

Ae(z) = ez =z =idg(x),
Agn(x) =(g-h)-z=g-(h-z)=AAn(x)) = (Ag © An) ().
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Consequently, by Theorem 13 (page 33), each A, has an inverse, and
Ag) ™" =2,
This establishes z — A, : G — Sym(G) and in fact
Ay (Gre, ™) = (Sym(G),idg, ~', o)

—that is, by the notational convention established on page 47, x —
Az is a homomorphism from the one group to the other. It is an
embedding, since if A; = Ay, then in particular

g=ge=2Ag(e) =Ap(e) =he=h. O

By Cayley’s Theorem, every group can be considered as a symmetry
group.

2.2. Symmetry groups

In case n € w, then in place of Sym(n) the notation
Sn

is also used. However, most people probably understand S,, as the
complete group of symmetries of the set {l,...,n}. It does not
really matter whether {O,...,n— 1} or {I,...,n} is used; we just
need a set with n elements, and we are using {0,...,n — 1}, which
is n, as this set.

In the following, the factorial of a natural number was defined
on pages 40 and 45, and the cardinality of a set was defined on

page 58.
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Theorem 50. For each n in w,

Sym(n)] = n!

The group Sym(0) has a unique element, idg, which is itself O, that
is, @. The group Sym(l) has the unique element id;, which is
{(0,0)}. Thus

Sym(O) = lv Sym(l) = {{(070)}}

As groups, they are both trivial. We can think of the next symme-
try groups—Sym(2), Sym(3), and so on—in terms of the following
notion.

2.2.1. Automorphism groups

An automorphism of a structure is an isomorphism from the struc-
ture to itself. The set of automorphisms of a structure 2l can be
denoted by

Aut(2A).

We have Aut(2) C Sym(A), where as usual A is the universe of 2;
and we have more:

Theorem 51. For every structure 2, the set Aut(2l) is the universe

of a substructure of the group of symmetries of A.

Proof. Aut(2() contains id 4 and is closed under inversion and com-
position. O

Thus we may speak of Aut(2) as the automorphism group of
2.
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2.2.2. Automorphism groups of graphs

It will be especially useful to consider automorphism groups of graphs.
As a structure, a graph on a set A is an ordered pair (A, E), where
F is an antisymmetric, reflexive binary relation on A. This means

-z P, rPlyeyla

The elements of A are called vertices of the graph. If b E ¢, then
the set {b,c} is called an edge of the graph. An edge is an example
of an (unordered) pair, that is, a set with exactly two elements.
The set of unordered pairs of elements of a set A can be denoted
by
[A)%.

Every graph on a given set is determined by its edges, and moreover
every subset of [A]2 determines a graph on A. This result can be
stated as follows.

Theorem 52. For every set A, there is a bijection

Ew {{z,y}: (v,y) € B}

from the set of antisymmetric, reflexive binary relations on A to

2 ([A]%).

For our purposes, the triangle is the graph on 3 and edge set [3]%.
In a word, it is the complete graph on 3. Therefore every per-
mutation of 3 is an automorphism of the triangle. The vertices of
this triangle can be envisioned as the points (1,0,0), (O, I,0), and
(0,0, 1) in the space R3. An automorphism of this triangle then
induces a permutation of the coordinate axes of R3.

Similarly, the tetrahedron is the complete graph on 4, and so each
permutation of 4 is an automorphism of the tetrahedron. The tetra-
hedron can be envisioned as having vertices (1,0,0,0), (O, 1,0,0),
(0,0, 1,0), and (0,0,0, 1) in R*.
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In general, Sym(n) can be understood as comprising the permuta-
tions of the coordinate axes of R™. In this way, an element o of
Sym(n) determines the permutation

(zizd<n) = (Tym1y: i <n)

of R”. The reason why we use o' in this rule is the following.

Suppose we denote by f, the permutation of R™ given by this rule.
Then

fr(folzi:i<m)) = fT(IU—I(i)C i<n)
= (IU*I(T*I(i)): 1< TL)
= (I(To')*](i): 1< n)
= fro(Ti: i < n).
Thus 0 — f, is a homomorphism from Sym(n) to Sym(R"). An-
other way to see this is to recall that an element (z;: ¢ < n) of R®

is just a function i — x; from n to R. Denoting this function simply
by x, we have

folx) :moa*',

fr(fo(@)) =z00 ot =zo(r00)! = fro(x).
This idea will come back in §3.1 (p. 97). Meanwhile, we are going
to develop a way to distinguish the orientation-preserving permuta-

tions of the axes, namely the permutations that can be achieved by
rotation without reflection.

If n > 3, we may consider the n-gon to be the graph on n with the
n vertices

0,1}, {1,2}, {2,3}, ..., {n—2n—1}, {n—1,0}
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Considering n as Z,,, we can also write these edges more symmetri-
cally as

{i,i+ 1},

where i € Z,. The 3-gon is the triangle. The square is the 4-gon.
The nth dihedral group, denoted by one of

Dlh(n), Dn7
is the automorphism group of the n-gon; it is a subgroup of Sym(n).

Theorem 53. If n > 3, then every element o of Dih(n) is deter-
mined by (0(0),0(1)). Moreover, o(0) can have any value in n, and
then o(1) can and must be o(0) + 1. Thus

|Dih(n)| = 2n.

Theorem g5 on page 119 will build on this theorem.

2.2.3. A homomorphism

Every permutation of 4 is an automorphism of the tetrahedron. It
can also be understood as a permutation of a certain set of three
elements as follows.

Theorem 54. There is a surjective homomorphism from Sym(4)
onto Sym(3).

Proof. Let A be the set consisting of the three partitions

{{0. 11,4233}, {{0.2},{1,3}}, {{0,3},{1,2}}
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of 4 into two pairs. If o € Sym(4), there is an element ¢ in Sym(A)
given by

5({2.3) .03}) = ({{0(). 00D} {o (k). 0(0}}).

Then o +— & is a surjective homomorphism from Sym(4) to Sym(A).
O

This homomorphism will be of use later: in an example on page 133,
and then in the proof of Theorem 114 on page 135, which will be
used on page 138.

2.2.4. Cycles

We now consider symmetry groups of arbitrary sets. We shall be
interested in the results mainly for finite sets; but obtaining the
results for infinite sets also will take no more work. For any set A,
for any o in Sym(A), we make the recursive definition

0

o” =1idy,, ot

=cgoo”.

If n € N, we also define

Thus we have a function n — ¢” from Z to Sym(A).

Theorem g55. For every set A, for every o in Sym(A), the function
n o™ from Z to Sym(A) is a homomorphism of groups.

Proof. Since 00 =id4 and o= = (¢”)~! for all n in Z, it remains
to show

ot = g™ oo™ (2.1)
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for all m and n in Z. We start with the the case where m and n are
in w. Here we use induction on n. The claim holds easily if n = 0.
Suppose it holds when n = k. Then

gk D+m (k+m)+1

=0

zo,oa_k+m

:Uo(okoam)
:(Joak)oam

_ O_k+| ° O_m’
and so (2.1) holds when n = k + 1. By induction, it holds for all n
in w, for all m in w. Hence in this case also we have

oM — (O_ern)fI _ (o_m Oan)il —g "og ™.

m m n

Finally, if also m < n, then we have ¢~ o ¢™ = ¢”, s0

_ ] _
0_77, m — O,TL o (O_TVL) — O_TL oo ,

oM — (O,nfm)fl _ (O,n Oo,fm)fl —cMog ",

This completes all cases of (2.1). O

If b € A and o € Sym(A), then the set {o™(b): n € Z} is called the
orbit of b under o. A subset of A is an orbit under o if it is
the orbit under o of some element of A. So for example if we think
of the tetrahedron as a pyramid with an equilateral triangular base,
and we let o be the automorphism that rotates the base clockwise
by 120°, then the orbit under o of any vertex of the base is the set
of vertices of the base.

An orbit is trivial if it has size 1; if it is larger, it is nontrivial.
Then a permutation is a cycle if, under it, there is exactly one
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nontrivial orbit. Cycles are like prime numbers, by Theorem 58
below. Under the identity, there are no nontrivial cycles. As we
do not consider | to be a prime number, so we do not consider the
identity to be a cycle.

If the nontrivial orbits under some cycles are disjoint from one an-
other, then the cycles themselves are said to be disjoint from one
another. If ¢ and 7 are disjoint cycles, then o7 = 70, and so on
for larger numbers of disjoint cycles: the order of multiplying them
makes no difference to the product. It even makes sense to talk
about the product of an infinite set of disjoint cycles:

Theorem 56. Suppose ¥ is a set of disjoint cycles in Sym(A),
where the nontrivial orbit under each o in ¥ is A,. Then there is a
unique element w of Sym(A) given by

( ) _ U(I)7 Zf.T € Aav
i P if € AU, ey Ao

Proof. The rule gives us at least one value of m(z) for each = in A;
and this value is itself in A. But there is at most one value, because
the sets A, are known to be disjoint from one another, so that if
x € Ay, and o # 7, then ¢ A,. Thus 7 is unique. Also 7: A — A.
Moreover, each o in X, restricted to A,, is a permutation of A,.

Thus, replacing each o with o', we obtain 7! by the given rule.
Therefore m € Sym(A). O

The permutation 7 found in the theorem is the product of the
cycles in 3. We may denote this product by

II=
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In the notation of the theorem, if i — o; is a bijection from some
set I to X, then we can write

Hai:HE.

el

This function ¢ — o0; can be called an indexing of ¥ by I. The
product given by the theorem is independent of any indexing. If
j + 7; is an indexing of ¥ by some set J, then there must be a
bijection f from I to J such that 7y = o; for each 7 in I, and so

by the theorem,
II’Q‘::II(U ::[ITf@y
jeJ i€l i€l

Next, instead of disjoint cycles, we consider disjoint orbits under
some one permutation.

Theorem 57. Any two distinct orbits under the same permutation
are disjoint. In particular, if a belongs to an orbit under o, then
that orbit is {o*(a): k € Z}. If this orbit has size n for some n in
N, then the orbit is {o*(a): k € n}.

Proof. We prove the contrapositive of the first claim. Suppose a and
b have intersecting orbits under . Then for some m and n in Z we
have 0™ (a) = o™ (b). In this case, for all k in w,

o"(a) = o™t (D).

Thus the orbit of a is included in the orbit of b. By symmetry, the
two orbits are the same.

For the final claim, suppose the orbit of a is finite. Then for some 7
in Z and n in N, we must have

o'(a) = " (a). (2.2)
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Then a = 0*"(a), and so, by induction, for all k£ in Z we have
a = 0" (a), and more generally

i=j=0'(a) =0'(a) (modn).

Therefore, by Theorem 47, the orbit of a is {o%: i € n}. If n is
minimal such that, for some 4, (2.2), then n the size of the orbit of
a. O

Theorem 58. For cvery set A, every element of Sym(A) is uniquely
the product of disjoint cycles.

Proof. Supposing o € A, let I be the set of nontrivial orbits under
0. These are all disjoint from one another, by Theorem g57. For each
1 in I, we can define a unique cycle o; that agrees with ¢ on i, but
otherwise is the identity. Then o = [],.; 0;. Suppose o =[] ¥ for
some set X of disjoint cycles. Then for each ¢ in I, we must have
o; € X.. Moreover, i — ¢; must be a bijection from I to X. O

The cardinality of the unique nontrivial orbit under a cycle is the
order of the cycle. We may say that the identity has order 1. Then
orders come from the set NU {Xg}, which is w’ . {O}.

2.2.5. Notation

Suppose o € Sym(n) for some n. Then

c=1{(0,0(0)),....(n—l,o(n—1))}.

We might write this equation a bit more simply in the form

":{UEJO) . U?n_—ll)}' (23)
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This is a set with n elements, and each of those elements is an
ordered pair, here written vertically. The braces in (2.3) might be
replaced with parentheses, as in

o - n— |
a0) -+ on-1))"
However, this notation is potentially misleading, because it does not
stand for a matriz such as we shall define in §3.1 (p. 97). In a matrix,
the order of the columns (as well as the rows) matters; but in (2.3),

the order of the columns does not matter. The order of the rows
does matter. Indeed, we have

{agO) - o(n — 1)}:0_1.

n— |

Suppose o is a cycle, and k belongs to the nontrivial orbit under it.
Then we may use for o the notation

(k o(k) - o™ '(k), (2.4)

where m is the order of ¢. By Theorem 57, we can replace k& with
any member of the same cycle. So the expression in (2.4) should be
understood, not as a matrix, but rather as a ring or a circle,? as in
Figure 2.1 where m = 6. In general, the circle can be broken and
written in one line in m different ways, as

('(k) - o™ '\(k) K o(k) - o())

for any ¢ in m. The identity id,, might be denoted by (Q), or even
by (¢) for any i in n.

2The English word “circle” comes from the Latin circulus (which is a diminu-
tive form of circus); “cycle” comes ultimately from the Greek kUkAos. Both
circulus and KUKAOS mean something round; and KUKAoS is cognate with
“wheel.”
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a3 (k)
Figure 2.1. A cycle.

When n is small, we can just list the elements of Sym(n), according
to their factorizations into disjoint cycles. For example, Sym(3)
consists of

(0),
(0 1), (02), (12),
012), (021),

where no nontrivial factorizations are possible,, while Sym(4) con-
sists of

(0),
0 1),(02), (03), (I ) (13),(23),
(012),(013),(023), (123),
0 1)(2 )(02)(13) (0 3)(1 2),
0123),(0132),(0213),(0231), (0312),(0321).

For larger n, one might like to have some additional principle of
organization. But then the whole study of groups might be under-
stood as a search for such principles (for organizing the elements of
a group, or organizing all groups).
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If m < n, the map ¢ — o Uid,, is an embedding of the group
Sym(m) in Sym(n). Similarly each Sym(n) embeds in Sym(w);
but the latter has many elements that are not in the image of any
Sym(n). Indeed, we have the following, which can be obtained as a
corollary of Theorem 38.

Theorem 59. Sym(w) is uncountable.

2.2.6. Even and odd permutations

An element of Sym(n) is said to be even if, in its factorization as a
product of disjoint cycles, there is an even number of cycles of even
order. Otherwise the permutation is odd. Thus cycles of even order
are odd; cycles of odd order are even. The reason for this peculiar
situation is suggested by Theorem 6o below.

Meanwhile, if m < n, then, under the embedding ¢ — oUid,_, just
discussed of Sym(m) in Sym(n), evenness and oddness are preserved.
That is, o in Sym(m) is even if and only if o U id,,, is even.

We define the signum function sgn from Sym(n) to {£1} by

san(o) 1, if o is even,
n(o) =
& _1, ifois odd.

Theorem 67 on page 87 below is that this function is a homomor-
phism.

A cycle of order n can be called an n-cycle. It is consistent with
this terminology to consider the identity as a |-cycle. A 2-cycle is
also called a transposition.

Theorem 60. Every finite permutation is a product of transposi-
tions. A cycle of order m is a product of m — 1 transpositions.
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Proof. (O 1 - m—1)=(0 m—1)--(0 2)(0 1). O

Thus an even permutation is the product of an even number of
transpositions, and an odd permutation is the product of an odd
number of permutations. If the converse is true, then the signum
function must be a homomorphism.

However, proving that converse is not especially easy. The neatest
approach might seem to be as follows. A tournament on set A is an
irreflexive, antisymmetric, total binary relation on A. This means, if
i and j are distinct elements of A, then exactly one of (¢, ) and (j, 1)
belongs to a given tournament on A, but (4,4) never belongs. If (i, 7)
belongs to a given tournament, we can think of 7 as the winner of a
match between ¢ and j; this is the reason for the name tournament.
If T is a tournament on n, and o € Sym(n), we can define

o(T) = {(o(i),0(4)): (i,4) € T}

This is another (or possibly the same) tournament on n. Fixing a
particular tournament U on n, such as {(¢,7): i < j < n}, we let

A={6(U): 0 € Sym(n)}.

Then every &, restricted to A, is a permutation of A, and indeed the
map o — & | A is a homomorphism from Sym(n) to Sym(A). Let

Ag={T € A: |T \ U] is even}, A = AN Ap.

We should like to show that, for every o in Sym(n), for each ¢ in
2, the set {a(T): T € A;} is A; again, if o is even, and A;_; if
o is odd. Thus we should obtain a homomorphism from Sym(n)
to Sym({Ag, A;}), and the signum function would be a homomor-
phism. However, proving all of these things seems to be no easier
than just proving directly Theorem 67 on page 87 below.
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2.3. Monoids and semigroups

2.3.1. Definitions

The structure (N, 1,+) cannot expand to a group, that is, it cannot
be given an operation of inversion so that the structure becomes
a group. (See page 48.) The structure is however a monoid. A
monoid is a structure (M, e, -) satisfying the axioms

re==x
exr =ux,

(zy)z = z(yz).

In particular, if (G,e,”",-) is a group, then the reduct (G,e,-) is a
monoid.

Not every monoid is the reduct of a group: the example of (N, 1,-)
shows this. So does the example of a set M with an element e and
at least one other element, if we define xzy to be e for all z and y in
M.

For another example, given an arbitrary set A, we have the monoid
(A4,id 4, 0). (See page 45.) However, if A has at least two elements,
then A4 has elements (for example, constant functions) that are not
injective and are therefore not invertible.

If (M,e,-) is a monoid, then by the proof of Cayley’s Theorem on
page 66, the map = +— A, is a homomorphism from (M,e,-) to
(M M idyy, o). However, this homomorphism might not be an em-
bedding.

Even though the monoid (N, I,-) does not expand to a group, it em-
beds in the monoid (Q1, 1, ), which expands to the group (Q*, 1,~',.),
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by the method of fractions learned in school and reviewed as Theo-
rem 28 on page 49 above. There is no such embedding if we replace
the monoid (N, I,-) with the monoid (A4,id4,0) for a set A with
at least two elements. For, in this case, Lemma 5 on page 49 is
false, because multiplication on A“ does not allow cancellation in
the sense of Theorem 16 on page 39.

However, Theorem 28 does not actually require the identity 1 in
the monoid (N, 1,-). After appropriate modifications, the method
of the theorem allows us to obtain the group (Q, 0, —, +) such that
(QT,+) embeds in the reduct (Q,+). This is shown in Theorem 29
on page 51. The proof goes through, even though (Q%*,+) does
not expand to a monoid. By the same method, (Z,0, —,+) can be
obtained directly from (N, +).

The structures (N,+) and (Q%*,+) are semigroups. In general, a
semigroup is a structure (5, -) satisfying the identity

(zy)z = 2(y2).

If (M,e,-) is a monoid, then the reduct (M,-) is a semigroup. But
not every semigroup is the reduct of a monoid: for example (N, +)
and (QT,+) are not reducts of monoids. Or let O be the set of all
operations f on w® such that, for all n in w, f(n) > n: then O
is closed under composition, so (O, o) is a semigroup; but it has no
identity.

The structure (Q,0,—,+,1,-) is an example of a ring (or more
precisely associative ring); in fact it is a field, and it embeds in the
field (R,0, —,+, I,-) of real numbers, as follows from Theorem 32
on page 54. Rings and fields as such will be defined formally in §2.5,
beginning on page 92.
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2.3.2. Some homomorphisms

We defined powers of symmetries on page 72. By the same definition,
we obtain at least the positive powers of elements of semigroups:

a =a, a =a-a”.

Theorem 61. Suppose (S,-) is a semigroup, and m and n range
over N.

1. For alla in S,

That is, if a € S, then
n—a”: (N,+) = (S,).

2. For alla in S,
a™ = (a™)". (2.5)

That is,

n (a—a"): (N, 1,-) = (8%, idg, o). (2.6)

Proof. We use induction. The first part is proved like Theorem 55.
For the second part, we have a™! = a™ = (a™)', and if a™™ = (a™)™,
then

an(m+|) — anern — gV = (an)man — (an)erl )

This establishes (2.5). If we write f,(y) for y*, then (2.5) becomes

fmn = fn Ofm~

Since mn = nm, we get (2.6). O
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In a monoid, we define
a =e.

Theorem 62. Suppose (M,e,-) is a monoid.
1. Ifa € M, then x — a®: (w,0,+) = (M,e,-).

2. 2 (Y= y®): (w, 1,) = (MM ida, o).

In a group, we define

Theorem 63. Suppose (G,e,~",-) is a group.
1. Ifa € G, then x — a®: (Z,0,—,+) — (G,e,~ " ,-).
2. 2 (y—=y®): (Z,1,)) = (GYidg,0).

We shall use the following in Theorem 160 on page 185.

Theorem 64. If 22 = e for all z in some group, then that group is
abelian.

2.3.3. Pi and Sigma notation

We can generalize the taking of powers in a semigroup as follows.
Given elements a; of a semigroup, where i ranges over w, we define
certain iterated products recursively by

Haizl, H CL,'Z(HCL,‘)'CLH.
i<0 i<n+l i<n

We may also write [],_,, a; as

ao...anil_
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This product depends not just on the set {a;: ¢ < n}, but on the
function ¢ — a; on n. As on page 45, we may denote this function
by one of

(agy -y ap_1); (a;: i < n).

Then the product [[,_. a; could also be written as

H(ai: i<n).

By associativity of multiplication in semigroups, we obtain the fol-
lowing.

<n

Theorem 65. In a semigroup,

T o =La: [T anss

i<n+m i<n j<m

If the operation on a semigroup is commutative, we usually write it
additively, and then we may define

E a; =0, E aizg a; + ap,.
i<0 i<n+1 i<n

We may also write ), _, a; as
ag+ -+ a,_q.

However, we use multiplicative notation for the following.
Theorem 66. In a commutative semigroup, for all n in N, for all

o in Sym(n),
H Ao (i) = H a;.

i<n <n
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Proof. Suppose first that o is the transposition (k £), where k < £.

Let
b:Haz‘, c= H Aptit1s d= H Qppit]-

i<k i<l—k—1 i<n—f0—1
By Theorem 65 and commutativity,
Haa(i) zb-ag-c-ak-d
i<n
— b . aé . ak - C-

d
=b-ap-ap-c-d
:b-ak-c-ag-d:Hai.

So the claim holds when o is a transposition. In this case we have
H Arg(i) = H Q7 (4)
<n <n
for all 7 in Sym(n). Since every finite permutation is a product of
transpositions by Theorem 60, we obtain the claim in general. [

By this theorem, if we have a function i — a; from some finite set I
into a commutative semigroup, then the notation

[ o
i€l
makes sense. We use such notation in the next theorem, Theorem 67.
We may denote the function ¢ — a; on I by
(a;: 1€ 1),

and we may refer to it as an indexed set, specifically as an indexed
subset of the commutative semigroup in question. The set I is the
index set for this indexed set.
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2.3.4. Alternating groups

Theorem 67. The function sgn is a homomorphism from Sym(n)
to {+1}.

Proof. If o € Sym(n), then there is a well-defined function X
4o (X) from [n)? to {#1} given by

o) —oli)

i

45 ({3, 5})
Since multiplication in {#1} is commutative, we can define

f@) = I a0

X €[n)?

Ifo= (k (), then

fO)=aw(k M) I (@) - ek i)

ien~{k,l}
{—k i—k (—1
=i 1l (zee'kfi)
ien~{k,l}

= 1.

If 7 € Sym(n), we can define an element 7 of Sym([n]?) by

T({i,5}) = {7(0),7(4)}-

By Theorem 66,
floy="1I eFx),

X€[n)?
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S0
_ o(7(i)) —a((j))
fon =11 i—J
{i.5}€n)?
-1 (U(T(i)) —o(r(4) 7(0) —T(J))
G (1) = 7(4) i—J
— I () -0, (x)
X €[n)?
= H QU 72 H QT
X €[n)? Xe[n
= flo) - f(7).
Thus f(7) = 1 if and only if 7 is the product of an even number of
transpositions, and otherwise f(7) = —1. Therefore f must agree
with o on Sym(n), and so sgn must be a homomorphism. O

We have as a corollary that the even permutations of n compose a
subgroup of Sym(n). This subgroup is the alternating group of
degree n and is denoted by

Alt(n).

If n > |, there is a permutation o — oo (0 1) of Sym(n) itself that
takes even elements to odd. In this case, Alt(n) is half the size of
Sym(n). However, Alt(1) = Sym(1). For this reason, one may wish
to say that that Alt(n) is defined only when n > 2. This makes
Theorem 120 (page 140 below) simpler to state.
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2.4. Simplifications

If a semigroup (G, -) expands to a group (G,e, ~',-), then the semi-
group (G,-) itself is often called a group. But this usage must be
justified.

Theorem 68. A semigroup can expand to a group in only one way.

Proof. Let (G,e,”",-) be a group. If ¢’ were a second identity, then

/ / — — ’
er=euz, e;m:'zexw', e =e.

If @’ were a second inverse of a, then

Establishing that a particular structure is a group is made easier by
the following.

Theorem 69. Any structure satisfying the identities
exr = x,
'z = e,
x(yz) = (vy)z
is a group. In other words, any semigroup with a left-identity and

with left-inverses is a group.

Proof. We need to show ze = z and zz~' = e. To establish the
latter, using the given identies we have
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and so
vz =ezra”! = (227 ") (@2 (@27 ) = (227 ") (@27!) =
Hence also

The theorem has an obvious “dual” involving right-identities and
right-inverses. By the theorem, the semigroups that expand to
groups are precisely the semigroups that satisfy the axiom

Jz (Vo zx = x AVz Jy yz = 2),
which is logically equivalent to
Ve Vy Ju (zx =z Auy = 2). (2.7)

We shall show that this sentence is more complex than need be.

Thanks to Theorem 68, if a semigroup (G, -) does expand to a group,
then we may unambiguously refer to (G, -) itself as a group. Fur-
thermore, we may refer to G as a group: this is commonly done,
although, theoretically, it may lead to ambiguity.

Theorem 70. Let G be a nonempty semigroup. The following are
equivalent.

1. G expands to a group.

2. Fach equation ax = b and ya = b with parameters from G has
a solution in G.

3. Fach equation ax = b and ya = b with parameters from G has
a unique solution in G.

Proof. Immediately (3)=(2). Almost as easily, (1)=-(3). For, if a
and b belong to some semigroup that expands to a group, we have



2.4. Simplifications 91

ar = b < x = o 'b; and we know by Theorem 68 that a~' is
uniquely determined. Likewise for ya = b.

Finally we show (2)=(1). Suppose G is a nonempty semigroup in
which all equations az = b and ya = b have solutions. If c € G, let e
be a solution to yc = ¢. If b € G, let d be a solution to cx = b. Then

eb=e(cd) = (ec)d = ed = b.

Since b was chosen arbitrarily, e is a left identity. Since the equation
yc = e has a solution, ¢ has a left inverse. But c¢ is an arbitrary
element of G. By Theorem 69, we are done. O

Now we have that the semigroups that expand to groups are just
the semigroups that satisfy the axiom

Va Vy (3z 2z = y A Jw wx = y).

This may not look simpler than (2.7), but it is. It should be under-
stood as

Va Yy 3z Jw (22 = y Awz = y),

which is a sentence of the general form V3; whereas (2.7) is of the
form 3v3).

Theorem 71. A map f from one group to another is a homo-
morphism, provided it is a homomorphism of semigroups, that is,

flxy) = f(2)f(y).

Proof. In a group, if a is an element, then the identity is the unique
solution of za = a, and a~' is the unique solution of yaa = a. A
semigroup homomorphism f takes solutions of these equations to
solutions of xb = b and ybb = b, where b = f(a). O
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Inclusion of a substructure in a larger structure is a homomorphism.
In particular, if (G,e, ~',-) and (H,e, ~',-) are groups, we have

(Ga) c (Ha) = (Gveaila') - (H7ea7|7')'

If an arbitrary class of structures is axiomatized by V3 sentences,
then the class is “closed under unions of chains” in the sense that, if
Ao C A} C Ay C -+, where each 2 belongs to the class, then the
union of all of these structures also belongs to the class. In fact the
converse is also true, by the so-called Chang—t.0§-Suszko Theorem
[3, 25]. With this theorem, and with Theorem 71 in place of 70, we
can still conclude that the theory of groups in the signature {-} has
V3 axioms, although we may not know what they are.

Theorem 71 fails with monoids in place of groups. For example,
(Z,1,-)and (ZxZ,(1,1),-) are monoids (the latter being the prod-
uct of the former with itself as defined in §3.2), and z — (z,0) is
an embedding of the semigroup (Z,-) in (Z x Z,-), but it is not an
embedding of the monoids.

2.5. Associative rings

A homomorphism from a structure to itself is an endomorphism.
Recall from page 63 that a group in which the multiplication is
commutative is said to be an abelian group, and (page 64) its
operation is usually written additively. The set of endomorphisms
of an abelian group can be made into an abelian group in which:

1) the identity is the constant function = — e;
2) additive inversion converts f to x — —f(z);
3) addition converts (f,g) to z — f(z) + g(x).
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If E is an abelian group, let the abelian group of its endomorphisms
be denoted by
End(E).

The set of endomorphisms of E can also be made into a monoid in
which the identity is the identity function idg, and multiplication
is functional composition. This multiplication distributes in both
senses over addition:

fo(g+h)=fog+ foh, (f+g)oh=foh+goh.

We may denote the two combined structures—abelian group and
monoid together—by

(End(E),idg, o);

this is the complete ring of endomorphisms of E. A substruc-
ture of (End(F),idg, o) can be called simply a ring of endomor-
phisms F.

An associative ring is a structure (R, 0, —,+, 1,-) such that

1) (R, +) is an abelian group,
2) (R, ) is a monoid,
3) the multlphcatlon distributes in both senses over addition.

Then rings of endomorphisms are associative rings.3 It may be con-
venient to write an associative ring as (R, |,-), where R is implicitly
an abelian group. We might even say simply that R is an associative
ring.

An associative ring is usually just called a ring; however, we shall
consider some rings that are not associative rings in §6.2 (page 205).

3See note 2 on page 221 for the origin of the term ring.
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Some authors might not require an associative ring to have a multi-
plicative identity.4 We require it, so that the next theorem holds. As
with a group, so with an associative ring, an element a determines
a singulary operation A, on the structure, the operation being given
by

Ao(2) = ax.

Then we have an analogue of Cayley’s Theorem (page 66):

Theorem 72. For every associative ring (R, 1,-), the function
T Ay

embeds (R, 1,-) in (End(R),idg, o).

In an associative ring, if the multiplication commutes, then the
ring is a commutative ring. For example, (Z,0,—,+,1,-) and
(Q,0,—,+,1,-) are commutative rings. The following is easy to
check, but can be seen as a consequence of Theorem 85 on page 111
below, which is itself easy to prove, especially given Theorem 84.

Theorem 73. (Z,,0,—,+,1,:) is a commutative ring.

In an associative ring, an element with both a left and a right mul-
tiplicative inverse can be called simply invertible; it is also called
a unit.

Theorem 74. In an associative ring, the units compose a group
with respect to multiplication. In particular, a unit has a unique left
inverse, which is also a right inverse.

4For Lang |23, ch. I, §1, p. 83], a ring is what we have defined as an associative
ring. For Hungerford [19, ch. III, §1, p. 115], what we call an associative ring
is a ring with identity.
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The group of units of an associative ring R is denoted by
R*.

For example, Z* = {1, —1}. Evidently all two-element groups are
isomorphic to this one.

By the theorem, if an element of an associative ring has both a left
inverse and a right inverse, then they are equal. However, possibly
an element can have a right inverse, but not a left inverse. We can
construct an example by means of the following.

Theorem 75. If I is a set and G is a group, then the set G of
functions from I to G is a group with multiplication given by

(xi:i€l) (yi:ie€l)=(x;-yi: i €1).

Now let G be any nontrivial group. An arbitrary element (z,: n €
w) of G® can be written also as

(930,581,...).

Then End(G®) contains elements f and g given by
f(x07x|7"') = ($|7.’E2,$3,{E4,...)7
g(CEO,ZEI,...) = (LL‘O,ZO,I’],IL’Q,...),

so that

fg($07.’17|,...) = (l’o,a?[,xz,...>7
gf(zg,xy,...)=(z1,2,29,...).

In particular, g is a right inverse of f, but not a left inverse. The
construction in Theorem 75 will be generalized on page 142.
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If R is a commutative ring, and R* = R~ {0}, then R is called a
field. For example, Q and R are fields. The field C can be defined
as R x R with the appropriate operations: see page 114.

The trivial group {0} becomes the trivial associative ring when we
define 1 = 0 and O-0 = 0. This ring is not a field, because its only
element O is a unit.
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3.1. *General linear groups

The purpose of this section is to define some families of examples of
groups, besides the finite symmetry groups Sym(n).

By Cayley’s Theorem, page 66, we know that every finite group
embeds, for some n in w, in Sym(n). We know in turn (from page 79)
that each Sym(n) embeds in Sym(w), which however is uncountable
by Theorem 59. For every commutative ring R, for every n in w, we
shall define the group GL,,(R) of invertible n x n matrices over R.
Both Sym(n) and R* embed in GL,(R). If R is countable, then so
is GL,(R). If R is finite, then so is GL,(R). In any case, GL,(R)
can be understood as the automorphism group of R™, when this is
considered as an R-module.

We shall use invertible matrices over Z in classifying the finitely
generated abelian groups, in §4.7 (page 164).

3.1.1. Additive groups of matrices

For any commutative ring R, for any two elements m and n of w, a
function (4, j) ~— a’ from m x n to R can be called an m x n matrix

97
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over R and denoted by the expression

ap A,

—1 m— |
aO PRI ani I
which has m rows and n columns. We may abbreviate this matrix
to

(a3)550

or simply

if the sets over which ¢ and j range is clear. The entries a§» are from
R. The set of all m x n matrices over R can be denoted by

M xn (R).

This is an abelian group in the obvious way, with addition defined
by

()i + () = (0} + b,

3.1.2. Multiplication of matrices

Given any three elements m, s, and n of w, we define multipli-
cation as a function from the product M,,«s(R) X Mgy, (R) to
meu(R) by

<m

ii<m j<€ (2 : ])
;). a.,; b
( J)]<S k<n k<n

Then in particular multiplication is a binary operation on each group
M, xn(R) of square matrices. One particular element of this group
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is

which can be denoted by
I,.

<n

=, where

This matrix can also be written as (8%)"

g J1 i)
7710, otherwise,

Theorem 76. For all commutative rings R, multiplication of matri-
ces over R is associative and distributes over addition. Also My, xn(R)
is an associative ring with multiplicative identity 1.

The group M,,»,,(R)™ is called the general linear group of degree
n over R; it is also denoted by

GL,.(R).

Some elements of GL,,(R) are picked out by the following.

Theorem 77. For each n in w, there is an embedding of Sym(n)
in GL,(R), namely
o~ (@)yi<n
o (87 Wyin,
Proof. The given function is evidently injective. It is a homomor-
phism since

Oy (57 O = W 5w 7 (o™ @)y
i )i —(Zé )j (8, ); U

k<n

(6
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If R is a field, there is an algorithm called Gauss—Jordan elimi-
nation,learned in linear algebra classes, for determining whether a
given element A of M,,x,(R) is invertible. One systematically per-
forms certain invertible operations on the rows of A, attempting to
transform it into I,,. These operations are called elementary row
operations, and they are:

1) interchanging two rows,

2) adding a multiple of one row by an element of R to another,
and

3) multiplying a row by an element of R*.

One works through the matrix from left to right, first converting a
nonzero element of the first column to |, and using this to eliminate
the other nonzero entries; then continuing with the second column,
and so on. One will be successful in transforming A to I, if and
only if A is indeed invertible. In this case, the same elementary
row operations, performed on the rows of I,,, will produce A~'.
The reason is that performing each of these operations is the same
as multiplying from the left by the result of performing the same
operation on I,,.

When R is Z, one can instead use the Euclidean algorithm to make
one entry in each column of A equal to the greatest common divisor
of all of the entries in that column. (See page 117.) Then A is
invertible if and only if each of these greatest common divisors is

l.

We now develop a method for determining whether a matrix over
an arbitrary ring is invertible.
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3.1.3. Determinants of matrices

Given a commutative ring R, we define the function X — det(X)
from M, x,(R) to R by

det((@))isn) = > sen(o) [T abe)-
oc€Sym(n) i<n
Here det(A) is the determinant of A.

Theorem 78. The function X — det(X) is a multiplicative homo-
morphism, that is,

det(XY) = det(X) - det(Y).

Proof. We shall use the identity

1> rGa= > T1/6Gem)

i<k j<n @: k—=ni<k

Let A= (aj);iﬁ and B = (b} );iﬁ Then

det(AB) = det((>_ ajbi)i<h)

e k<n
D IR G) | DIAN
oc€Sym(n) i<n j<n
= > selo) 30 TG
oc€Sym(n) p:n—niln
= > e > sen(o) [T
@p:n—nin o€Sym(n) i<n

We shall eliminate from the sum those terms in any ¢ that is not
injective. Suppose k < ¢ < n, but ¢(k) = ¢(¢). The function
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o+ oo (k () isa bijection between Alt(n) and Sym(n) \ Alt(n).
Writing ¢’ for oo (k  £), we have

> sen(o) [ bgpé? > sau(o)(]] bi(( ; 11 b¢$zz))

oc€Sym(n) i<n o€Alt(n) i<n i<n

Each term of the last sum is O, since o and o’ agree on n ~ {k,(},
while

P(k)pp(€) _ 1o(£) po(k) (k) 1o(0)
ba’(k) ba’(@) ba”([) ba’(k) ba’(k)ba’(i)
Therefore, continuing with the computation above, we have

det(AB) = Z HGT() Z sgn(o Hba(z)

TE€Sym(n) i<n o€Sym(n) i<n

Since each 7 in Sym(n) permutes n, we have also
[1000 =¥y sen(o) = sen(r) -sen(or™").
i<n i<n

Putting this all together, we have

det(AB) = Z Hai(i) Z sgn(7) sgn(or") bfﬁ,l(i)

T€Sym(n) i<n o€Sym(n) i<n

= Z sgn (7T H aT(l Z sgn(o H bM N
TESym(n) i<n o€Sym(n) i<n

= 2 s ][ae 2 se@ [
TESym(n) i<n o€Sym(n) i<n

= det(A) - det(B),

since o — o7~ is a permutation of Sym(n). O

Corollary 78.1. An element of My, (R) has an inverse only if its
determinant is in R*.
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3.1.4. Inversion of matrices

Given the commutative ring R, we can now characterize the elements
of GL,,(R) among elements of M,, ., (R) by establishing the converse
of Corollary 78.1.

Theorem 79. An element of My, «n(R) has an inverse if its deter-
minant is in R*.

Proof. Let A = (a%)'<". If i < n, then

j<n’

det(A) = Z sgn(a)-Haﬁ(Z)
o€Sym(n) £<n
= Z SgH(U)'afy(i) H ai(n
oc€Sym(n) Len~{i}
= a5 > se(o) J[ agq
j<n  oc€&€Sym(n) Len~{i}

o(i)=j

=D_aibi,
j<n

where in general

bl = Z sgn(o) - H af;(z).

o€Sym(n) ten~{k}
o(k)=j
If i # k, then
doabi=2 a5 > selo) J[ a
j<n j<n  o€&Sym(n) ten~{k}
o(k)=j

= Z Sgn(o’)'aff(k) H af;(e)

oc€Sym(n) ten~{k}
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= > sen(0)-appmabey [ abw =0

oc€Sym(n) ten~{i,k}

since the map o +— oo (i k) is a bijection between Alt(n) and
Sym(n) \ Alt(n). Thus

A (b1 = (det(A) - 85)i<n .

k/k<n k<n®
Finally,
Shi=Y ¥ i T st
j<n j<mn oceSym(n) ten~{j}
o(j)=i
IT/
= Z sgn(o) - H 5(2) @
oc€Sym(n) ten~{o—"(i)}
—1 iy
= Z sgn(o) - H ay (Z)az @,
o€Sym(n) Len~{i}

which is det(A) if i = k, but is otherwise O, so
(b%)iSm A = (det(A)d})<n

j<n k<n-®

In particular, if det(A) is invertible, then so is A, and

—1 | n
A7 = (det(A)~"0))ISn. O
Thus
GL,(R) = {X € Myxn(R): det(X) € R*}.
In the 2 x 2 case, if ad — bc = |, we have

L -
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3.1.5. Modules and vector-spaces

A module is a kind of structure with two universes. One of these is
the universe of a commutative ring R, and other is the universe of an
abelian group M. Furthermore, there is a function (z,m) — z-m
from R x M to M such that the function z — (m — x-m) is a
homomorphism from R to (End(M),idas,0). Then we can under-
stand M as a group equipped with a certain additional operation
for each element of R. In this sense, M is a module over R, or an
R-module.

For example, R is a module over itself. A module over a field is
called a vector space. In this case, the associated homomorphism
from R to (End(M),id s, o) is an embedding, unless M is the trivial
group.

The foregoing definition of modules makes sense, even if R is not
commutative; but in that case what we have defined is a left module.
We restrict our attention to the commutative case.

We further restrict our attention to the case where M is the group
M, 1 (R) for some n in w. A typical element of this group can be
written as either of

x, (z': i < n);

thus it can be identified with an element of R™. The group becomes
an R-module when we make the obvious definition

rox=(r-z':i<n).

Theorem 8o. For every commutative ring R, for every n in w,
there is an isomorphism from GL,(R) to Aut(R™), namely

A (x— A ). (3.1)
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Proof. By Theorem 76, if A € GL,(R), then the operation x —
A -« is a group endomorphism. Being invertible, it is an group
automorphism. By commutativity of R (and the definition of matrix
multiplication), for all 7 in R,

A-(r-x)y=r-(4-x).

Hence the function in (3.1) is indeed a homomorphism 4 from GL,,(R)
to Aut(R™). To show that it is a bijection onto Aut(R™), we use the
notation

€e; = (5; 1< ’I’L),

T = E ' e;.

so that

If A= (a})!<h, then

A-ej=(aj:i<n),
which is the number-j column of A. This shows ker(h) is trivial. To

show that h is surjective onto Aut(R"), suppose f € Aut(R") and
f(e;) = (al: j <n). Then

flx) = f(zxz 'ei)

szi'f(ei)
<n
:Zwi~(ag:j<n)
<n
= <Zmi-ag:j<n)
<n

=A-
where A = (a})i<l. Thus f = h(A). O

j<n’
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By composing the isomorphism in the theorem with the embedding
of Sym(n) in GL,, (R) given by Theorem 77, we obtain the embedding
of Sym(n) in Aut(R") discussed (in case R = R) on page 70 above.

3.2. New groups from old

3.2.1. Products

If A and B are two algebras with the same signature, then their
direct product, denoted by

A x B,

is defined in the obvious way: the universe is A x B, and for every n
in w, for every n-ary operation-symbol f of the signature of 2 and
B,

PP (o) i <n) = (i <n), fP(yi i <n)).
In the special case where 2 and B are groups, we have

.le%(

(z0,%0) z1,y1) = (zo * 21,90 P y1),

or more simply

(0, y0) (@1, 1) = (Zox1, Yoy )-
Theorem 81. The direct product of two

(a) groups is a group,
(b) associative rings is an associative ring,
(c) commutative rings is a commutative ring.
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If G and H are abelian, written additively, then their direct product
is usually called a direct sum, denoted by

GoH.

The direct sum Zy @ Z5 is the Klein four group, denoted by
V4

(for Vierergruppe®). This is the smallest group containing two ele-
ments neither of which is a power of the other.

Theorem 82. If 2 and B are two algebras with the same signature,
then the functions

(z,y) = , (z,y) =y
are homomorphisms from A x B to A and B respectively.

Theorem 83. If 2 and B are two groups or two associative rings,
then the functions

T (z,6), y— (e, y)

are homomorphisms from 24 and B respectively to A x B.

3.2.2. Quotients

The groups (Z,, 0, —, +) and the rings (Z,,0, —, +, |, -) are instances
of a general construction.

* According to Wikipedia, Klein gave this name to the group in 1884, but the
name was later applied to four-person anti-Nazi resistance groups.
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Suppose ~ is an equivalence-relation on a set A, so that it partitions
A into equivalence-classes

{reA:x~al;

each such class can be denoted by an expression like one of the
following:

a/~, [a], a.

Each element of an equivalence-class is a representative of that
class. The quotient of A by ~ is the set of equivalence-classes of A
with respect to ~; this set can be denoted by

e

Suppose for some n in w and some set B, we have f: A" — B.
Then there may or may not be a function f from (A/~)™ to B such
that the equation

f([xOL"'a[xn—l]):f(wa"axn—]) (32)

is an identity. If there is such a function f, then it is unique. In this
case, the function f is said to be well-defined by the given identity
(3.2). Note however that there are no “ill-defined” functions. An
ill-defined function would be a nonexistent function. The point is
that choosing a function f and writing down the equation (3.2) does
not automatically give us a function f . To know that there is such
a function, we must check that

ag ~ TN Nay_| ~x,_ 1 = flag,...,a,_1) = f(x0,...,2Hp_1).

When this does hold (for all a;), so that f exists as in (3.2), then

fop=1f, (3-3)
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where p is the function (xq,...2z,_1) — ([zo],-..,[Tp_1]) from A™
to (A/~)". Another way to express the equation (3.3) is to say that
the following diagram commutes:

f

A" —— B

| A

(A/~)"

Suppose now 2 is an algebra with universe A. If for all n in w, for ev-
ery distinguished n-ary operation f of 2, there is an n-ary operation
f on (A/~)" as given by (3.2), then ~ is a congruence-relation
or congruence on 2. In this case, the f are the distinguished oper-
ations of a structure with universe A/~. This new structure is the
quotient of 2 by ~ and can be denoted by

A/~

For example, by Theorem 46 on page 64, for each n in N, congruence
modulo n is a congruence on (Z,0,—,+, 1,-). Then the structure
(Z.,,0,—,+) can be understood as the quotient (Z,0, —, +)/~, and
(Z,,0,—,+,1,:) as (Z,0,—,+, 1,-)/~. The former quotient is an
abelian group by Theorem 48, and the latter quotient is a commu-
tative ring by Theorem 73 on page 94. These theorems are special
cases of the next two theorems. In fact the first of these makes
verification of Theorem 48 easier.

Theorem 84. Suppose ~ is a congruence-relation on a semigroup

(G7 )

1. (G,-)/~ 1is a semigroup.

2. If (G,-) expands to a group, then ~ is a congruence-relation
on this group, and the quotient of the group by ~ is a group.
If the original group is abelian, then so is the quotient.
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Theorem 85. Suppose (R,0,—,+,1,-) is an associative ring, and

~ is a congruence-relation on the reduct (R,+,-). Then ~ is a
congruence-relation on (R,0, —, +, 1), and the quotient (R,0, —, +, 1)/~
1s also an associative ring. If the original ring is commutative, so is

the quotient.

For another example, there is a congruence-relation on (R, +) given
by
a~bsa—-beZ.

Then there is a well-defined embedding a — exp(2mia) of (R, 0, —, +)/~
in (C*, 1,71,

3.2.3. Subgroups

We defined subgroups of symmetry groups on page 62, and of course
subgroups of arbitrary groups are defined the same way. A sub-
group of a group is just a substructure of the group, when this
group is considered as having the full signature {e, ~',-}. More in-
formally, a subgroup of a group is a subset containing the identity
that is closed under multiplication and inversion.

The subset N of QT contains the identity and is closed under mul-
tiplication, but is not closed under inversion, and so it is not a sub-
group of QF. The subset w of Z contains the additive identity and
is closed under addition, but is not closed under additive inversion,
and so it is not a subgroup of Z.

Theorem 86. A subset of a group is a subgroup if and only if it is

non-empty and closed under the binary operation (z,y) — zy~ .

If H is a subgroup of G, we write

H<G.
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One could write H < @ instead, if one wanted to reserve the expres-
sion H < G for the case where H is a proper subgroup of G. We
shall not do this.> However, starting on page 189, we shall want an
expression for this case: then we shall just have to write

H<:sG.
Meanwhile, we have the following examples.
Theorem 87. 1. For all groups G,
{e} <G, G<G.

. For all groups Gg and Gy, if Hy < Gg and H; < G, then

IS

Ho x H) < Gg x Gy.
9. In particular, for all groups G and H,
G x{e} <GxH, {e} xH <G x H.
4. For all groups G,
{(z,2): 2 € G} < GxG.

5. The subset
{e,(01),(23),(0 1)(2 3)}

of Sym(4) is a subgroup isomorphic to Vy.
6. If ~ is a congruence-relation on a group G, then

{reG:z~e} <G

21 do think it is useful to reserve the notation A C B for the case where A is a
proper subset of B, writing A C B when A is allowed to be equal to B.
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It is important to note that the converse of the last part of the
theorem is false in general: there are groups G with subgroups H
such that for no congruence-relation on G is H the congruence-
class of the identity. For example, let G be Sym(3), and let H be
the image of Sym(2) in G under the obvious embedding mentioned
in §2.2. Then H contains just the identity and (0O 1). If ~ is a
congruence-relation on G such that (O 1) ~ e, then

(1 2)(0 1)(1 2) ~ (1 2)e(l 2) ~e:
but (1 2)(0 1)(1 2) = (0 2), which is not in H. See §3.6 (p. 129)
for the full story.

If f is a homomorphism from G to H, then the kernel of f is the
set

{r e G: f(x) =e},
which can be denoted by ker(f). The image of f is

{y € H: y = f(x) for some z in G},

that is, {f(x): © € G}; this can be denoted by im(f). For example,
considering sgn as a homomorphism from Sym(n) to Q*, we have

ker(sgn) = Alt(n), im(sgn) = {+1}.

If g is (z,y) — « from G x H to G as in Theorem 82, and h is
x + (x,e) from G to G x H as in Theorem 83, then

ker(g) = {e} x H, ker(h) = {e},
im(g) = G, im(h) = G x {e}.

An embedding (that is, an injective homomorphism) is also called
a monomorphism. A surjective homomorphism is called an epi-
morphism. In the last example, g is an epimorphism, and h is a
monomorphism.
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Theorem 88. Let f be a homomorphism from G to H.

1. ker(f) < G.
2. f is a monomorphism if and only if ker(f) = {e}.
3. im(f) < H.

There is a monomorphism from R & R into My (R), namely

@ (50,

One can define C to be the image of this monomorphism. One shows
that C then is a sub-ring of My, (R) and is a field. The elements
of C usually denoted by | and i are given by

R RO

Then every element of C is « 4+ yi for some unique z and y in R.
The function z — Z is an automorphism of C, where

r+yli =z —yi.

There is then a monomorphism from C& C into My 5 (C), namely
Ty,
(z,y) — <_y m) ;

H

in honor of its discoverer Hamilton: it consists of the quaternions.
One shows that H is a sub-ring of My,(C) and that all non-zero
elements of H are invertible, although H is not commutative. The
element of H usually denoted by j is given by

=(5 o)

its image is denoted by
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Theorem 89. An arbitrary intersection of subgroups is a subgroup.

Proof. This is an instance of the general observation that an arbi-
trary intersection of substructures is a substructure. O

3.2.4. Generated subgroups

Given a subset A of (the universe of) a group G, we can close under
the three group-operations, obtaining a subgroup, (A). For a formal
definition, we let

(4)y=s,

where S is the set of all subgroups of G that include A. Note that

(@) = {e}.
The subgroup (A) of G is said to be generated by A, and the
elements of A are said to be, collectively, generators of (A). If
A={ag,...,a,_1}, then for (A) we may write
(agy .. an_1).

In this case, (A) is said to be finitely generated. If also n = 1,
then (A) is said to be cyclic. It is easy to describe cyclic groups
as sets, and almost as easy to describe finitely generated abelian
groups:

Theorem go. Let G be a group.

1. If a € G, then
(ay ={a": n € Z}.

2. If {ag,...,a,_1} C G, and G is abelian, then

<ao,...,an,|> = {x0a0+--~+xn,lan,| : (mo,...,xn,l) S Zn}
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Proof. 1. Let f be the homomorphism =z — a® from Z to G as in
Theorem 63 (p. 84). We have to show (a) = im(f). Since a €
im(f), it is now enough, by Theorem 88, to show im(f) C H for all
subgroups H of G that contain a. But for such H we have a® € H,
and if a™ € (a), then a"*' € (a), so by induction, im(f) C H.

2. The indicated set is a subgroup of G by Theorem 86, and it
contains the a;. It remains to note that the indicated set is included
in every subgroup of G that contains the a;. O

As examples of cyclic groups, we have Z and the Z,,. Indeed,
Z=<|>, Zn:<[l]>'

Theorem 9g1. All subgroups of Z are cyclic. All nontrivial sub-
groups of Z are isomorphic to Z.

Proof. Suppose G is a nontrivial subgroup of Z. Then G has positive
elements, so it has a least positive element, n. If a € G, then all
residues of a modulo n belong to G. By Theorem 47 (page 65), a has
a residue in n (that is, {O,...,n — 1}), and so this residue must be
0. Thus n | a, so a € (n). Therefore G = (n). The function z — nx
from Z to (n) is a surjective homomorphism; that it is injective can
be derived from Corollary 22.1 (page 43). O

Theorem 92. If n is a positive integer and m is an arbitrary inte-
ger, then
(Im]) =7, = [m|e€Z,”.

Proof. Each condition means the congruence

mz =1 (mod n)

is soluble. O
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The language of generated subgroups is useful for establishing a
basic theorem of number theory. In 7Z, the relation of dividing is
transitive:

alb & blc = alc
This is just because ax = b and by = ¢ imply axy = ¢. A common
divisor of two integers is just a divisor of each of them. Equivalently,
a common divisor of a and b is some ¢ such that

(a,b) C {c).

Hence it makes sense to speak of a greatest common divisor of
two integers: it is a common divisor that is divisible by each common
divisor. Since O divides only itself, it is not a common divisor of two
different integers. If a # 0, then a is a greatest common divisor of
a and Q. Defining

al a, ifa>0,
a| =
—a, ifa<O,
we have
cld & d#0 = || < |d],
cld & d]c¢ < || =|d|,

so if d is a greatest common divisor of a and b, then so is —d, but
nothing else. In this case we denote |d| by

ng(aa b),

this is greater (in the usual sense) than all other common divisors
of a and b.

Theorem 93. Any two integers a and b have a greatest common
divisor, and

(a,b) = (ged(a, b)),
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so that the equation
az + by = ged(a, b)

is soluble.

Proof. By Theorem g1, there is d such that (a,b) = (d). Since we
have
c|ld = (d) C{c),

it follows that d is a greatest common divisor of @ and b. Then
ged(a, b) = |d], so (ged(a, b)) = (d). O

A common divisor of a and b is a common divisor of |a| and |b].
The proof of Theorem g1 suggests a way to find greatest common
divisors, which is the Euclidean algorithm, established in Propo-
sitions VIL.1 and 2 of the Elements. Suppose ag and a; are positive
integers. We define a sequence (ag,ay,...) of positive integers by
letting a9 be the residue in ay | of ap modulo ay 1, if this residue
is positive; otherwise a; o is undefined. Then

Ag41 > 42,

so the sequence must have a last term; this is ged(ag,a;). When
this is 1, then ag and a; are said to be prime to one another, or
relatively prime. In this case, by Theorem g3, the equation

agr + a1y = |
is soluble in Z.

If a = b (mod n), then ged(a,n) = ged(b,n). Hence the following
makes sense:
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Theorem g94. For all positive integers n,

Zn* ={x € Zy: ged(x,n) = 1}.

Proof. By the proof of Theorem g2, Z,* consists of those m in Z,
such that the congruence

mx=1 (mod n)
is soluble, that is, the equation mxz + ny = | is soluble, so that
ged(m,n) must be 1. Conversely, if ged(m,n) = 1, then the equa-
tion max + ny = 1 is soluble by Theorem g3. O

For an arbitrary subset A of an arbitrary group, it is not so easy to
give a description of the elements of (A). We shall do it by means
of Theorem 126 on page 153. Meanwhile, we may note some more
specific examples:

The subgroup ((0 1), (2 3)) of Sym(4) is the subgroup given above
in Theorem 87 as being isomorphic to Vy.

The subgroup (i,j) of H* is the quaternion group, denoted by

Qs;

it has eight elements: &1, +i, &j, and £k, where k = ij. We
consider this group further in the next section (§3.3) and later.

Theorem g5. Ifn > 3, let
on=00 1 ... n—1),
B=(1 n—=1)(2 n-=2)---(m n—m)

in Sym(n), where m is the greatest integer that is less than n/2.
Then

Dih(n) = (o, 8) = (B, Bon).
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Proof. The subset {0,'47: (i,j) € n x 2} of Sym(n) is a subset
of Dih(n) and has 2n distinct elements, so by Theorem 53 (p. 71)
it must be all of Dih(n). Moreover (5, 80,) < (o, ), but also

<0n76> < <ﬁvﬁ0n> since o = - Boy,. O
Our analysis of Dih(n) is continued in Theorem g9 below.

In case n = O, the group {(ag, - . .,a,_) should logically be denoted
by ( ). Probably most people write (e) instead. This is not wrong,
but is redundant, since every group contains an identity, and the
angle brackets indicate that a group is being given. The practice of
these notes will be to write {e}.

3.3. Order

The order of a group is its cardinality. The order of a group G is
therefore denoted by
Gl.

We have examples in Theorems 50 and 53 (pp. 68-71). If a € G,
then the order of the cyclic subgroup (a) of G is said to be the order
of a simply and is denoted by

|al
For example, in the quaternion group Qg (p. 119 above), we have
(i) ={0,1,—1,—i}, li| = 4.
In the notation of Theorem g5 above,
|om| = n, 1Bl = 2 = |Bon].

For another example, we have the following.
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Theorem 96. The order of a finite permutation is the least common
multiple of the orders of its disjoint cyclic factors.

Theorem 97. In a group, if a is an element of finite order n, then
(a) ={a": i €n},

and x — a* is a well-defined isomorphism from Z, to {(a), so in
particular

Proof. Since (a) does not have n 4+ | distinct elements, for some ¢
and j we have O < i < j < n, but a* = a?. Therefore e = a7~%, and
hence a* = a’ whenever k = ¢ (mod j —i). Consequently (a) has at
most j — ¢ elements, that is, n < j —i. Since also j —¢ < n, we have
n = j — i, and in particular a” = o/ ~¢ = e. O

For integers a and b, the notation a | b was defined on page 64.

Theorem 98. The following conditions on positive integers m and
n are equivalent.

1. Zy, has a subgroup of order m.
2. Zy, has a unique subgroup of order m.
3. m|n.

Under these conditions, the subgroup is {(n/m).
The orders of certain generators of a group may determine the group

up to isomorphism. We work out a couple of examples in the next
two theorems.
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Theorem 99. Ifn > 2, and G = (a,b), where

la| = n, b = 2, |ab| = 2,
then
G = Dih(n).
Proof. Assume n > 2. Since abab = e and ! = b, we have
baza"b7 ba~' = ab.

Therefore ba* = a~*b for all integers k. This shows
G = {a't’: (i,j) € n x 2}.

It remains to show |G| = 2n. Suppose

a't! = v’
where (i,7) and (k,¢) are in n x 2. Then
a'~F = pt,

If =7 = e, then £ = j and i = k. The alternative is that b*~7 = b.
In this case,

n|2G-k).

If n|i—k, then i = k and hence j = ¢. The only other possibility
is that n = 2m for some m, and ¢ — k = +m, so that ¢ = b. But
then aa™aa™ = a?, while abab = e, so n = 2. O

According to this theorem, if a group with certain abstract proper-
ties of Dih(n) exists, then that group is isomorphic to Dih(n). In
§4.6, we shall develop a way to create a group G with those prop-
erties, regardless of whether we know about Dih(n). Then, using
Theorem g9, we shall be able to conclude that G is isomorphic to
Dih(n). This result is Theorem 134 (p. 163).
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Theorem 100. If G = (a,b), where
la| = 4, b2 =a?, ba = a’b,
then, under an isomorphism taking a to i and b to j,

G = Qg.

Proof. Since ba = a>b and |a| = 4, we have also
ba~' =bad =a’b = ab,

so we can write every element of G as a product a’d’ for some i and j
in Z. By Theorem g7, since |a| = 4, we can require 7 € 4. Similarly,
since b% = a?, we can require j € 2. In Qg, the elements i and j
have the given properties of a and b. Moreover |Qg| = 8, so that if
(,7) and (k,£) are distinct elements of 4 x 2, then

159 # k3¢,
Therefore there is a well-defined surjective function i%j7 — a’d’ from

Qg to G, and this function is a homomorphism. It remains to show
|G| = 8. Suppose (7,7) and (k,£) are in 4 x 2, and

a't?! = aFpt.

Then a*~* = b*~* and hence

am — bn

for some n in 2 and m in 4. If n = 0, then m = O (since |a| = 4),
and so (i,7) = (k,). But a # b (since ba = a3b and |a| = 4).
Similarly a® # b. Finally, a® # b (since b*> = a? and |a| = 4). Thus
n#1,son=0. O

As with Dih(n), so with Qg, we shall be able to create the group us-
ing only the abstract properties just given, in Theorem 135 (p. 163).
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3.4. Cosets

Suppose H < G. If a € G, let

aH ={ax: x € H},
Ha={za: z € H}.

Each of the sets aH is a left coset of H, and the set {zH: x € G}
of left cosets is denoted by

G/H.

Each of the sets Ha is a right coset of H, and the set {Hxz: z € G}
of right cosets is denoted by

H\G.
Note that H itself is both a left and a right coset of itself.
Sometimes, for each a in G, we have aH = Ha. For example, this
is the case when G = Gg x G|, and H = Gg x {e}, so that, if
a = (9o, 91), then
aH = H x {g,} = Ha.

Sometimes left and right cosets are different, as in the example on
page 113, where G = Sym(3), and H is the image of Sym(2) in G.
In this case

(02)H={(02),012)}, H(O2)={02),021n)}
(1 2)H ={(1 2),(02 1)}, H(1 2)={(1 2),(01 2)}.
Moreover, there are no other cosets of H, besides H itself, by the

next theorem; so in the example, no left coset, besides H, is a right
coset.
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Theorem 101. Suppose H < G. The left cosets of H in G compose
a partition of G. Likewise for the right cosets. All cosets of H have
the same size; also, G/H and H\G have the same size.

Proof. We have a € aH. Suppose aH NbH # @. Then ah = bh,
for some h and k| in H, so that a = bh;h~", which is in bH. Thus
a € bH, and hence aH C bH. By symmetry of the argument, we
have also bH C aH, and therefore aH = bH. Hence the left cosets
compose a partition of G. By symmetry again, the same is true for
the right cosets.

All cosets of H have the same size as H, since the map = — ax from
H to aH is a bijection with inverse z — a~' H, and likewise z — za
from H to Ha is a bijection. (One might see this as an application
of Cayley’s Theorem, Theorem 49, page 66.)

Inversion is a permutation of G taking aH to Ha™', so G/H and
H\G must have the same size. O

Corollary 101.1. If H < G, then the relation ~ on G defined by
a~x<ald=xH
is an equivalence-relation, and
G/H =G/~.

Corollary 101.2. If H < G and aH = Hb, then aH = Ha.

Proof. Under the assumption, a € Hb, so Ha C Hb, and therefore
Ha = Hb. O

The cardinality of G/H (or of H\G) is called the index of H in G
and can be denoted by
G : H].
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If G is finite, then by the last theorem,

JiSi]

[G: H]= ik

However, [G : H] may be finite, even though G is not. In this
case, H must also be infinite, and indeed the last equation may be
understood to say this, since an infinite cardinal divided by a finite
cardinal should still be infinite.

Of the next theorem, we shall be particularly interested in a special
case, Lagrange’s Theorem, in the next section.

Theorem 102. If K < H < G, then [G: K| =[G : H|[H : K].

Proof. Every left coset of K is included in a left coset of H. Indeed,
if bK NaH # @, then as in the proof of Theorem 101, bK C aH.
Moreover, every left coset of H includes the same number of left
cosets of K. For, the bijection x +— ax that takes H to aH also
takes each coset bK of K to a coset abK of K. O

3.5. Lagrange’s Theorem

According to |2, p. 141—2], the following “is implied but not explicitly
proved” in a memoir by Lagrange published in 1770-1.

Theorem 103 (Lagrange). If H < G and G is finite, then |H|
divides |G).

Proof. Use Theorem 102 when K = {e}. O

Corollary 103.1. If G is finite and a € G, then alGl =e.
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Proof. a!*l = e by Theorem g7 (p. 121), and |a| divides |G]. O

Cauchy’s Theorem (page 174) and its generalization, the first Sylow
Theorem (page 182), are partial converses of Lagrange’s Theorem.

Meanwhile, some basic results of number theory can be seen as ap-
plications of Lagrange’s Theorem. First we obtain a classification of
certain finite groups. An integer greater than | is called prime if
its only divisors are itself and 1.

Theorem 104. All groups of prime order are cyclic.

Proof. Say |G| = p. There is a in G\ {e}, so |a| > 1; but |a| divides
p, 80 |a| = p, and therefore G = (a). O

The following can be obtained as a corollary of Theorem g4 (page 119);
but we can obtain it also from Lagrange’s Theorem.3

Theorem 105. An integer p that is greater than 1 is prime if and
only if

Zpy ={l,....,p— 1}
Proof. Say | < a < p and a € Z,*, so that ac = | (mod p) for
some c. If ab = p, then ab = 0, so abc = 0, hence b = 0O, which is
absurd. Thus a {p. Hence, if Z,” = {I,...,p— |}, then p must be

prime.

Now suppose p is prime and | < a < p, so that a t p. But ged(a, p) |
pand | < ged(a,p) < a, so ged(a,p) = 1, and therefore a € Z,* by
Theorem 94.

3This is observed by Timothy Gowers, editor of [12], in a Google+ article of
December 21, 2013.
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Alternatively, (a) has order greater than |, so by Lagrange’s Theo-
rem this order must be p. In particular ab = 1 (mod p) for some b,
soa€Zy”. O

Theorem 106 (Fermat). If the prime p is not a factor of a, then

="' =1 (mod p). (3.4)

Hence for all integers a,

a’ =a (mod p). (3:5)

Proof. By the previous theorem, if p { a, then [a] € Z,*, and this
group has order p — 1, so (3.4) holds by Lagrange’s Theorem. Also
(3.4) implies (3.5), and the latter holds trivially if p | a. O

If n € N, then by Theorem g4, the order of Z,™ is the number of
elements of Z,, that are prime to n. Let this number be denoted
by

d(n).

This then is the number of generators of Z,,, that is, the number of
elements k of Z,, such that (k) = (1). This feature of ¢(n) will be
used in Theorem 141 (page 168).

Theorem 107 (Euler). If gcd(a,n) = 1, then

a®™ =1 (mod n).

Proof. 1f ged(a,n) = 1, then [a] € Z,™ by Theorem g4. O
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3.6. Normal subgroups

If H < G, we investigate the possibility of defining a multiplication
on G/H so that
(zH)(yH) = zyH. (3.6)

In any case, each member of this equation is a well-defined subset
of G. The question is when they are the same. Continuing with
the example from pages 113 and 124, where G = Sym(3) and H =
{(0 1)), we have

(1 2)H(1 2)H ={e,(0 1),(02),(0 1 2)},
(12)(1 2)H = H ={e,(0 1))},

so (3.6) fails in this case.
Theorem 108. Suppose H < G. The following are equivalent:

1. G/H is a group whose multiplication is given by (3.6).
2. Bvery left coset of H is a right coset.

3. aH = Ha for all a in G.

4. a "Ha = H for all a in G.

Proof. Immediately the last two conditions are equivalent, and they
imply the second. The second implies the third, by Corollary 101.2

(p. 125).

Suppose now the first condition holds. For all hin H, since hH = H,
we have
aH =eaH =eHaH = hHaH = haH,

hence a='haH = H,soa 'ha € H. Thusa~'Ha C H,soa™'Ha =
H.
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Conversely, if the third condition holds, then (zH)(yH) = xHHy =
xHy = zyH. In this case, the equivalence-relation ~ on G given as
in Corollary 101.1 (p. 125) by

a~x < aH =xH
is a congruence-relation, and so, by Theorem 84 (p. 110), G/H is a

group with respect to the proposed multiplication. O

A subgroup H of G meeting any of these equivalent conditions is
called normal, and in this case we write

H<G.
As trivial examples, we have
G <G, {e} < G.

Only slightly less trivially, all subgroups of abelian groups are normal
subgroups. More examples arise from the following.

Theorem 109. If [G: H| = 2, then H < G.

If n > I, since [Sym(n) : Alt(n)] = 2, we now have
Alt(n) < Sym(n).
Of course we have this trivially if n < 1.

In general, if N < G, then the group G/N is called the quotient-
group of G by N. In this case, we can write the group also as

G

N
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Theorem 110. If N <G and H < G, then NNH < H. (That is,
normality is preserved in subgroups.)

Proof. The defining property of normal subgroups is universal. That
is, N <1 G means that the sentence

Vo Vy (x € N = yay~' € N)

is true in the structure (G, N). Therefore the same sentence is true
in every substructure of (G,N). If H < G, then (G,NN H) is a
substructure of (G, N). O

For example, if m < n, and we identify Sym(m) with its image in
Sym(n) under o — o Uid,m, then Sym(m) N Alt(n) < Sym(m).
But then, we already know this, since Sym(m)NAlt(n) = Alt(m).

In proving Theorem g5 (p. 119), we showed that every element of
Dih(n) is a product gh, where g € (o,) and h € (). Note that
that, since |o,,| = n and |Dih(n)| = 2n, by Theorem 109 we have
(o) < Dih(n). Thus our result is a special case of the following.

Lemma 9. If N <G and H < G, then (NUH) = NH.
Proof. Since
NUHCNHC (NUH),

it is enough to show NH < G. Suppose n € N and h € H. Then
nh = hh~'nh. Since N <1 (N U H), we have h~'nh € N, so nh €
HN. Thus NH C HN, so by symmetry NH = HN. Therefore

NH(NH)"' = NHH"'N-' = NHHN C NHN = NNH C NH,

that is, NH is closed under (z,y) + xy~'. Since NH also contains
e, it is a subgroup of G by Theorem 86. O
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Theorem 111. Suppose N < G and H < G and NN H = {e}.
Then the surjection (x,y) — xy from N x H to NH is a bijection,
and so the structure of a group is induced on N x H.

Proof. If g and h are in H, and m and n are in N, and gm = hn,
then

h_]g = nm_],

so each side must be e, and hence g = h and m = n. O

Multiplication in N H is given by

(mg)(nh) = (m - gng~")(gh), (3.7)

while multiplication in the direct product (N, -) x (H, -) is given by

(ma g)(na h) = (m : n’gh)'

Thus the direct-product structure on N x H is not necessarily the
structure on N x H given by the theorem. The latter structure is
called a semidirect product of N and H. The group NH is the
internal semidirect product of N and H. Theorem 124 on page
147 below establishes conditions under which this is a direct product.
Semidirect products are treated abstractly in §5.1 (p. 170). Mean-
while, again in the notation of Theorem g5, we have that Dih(n) is
the internal semidirect product of (o,,) and ().

Theorem 112. The normal subgroups of a group are precisely the
kernels of homomorphisms on the group.

Proof. If f is a homomorphism from G to H, then for all n in ker(f),

flana™") = f(a)f(n)f(a)~" =e,
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so a(ker(f))a~" C ker(f); thus ker(f) <t G. Conversely, if N < G,
then the map = — &N from G to G/N is a homomorphism with
kernel . O

For example, from the homomorphism from Sym(4) onto Sym(3)
given in Theorem 54 above (p. 71), Sym(4) has a normal subgroup
that contains (0 1)(2 3), (0 2)(1 3), and (O 3)(1 2), along with e.
These four elements constitute the subgroup (O 1)(2 3), (0 2)(1 3))
of Sym(4), and this subgroup is isomorphic to V4. By Theorem 114
on page 135 below, this subgroup is precisely the kernel of the ho-
momorphism in question.

In the proof of the last theorem, the map x — xN is the canonical
projection or the quotient map of G onto G/N; it may be denoted
by

L.

Theorem 113. If f is a homomorphism from G to H, and N is a
normal subgroup of G such that N < ker(f), then there is a unique
homomorphism f from G/N to H such that

f=Ffom
that is, the following diagram commutes (see page 110).

G—" /N

|7

H

Proof. If f exists, it must be given by

f(@N) = f(z).
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Such f does exist, since if zN = yN, then zy~' € N, so 2y~ €
ker(f), hence f(xy~') = e, and therefore f(z) = f(y). O

Corollary 113.1 (First Isomorphism Theorem). Suppose f is a
homomorphism from a group G to some other group. Then

G/ ker(f) = im(f).
In particular, if im(f) is finite, then
[G : ker(f)] = [im(f)].

Proof. Let N = ker(f); then f is the desired homomorphism. O

For example, letting f be x +— = + nZ from Z to Z,,, we have
ZInZ = L.
Another example is Theorem 114 below.

Corollary 113.2 (Second Isomorphism Theorem). If H < G and
N <1 G, then
H _HN
HNnN N~

Proof. The map h — hN from H to HN/N is surjective with kernel
H N N. So the claim follows by the First Isomorphism Theorem
(that is, Corollary 113.1). O

For example, In Z, since (n) N (m) = (lem(n,m)) and (n) + (m) =
(ged(n, m)), we have

() teed(n,m))
(lem(n, m)) (m) '
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Corollary 113.3 (Third Isomorphism Theorem). If N and K are
normal subgroups of G and N < K, then

G/N
K/N N —/_ ~G/K.
/N 2 G/N, KN -G
Proof. For the first claim, we have
K , aKa™' K

since (aN)(zN)(aN)~" = aza~"N. By the First Isomorphism The-
orem (Corollary 113.1) in case f is ¢ — zK from G to G/K, we
have a homomorphism N — zK from G/N to G/K. The kernel is
{xN: x € K}, which is just G/N. The second claim follows by the
First Isomorphism Theorem. O

Another basis result about normal subgroups will be Theorem 163
on page 188. Theorem 113 will be used to prove von Dyck’s Theorem
(Theorem 133, p. 162). As promised, another application of the First
Isomorphism Theorem is the following.

Theorem 114. ((0 1)(2 3),(0 2)(1 3)) < Alt(4).

Proof. Let f be the homomorphism from Sym(4) to Sym(3) given
in Theorem 54. Then |ker(f)| = 4. We have already noted (p. 133)
that

((01)(23),(02)(1 3)) < ker(f).

Since ((0 1)(2 3),(0 2)(1 3)) = V4, the Klein four group, it must
be equal to ker(f). Hence ((O 1)(2 3),(0 2)(1 3)) < Sym(4).
Moreover, this normal subgroup is a subgroup of Alt(4), and there-
fore, by Theorem 110, it is a normal subgroup of Alt(4). O
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3.7. Classification of finite simple groups

3.7.1. Classification

One of the goals of mathematical research is classification [12,
p. 52]. To classify is to divide into classes. Originally, the word class
refers to a class of persons in a society. In mathematics, the word
is used for collections defined by formulas, as described on page 20
above. To classify a class C' of structures is to partition it into sub-
classes. Such a partitioning corresponds to an equivalence-relation
on C': the subclasses of C' are then the corresponding equivalence-
classes.

For example, C' might be the class of all structures. We have classi-
fied structures according to whether they are algebras or not (p. 48).
There is a finer classification, according to the precise signatures
of structures. Within the class of structures having the signature
{e, -1 -} of groups, we have distinguished the subclass consisting of
those structures that actually are groups.

For the class of groups, or indeed for any class of structures, the
finest classification that is of interest to us is the classification deter-
mined by the relation of isomorphism. In an abstract sense, merely
to specify the relation of isomorphism is to determine a classifica-
tion of the class in question. But we want to do more. For exam-
ple, we should like to be able to choose a representative from each
isomorphism-class.

We have already done this for sets as such. We have classified
sets according to the relation of equipollence, and then we have
shown that, within every equipollence-class, there is a unique cardi-

nal (page 58).
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For the classification of groups, Cayley’s Theorem (page 66) is of use.
If G is a group, and |G| = k, then G embeds in Sym(x). Thus the
isomorphism-class of G contains a subgroup of Sym(x). However, it
will usually contain more than one subgroup of Sym(x).

The natural numbers are classified according to whether they are
prime. Moreover, every natural number is the product of a unique
set of prime powers. We state this formally.

Theorem 115. For every n in N, there is a unique finite set S of
prime numbers and a unique function f from S into N such that

n—= pr(p).

peS

In §4.7 (page 164 below) we are going to be able to give a similar
classification of the finitely generated abelian groups, building on
the initial distinguishing of certain groups as being cyclic.

3.7-2. Finite simple groups

A group is simple if it is nontrivial and has no proper nontriv-
ial normal subgroups.4 In §5.7 (p. 195) below, culminating in the
Jordan—Holder Theorem, we shall see that every finite group can be
analyzed as a kind of ‘product’ of a list of simple groups. In this
case, the analysis is not reversible; different finite groups can yield
the same list of simple groups. A grand project of group theory
has been to classify the finite simple groups. We establish part of
this classification now. The abelian finite simple groups are easy to
find:
4In defining simple groups, Hungerford [19, p. 49] omits the condition that they
must be nontrivial; but then he immediately states our Theorem 116, which

excludes the trivial Z, from being simple, because | is not prime. Lang [23]
gives the nontriviality condition.
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Theorem 116. The simple abelian groups are precisely the groups
isomorphic to Z, for some prime number p.

As for nonabelian groups, we already know by Theorem 114 that
Alt(4) is not simple. However, Alt(3) is simple, being isomorphic
to Zs. Being trivial, Alt(2) is not simple. We are going to show
that Alt(n) is simple when n > 5.

Theorem 117. Alt(n) is generated by the 3-cycles in Sym(n).

Proof. The group Alt(n) is generated by the products (a b) (a c)
and (a b) (c d), where a, b, ¢, and d are distinct elements of n.
But

(a b)(a c):(a c b),
(a b)(c d):(b c a)(c d b).

Hence all 3-cycles belong to Alt(n), and this group is generated by
these cycles. O

If a and b belong to an arbitrary group G, then the element aba™' of
G is called the conjugate of b by a, and the operation z — aza™'
on G is called conjugation by a. Conjugation by an element of G
is an automorphism of G: this is stated formally as Theorem 142 on
page 170 below. For now, all we need to know is that, if N < G,

then conjugates of elements of N by elements of G are elements of
N.

Theorem 118. Every normal subgroup of Alt(n) containing a 3-
cycle is Alt(n).



3.7. Classification of finite simple groups 139

Proof. By Theorem 117, it is enough to show that for any 3-cycle,
every 3-cycle is a conjugate of it. We have

(a b d):(a b)(c d)(c b a)(c d)(a b).

Thus, by conjugation, we can change any entry in a 3-cycle’s non-
trivial orbit. O

Theorem 119. Alt(n) is simple if n > 4.

Proof. Suppose Alt(n) has normal subgroup N with a nontrivial
element o. Then o is the product of disjoint cycles, among which
are:

1) a cycle of order at least 4; or

2) two cycles of order 3; or

3) transpositions, only one 3-cycle, and no other cycles; or
4) only transpositions.

We show that, in each case, N contains a 3-cycle.

1. Suppose first that o is (O 1 ... k—1)7 for some 7 that is
disjoint from (O 1 ... k—1). Then N contains both
O 1 2)(0 1 ... k=1)7(2 1 0)
and 77! (k=1 ... 1 0), and their product is a 3-cycle:
© 1 20 1 ... k-2 1 O)r (k-1 ... |
=0 1 3).
2. If 7 is disjoint from (O 1 2) (3 4 5), then we reduce to the

previous case:
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© 1 3)0 1 2)3 4573 1 0)r'(5 4 3)(2 1 0

—(0 1 4 2 3).

3. If 7 is disjoint from (O 1 2) and is the product of transposi-
tions, then

(0 1 2)7°=(2 1 0).

4. Finally, suppose 7 is a product of transpositions disjoint from

(O I)and (2 3). Then

0 1 2)(0 1)(2 3)r(2 1 0)7(3 2)(1 0)=(0 2)(I 3).

Furthermore, since n > 4, in Alt(n) we compute
0 2 4)(0 2)(1 3)(4 2 0)(3 1)(2 0)=(0 4 2).
— —
O
For the sake of classifying small finite groups in general (in §5.4,

page 184), we shall want the following, which assumes Alt(n) is
defined just when n > 2 (see page 88 above).

Theorem 120. Alt(n) is the unique subgroup of Sym(n) of index

2.
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4.1. Products

There is a simple property of direct products of groups (as defined
on page 107) that will turn out to characterize these products. If
Gp and G are groups, then we know from Theorem 82 on page 108
that for each i in 2, the function

(xOvl'l) = X

from Gg x G| to G; is a homomorphism. It can be called a coor-
dinate projection and denoted by

7T .

Theorem 121. Let Gg, G| and H be groups such that, for each i
in 2, there is a homomorphism f; from H to G;. Then the function

z = (fo(2), i (2))

from H to Gg X G| is a homomorphism, and it is the unique homo-
morphism f from H to Gg x G| such that, for each i in 2,

TEZf = fi7

that is, the following diagram commutes:

Go <2~ Go x G| —=~ G|

A

H

141
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If the groups G; are abelian, then so is Gg X G| .

Proof. If u € Gg x G, then

u = (1o (w), ) (w))-

Hence, if f: H — Gg x Gy, then f(x) = (mpf(x),n f(x)). In
particular then, f is as desired if and ouly if f(z) = (fo(z), fi (x)).
O

Considering this theorem and its proof, we may see that a more
general result can be obtained. This is the porism below. We obtain
it by considering an indexed family (G;: i € I) of groups. This
is an indexed set in the sense of page 86; we use the word family
to emphasize that the structure of each G; will be important. The
direct product of the indexed family can be denoted by one of

II¢c: [[Gi:ien.

This is, first of all, the set whose elements are indexed sets (x;: @ € I)
such that x; € GG; for each i in I. Note a special case: If all of the
groups G; are the same group G, then

[[¢=¢"

i€l
In case I = n, we may write [[,.; G; also as
Go X XGn_I,

and a typical element of this as (zqg,...,Z,_1).
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Theorem 122. The direct product (G;: i € I) of an indexed family
of groups is a group under the multiplication given by

(rieiel) (yimiel)=(x;-yi:i €l
Each of the functions
(xj:jel)—u;
is a homomorphism from Hjel G; to Gj.

Proof. As for Theorem 75 on page 95 and Theorem 82 on page 108.
O

As before, the homomorphisms in the porism are the coordinate
projections, denoted by
7M.

Porism 121.1. Suppose (G;: i € I) is an indexed family of groups,
and H is a group, and for each i in I there is a homomorphism from
H to G;. Then there is a homomorphism

e (filx): i el (4.1)

from H to [[,c; Gs, and this is the unique homomorphism f from
H to [[;c; Gi such that, for each i in I,

o f = fi,
that is, the following diagram commutes:

[I¢;i —=¢c:

JjeI
Ry

H
If the groups G; are abelian, then so is [[,c; Gi.
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If we ignore the actual definition (4.1) of the unique homomorphism
f, then the porism can be summarized as being that the direct prod-
uct of an indexed family of groups has a certain universal prop-
erty. Theorem 128 on page 157 below is that the direct product is
characterized by its universal property. Other constructions charac-
terized by universal properties are:

the direct sum (next section, namely §4.2);

the free abelian group and the free group (§4.4);

the quotient field of an integral domain (§7.5, page 235);
the polynomial ring (sub-§7.7.1, page 250).

4.2. Sums

We now investigate the possibility of reversing the arrows in The-
orem 121. If Gy and G| are arbitrary groups, then we know from
Theorem 83 on page 108 that the functions

x> (z,e), x> (e,x)

are homomorphisms, from Gg and G| respectively to Ggx G . They
can be called the canonical injections, denoted respectively by

Lo, L.

Theorem 123. Let Gg, G| and H be abelian groups such that, for
each i in 2, there is a homomorphism f; from G; to H. Then the
function

(zo, 1) = folzo) + fi(z1)

from Go @ G| to H is a homomorphism, and it is the unique homo-
morphism f from Gg ® G| to H such that, for each i in 2,

fu="fi
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that is, the following diagram commutes:

Go —2>Go® G =G|

N

H

Proof. If (zg,x) € Go ® G, then

(wg, 1) = o(x0) + L1 (1),

so that, if f is a homomorphism on Gg & G, then

f(zo,z1) = fro(zo) + fu(z)).

Hence, if f is as desired, then it must be given by

f(zo, 1) = fo(xo) + fi(zy). (4-2)

The function so defined is indeed a homomorphism, since

f((zo, 1) + (uo, w1 )) = f(zo + uo, x| +uy)
= fo(zo +uo) + fi () +uy)
= fo(wo) + fo(uo) + fi(x1) + fi(uy)
= fo(wo) + fi(z1) + fo(uo) + fi(ur1) (4-3)
= f(zo,z1) + f(ug,uy),

where (4.3) uses that H is abelian. Moreover, when f is as in (4.2),
then

fro(@) = f(2,0) = fo(z),
so fig = fo, and similarly fu;, = f;. O
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In the proof, the definition of f in (4.2) does not require that the
indexed family (G;: i € 2) have just two members, but that it have
finitely many. Also, as noted, f is a homomorphism because H is
abelian; but this condition too can be weakened. Given an arbitrary
indexed family (G;: i € I) of groups, we have, for each ¢ in I, a
function y; from G; to Y jer G; given by

ti(z) = (x;: j € 1),

where
x, if j=1,
T; = .
e, otherwise.
The monomorphisms t; are the canonical injections.

Porism 123.1. Suppose (G;: i < n) is a finite indexed family of
groups, and H is a group, and for each i in n there is a homomor-
phism f; from G; to H. Suppose further that, for all distinct i and
jinn,

Fi@)  13(9) = ) - fil)
Then the map

i<n

from [],., Gi to H is the unique homomorphism f from [, . G
to H such that, for each i inn,

fu=fi

We use the porism to establish the next theorem below, which we
shall use in characterizing finite nilpotent groups in Theorem 167 on
page 191. We need the following observation.
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Lemma 10. If M and N are normal subgroups of G, and
M NN = {e},

then each element of M commutes with each element of N, that is,
for allm in M and n in N,

mn = nm.
Proof. We can analyze mnm~'n~" both as the element (mnm~"')n~!
of N and as the element m(nm~'n~") in M; so the element is e,
and therefore mn = (m~'n=")~! = nm. O
Theorem 124. If (N;: i < n) is a finite indexed family of normal
subgroups of a group, and for each j in n ~ {0},

No---Nj_1 NNj = {e}, (4-4)

then the map
(xi:i<n)»—>Hxi (4.5)
i<n
from ],.,, Ni to Ng---N,,_y is an isomorphism.

Proof. Say the N; are normal subgroups of the group G, and let the
map in (4.5) be denoted by h. Since N; N N; = {e} whenever ¢ # j,
the last porism and the lemma guarantee that h is a homomorphism
and, for each 7 in n, the composition ht; is just the inclusion of N;
in G. Then the range of h is Ng--- N,,_;. To see that h is injective,
note that, if m € [[,., N; and h(m) = e, then

—1
my,_1 = H m;.

i<n—I

1EN

The left member is in N,,_, and the right is in Ny --- N,,_5, so each
member is e. In particular, m,,_; = e, but also, we can repeat the
argument to show m,,_y = e and so on. Thus m = e. O
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In the theorem, the group Ny - -+ N,,_; is the internal direct prod-
uct of (N;: 4 < n). For the result, it is not enough to assume
N;NN; = {e} when i < j < n. For example, consider the subgroups

((1,0)), (0, 1)), and {(1, 1)) of V.

We can generalize Theorem 123 in another sense. Given an arbitrary
indexed family (G;: i € I) of abelian groups, we define its direct

sum,
> G
iel
to consist of the elements (x;: i € I) of the direct product [],.; Gs

such that the set {7 € I': z; # O} is finite. The direct sum is indeed
a group:

Theorem 125. For every indexed family (G;: i € I) of abelian

groups,
Y ai<]]é:

il i€l
In case I = n, we may write ), ; G; also as
Go® - ®Gp_.

If I is finite, then the direct sum is the same as the direct product.
If I is infinite, and the groups G; are nontrivial for infinitely many 4
in I, then the sum is not the same as the direct product. The proof
uses the Axiom of Choice, because it involves choosing a nontrivial
element from each of infinitely many of the nontrivial groups G;.

Porism 123.2. Suppose (G;: i € I) is an indexed family of abelian
groups, and H is an abelian group, and for each i in I there is a
homomorphism f; from G; to H. Then the map

z = Z filzi)

iel
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from .., Gi to H is the unique homomorphism f from Y, ; G; to

H such that, for each i in I,

el

fu="rfi,

that is, the following diagram commutes:

G —=Y G,

JeEL
N

H

4.3. ¥*Weak direct products

For completeness, we observe that Theorem 123 can be general-
ized even further. The weak direct product of an indexed family
(Gi: i € I) of arbitrary groups has the same definition as the di-
rect sum in the abelian case; but in the general case we use the

notation w

1T ¢

iel
So this comprises those elements (z;: i € I) of [[,.; G such that
the set {i € I: x; # e} is finite. For each ¢ in I we have the ho-
momorphism ; from G; to H:Ve ; Gi, defined as in the abelian case.
Direct products and weak direct products are related as follows.

Theorem 126. Let (G;: i € I) be an indexed family of groups.
Then

4[G;] < HW Gi, HW Gi < HGi, y[G;] < HGi'

i€l icl icl icl
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Porism 123.2 can be generalized to some cases of arbitrary groups:

Porism 123.3. Suppose (G;: i € I) is an indexed family of groups,
and H is a group, and for each i in I there is a homomorphism f;
from G; to H. Suppose further that, for all distinct i and j in I,

fi(z) - fi(y) = fi(y) - fi(z).

Then the map

z e [ filw)

i€l
from [Tz, Gi to H is the unique homomorphism f from [[;c; G; to
H such that, for each i in I,

fu=fi

Porism 124.3. If (N;: i € I) is an indexed family of normal sub-
groups of a group, and for each j in I,

Mﬂ< U M>&% (4.6)

ieI~{j}

then <UN1> N HWNi.

iel i€l

In this porism, the group (;c; Ni> is called the internal weak
direct product of the NV;.

4.4. Free groups

For every index set I, the direct sum ), ; Z is called a free abelian
group on [ for the reason given by the next theorem. To state the
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theorem, we note that, for every ¢ in I, the abelian group > icr Zhas
the element (;( 1), which can also be written as (8%: j € I), where

5i 1, ifj=4,
J 0, otherwise.
Let us also use the notation

ei

for (;(1) or (85: j € I). An arbitrary element of Y7, ; Z can then

be written as

Z Z; ei.

iel
The use of this notation implies that only finitely many of the x; are
different from O.

Theorem 125. Suppose G is an abelian group, I is a set, and f is
a function from I to G. Then the map

Z zie' Z x; f(i)
iel il

from 37,1 Z to G is the unique homomorphism f from 3., to G

such that, for each i in I,

iel

fle') = f(),
that is, the following diagram commutes, where t is the map i — €.

1%22

i€l
/i
G

In particular, the subgroup (f(i): i € I) of G is isomorphic to a
quotient of Y, 7.

!
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As a special case, we have that every finitely generated abelian group
is isomorphic to a quotient of some Z @ - - - & Z. Observing this is
the first step in classifying the finitely generated abelian groups as
in §4.7 (page 164).

Meanwhile, since

Y z=(e:icl),

il
we can write every element as a finite sum ), ; z;e’, as we said.
But then, if z; > O, we can replace z;e’ with x;-many copies of e,
and if z; < O, we can replace mjej with —z;-many copies of —el.
For example,

3¢9 — 2e! =eP+e0+e% —e! —e'.
In general, every nontrivial element of ). _; Z is uniquely a sum of
some copies of the e’ and the —e’, if we disregard order, and if we
never allow e’ and —e’ for the same i to appear in the same sum.
If we use multiplicative notation instead, and if we do not disregard
order, what we get is not an abelian group, much less a free abelian
group; but it is a free group.

To be precise, a word on [ is a finite nonempty string #gt; - - - t,,
where each entry ¢, is either e, or else a or a~! for some a in I. A
word is reduced if @ and a~! are never adjacent in it, and e is never
adjacent to any other entry. Thus the only reduced word in which e
can appear is just the word of length | whose only entry is e. The
free group on I, denoted by

F(I),

consists of the reduced words on I. Multiplication in this group is

juxtaposition followed by reduction, namely, replacement of each
occurrence of aa™! or a~'a with e, and replacement of each occur-

rence of ze or ez with z. Thus, if we write an element a of I as a',
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we can express the product of two arbitrary reduced words by the
equation

(a(m) ... ag(o))(bg(o) b)) = gelm) aj(j)bg(j) o pSm),

where each exponent (i) or ((¢) is =1, and the equation

is true when ¢ < j, but false when ¢ = j. We consider I as a subset
of F(I). An element of the latter other than e can be written also
as

where a; and a;, | are always distinct elements of I, and each n(7)
is in Z ~ {0}.

We can now give the following analogue for Theorem 125. This
solves the question raised on page 119 above of how to describe the
elements of a generated subgroup (A) of a given group. The answer
is that these elements can be given as reduced words on A, although
possibly the two different reduced words will stand for the same
element of (A).

Theorem 126. Suppose G is a group, I is a set, and f is a function
from I to G. Then the map

ap™© - a0 s Fag)™ @ - fag)

from F(I) to G is the unique homomorphism f from F(I) to G such
that

frI=F,



154 4. Category theory

that is, the following diagram commutes, where t is the inclusion of
I inF(I).
v F(I)

17

G

In particular, the subgroup (f(i): i € I) of G is isomorphic to a
quotient of F(I).

4.5. *Categories

Suppose C' is a class of structures, all having the same signature.
For example, C' could be the class of all groups, or the class of all
abelian groups. If 2l and B belong to C, we can denote by

Hom(, B)

the set of all homomorphisms from 2 to 8. By Theorem 26 on page
47, if also € € C| then

(9,f) = go f: Hom(B, ) x Hom(2A,B) — Hom(, €).

By Theorem 11 on page 33, if f € Hom(2,B), g € Hom (B, €), and
h € Hom(¢,®), then

(hog)of=ho(gof). (4.7)

By Theorem 27, Hom(2(,2() contains id4. If f € Hom(2, B) and
g € Hom(%3, €), then by Theorem 12,

idgof = f, goidp =g. (4-8)
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Because of these properties, C'is called a category. Elements of C
are called objects of the category; elements of each set Hom (%A, 9B)
are called morphisms or arrows of the category, and specifically
morphisms or arrows from 2l to 8. Strictly, the category is specified
by four things:

1) the class C,

2) the function (2, 98) — Hom(2(,B) on C x C,
3) the functions o, satisfying (4.7);

4) the function 2 — id4 on C, satisfying (4.8).

The conditions (4.7) and (4.8) can be expressed by means of the
following commutative diagrams.

A—f>B B<f—A—f>B

el )
/ Ve e

B——C C——D<—C
g h h

It is possible to have a category in which the objects are not struc-
tures and the arrows are not homomorphisms. For example, if G is
a group, then its elements can be considered as objects of a cate-
gory in which Hom(a,b) = {ba~'}, and ¢ o d = cd, and the function
corresponding to A — id4 is simply the constant function a — e.

In an arbitrary category, the objects may be denoted by plain capital
letters like A and B, and the function corresponding to 2 — id 4 may
be denoted simply by A — idas. In accordance with Theorems 13
and 27, we say that an element f of Hom(A, B) is an isomorphism
if, for some ¢ in Hom(B, A),

gof=ida, feg=idp.

In this case, g is an inverse of f.
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Theorem 127%. In a category, inverses are unique, and the inverse
of a morphism has its own inverse, which is that morphism.

Proof. If g and h are inverses of f, then
g=goidg=go(foh)=(gof)oh=idach=h.

The rest is by symmetry of the definition. O

If it exists, then the inverse of f is denoted by
.

When each object of a category has an associated set, and every
arrow from an object with associated set A to an object with asso-
ciated set B is actually a function from A to B, then the category
is said to be concrete. We shall be interested only in concrete cat-
egories. Classes of structures, like C' above, can be understood as
concrete categories. However, other kinds of concrete categories are
possible. For example, there is a concrete category whose objects
are topological spaces and whose arrows are continuous functions.

4.5.1. Products

Suppose C' is a category, and 7 is an indexed family (A;: i € I)
of objects of C. If it exists, the product of &/ in the category is
an object with the properties of a direct product of groups given by
Porism 121.1 on page 143. For a formal definition, we define a new
category, whose objects are the pairs

(B,(fi:iel))
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such that B is an object of C' and, for each 7 in I,
fi € Hom(B, A;).
An element h of Hom(C, B) is a morphism from (C, (g;: i € I)) to
(B7 (fizie I)) in the new category if, for each ¢ in I,
fioh =g,

that is, the following diagram commutes.

fi

Suppose, in the new category, there is an object to which there is
a unique morphism from every other object. This object is called a
product of «.

By Porism 121.1, if (G;: ¢ € I) is an indexed family of groups, then
the ordered pair (I];c; Gi, (7;: i € I)) is a product of the indexed
family in the category of groups. If the G; are abelian, then the pair
is a product in the category of abelian groups.

Theorem 128. Any two products of the same indexed family of

objects in the same category are uniquely isomorphic.

Thus, if & is an indexed family (A;: ¢ € I) of objects in a category
with products, then we may refer to the product of &7, denoting it

by
([, (i D).

We may still refer to the morphisms 7; as coordinate projec-
tions.
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4.5.2. Coproducts

Given a category, if we can reverse all of the arrows, and if we reverse
composition correspondingly, then we still have a category, called the
dual or opposite of the original category. A co-product or sum in
a category is a product in the dual. Thus, suppose C' is a category,
and 7 is an indexed family (A4;: i € I) of objects of C. We define
a new category, whose objects are the pairs

(B, (fz 1€ I))
such that B is an object of C' and, for each i in I,
fi € Hom(A4,, B).

An element % of Hom(B,C) is a morphism from (B, (f;: i € I)) to
(C,(gi: i € 1)) in the new category if, for each i in I,

ho fi = gi,
that is, the following diagram commutes.

9gi
-~

A;
TidAi

T

Ji

w0

Suppose, in the new category, there is an object from which there
is a unique morphism to every other object. This object is called a
coproduct or sum of .&7.

By Porism 123.2, if (G;: i € I) is an indexed family of abelian
groups, then the pair (}°,.; Gy, (;: i € I)) is its coproduct in the
category of abelian groups.
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By Theorem 128, coproducts are unique when they exist at all. Thus
if o is an indexed family (A;: i € I) of objects in a category with
coproducts, then we may refer to the coproduct of 7, denoting it
by one of

(Hd zEI) (Zd ze])

We may still refer to the the morphisms (; as canonical injec-
tions.

Weak direct products are not coproducts in the category of groups.
However, this category has coproducts, as follows.

The free product of an indexed family (G;: ¢ € I) of groups is the
group, denoted by
H Gi7

el
or by
Go*-xGp_)

if I is some n in w, comprising the string e together with strings
to - - tm, where each entry ¢; is an ordered pair (g,n(i)) such that

n(i) € I and g € Gy ~ {e}, and n(i) # n(i+ 1). This complicated
definition allows for the possibility that G; might be the same as G
for some distinct ¢ and j; the groups G; and G; must be considered
as distinct in the formation of the free product. Multiplication on
[Tic; Gi, as on F(I), is juxtaposition followed by reduction, so that
if (g,4) is followed directly by (h,7), then they are replaced with
(gh,i), and all instances of (e, i) are deleted, or replaced with e if
there is no other entry. Each G; embeds in [[;.; G; under t;, namely
z = (7).

el

Theorem 129. If (G;: i € I) is an indezxed family of groups, then
(erl G, (y:i€ I)) is its coproduct in the category of groups.
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4.5.3. Free objects

Given a concrete category C and a set I, we define a new category,
whose objects are the pairs

(f, A),

where A is an object of C, and f is a function from I to (the asso-
ciated set of) A. An element h of Hom(A, B) is a morphism from
(f,A) to (g, B) in the new category if

hof=gy,

that is, the following diagram commutes.

Suppose, in the new category, from the object (f, A), there is a
unique morphism to every other object. Then A is a free object
on I with respect to f.

Theorem 130. In a concrete category C, if A is a free object on a
set I with respect to a function f, and B is a free object on I with
respect to g, then there is a unique isomorphism h from A to B such
that ho f = g.

By Theorems 125 and 126, free objects exist in the categories of
abelian groups and of arbitrary groups. Another example will be
given by Theorem 218 (page 250).
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4.6. Presentation of groups

We develop a method for describing groups as quotients of free
groups. Let us first note that every group is (isomorphic to) such a
quotient.

Theorem 131. Fvery group is isomorphic to the quotient of a free
group by some normal subgroup.

Proof. By Theorem 126 (page 153), the identity map from G to it-
self extends to a homomorphism from F(G) to G. Since this homo-
morphism is surjective, the claim follows by the First Isomorphism
Theorem (page 134). O

If A is a subset of some group G, on page 115 we defined (A) as
the intersection of (the set of) subgroups of G that include A. We
know this intersection is a subgroup of G, by Theorem 8g. But
possibly (A) is not a normal subgroup of G. However, we have the
following.

Theorem 132. An arbitrary intersection of normal subgroups is a
subgroup.

Now, given a subset B of a group G, we can define

(B) =[N,

where A is the set of all normal subgroups of G that include B. If
A is an arbitrary set, and B C F(A), we define

(A B) =F(A)/((B)).

This is the group with generators A and relations B. Note how-
ever that, strictly, the elements of A as such do not generate the
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group; rather, the cosets a((B)), where a € A, generate the group.
But we can understand a as a name for the coset a{{B)).

Suppose there is a function f from A to a group G, and f is the
homomorphism from F(A) to G that extends f, and this homomor-
phism is surjective, and its kernel is ((B)). By the First Isomorphism
Theorem,

G=(A|B).

We say in this case that (A | B) is a presentation of G. If A =
{ag,...,an}, and B = {wg,...,wn}, then (A | B) can be written
as
(ag, -+, an | Wo, ..\ Wp).

Sometimes, instead of w;, one may write w; = e or an equivalent
equation. Meanwhile, F(A) can be presented as (A | @). In par-
ticular Z can be presented as (a | @), but also as (a,b | ab~') or
(a,b | a = b). The group Z, has the presentation (a | ™). More
examples are given by the theorems after the next.

Theorem 133 (von Dyck®). Suppose G is a group, A is a set,
f+ A— G, and f is the induced homomorphism from F(A) to G.
Suppose further ~

B Cker f
Then there is a well-defined homomorphism g from (A | B) to G

such that g(a{(B))) = f(a) for each a in A, that is, the following
diagram commutes.

f

A—/>G
l A T

F(A) —=(A|B)

*Walther von Dyck (1856-1934) gave an early (1882—3) definition of abstract
groups |20, ch. 49, p. 1141].
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If G = (f(a): a € A), then g is an epimorphism.

Proof. Since ker(f) is a normal subgroup of F(A) that includes B,
we have ((B)) < ker f. Hence g is well-defined by Theorem 113 on

page 133. O

Theorem 134. Ifn > 2, then Dih(n) has the presentation

(a,b] a™, b2, (ab)z).

Proof. Note first that, in the group (a,b | a™,b?, (ab)?), the order
of a must divide n, and each of the orders of b and ab must divide
2. Now, by Theorem g5 on page 119, Dih(n) has elements « and 3
that generate the group and are such that o, 82, and (045)2 are all
equal to e. By von Dyck’s Theorem then, there is an epimorphism
from (a,b | a™,b?, (ab)?) to Dih(n) taking a to « and b to § and
hence ab to af. Therefore the order of a must be exactly n, and the
orders of b and of ab must be 2. By Theorem gg on page 122, the
epimorphism onto Dih(n) must be an isomorphism. O

Theorem 135. The quaternion group Qg has the presentation
(i,j[i%1%2,151%),
or equivalently (i,j | i* =e, 1% =32, ji = i3%j).

Proof. Use von Dyck’s Theorem and Theorem 100 in the manner of
the previous proof. O

Yet another example of a presentation will be given in Theorem 161
on page 185.
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4.7. Finitely generated abelian groups

We now classify, in the sense of §3.7 (page 136), the abelian groups
with finite sets of generators, and in particular the finite abelian
groups. A useful application of this will be that the group of units
of every finite field is cyclic (Theorem 140).

Theorem 136. If (G;: i € I) is an indexed family of groups, and
for each i in I, N; < G;, then

G;
HNZ‘QHGZ', HGZ HNZ%JHE

i€l icl icl iel icl

Theorem 137. For every abelian group G on n generators, there
is a unique element k of n+ |, along with positive integers dg, ...,
dy_1, where

doldy N+ Ndp_o | dj_y, (4.9)
such that
G227 D7 7ZD---DZ. .
do® D2, PLD--- D (4.10)
n—k

Proof. Suppose G = (g*: i < n) and is abelian. Let F be the free
abelian group >_._ 7. Using notation from page 151, we have that

F = (e

1EN
.,e" 1) and there is a surjective function

Z inei — Z ﬂi‘igi

iEn €N

P

from F to G. Let N be its kernel, so that

G =~ F/N.
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Suppose it should happen to be that N = (doeo, oy dp_eFTY. We
have
FeE o o),

and under the isomorphism,
N2 (doe®) @--- @ (dp_1e* ) @ {e} @ @ {e}.

By the lemma then,

pyy e ) (e

@...@m@@k)@...@@”*'%

which has the form in (4.10), although (4.9) might not hold. Not
every subgroup of F' is given to us so neatly, but we shall be able to
put it into the desired form, even satisfying (4.9).

We can identify F with M, (Z). If X € M,;,x»(Z), let us denote by
(X)) the subgroup of F' generated by the rows of X. If P € GL,,,(Z)
and @ € GL,(Z), then

(X) = (PX), F/(X) = F/{(XQ).

Now we can choose P and @ so as to effect certain row operations
(as on page 100) and column operations, respectively. In particular,
assuming m > n, for some P we have

U

where U is an n X n upper triangular matrix, that is,

U= L
0 *
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Then we may assume m = n, so PX = U. For some @, the matrix
PXQ is diagonal, so that

dg 0
PXQ = )
0 dn—l
By further adjusting P and @), we may ensure that (4.9) holds, while
dy = --- =d,_; = 0. Indeed, suppose b,c € Z and gcd(b,c) = d.

By elementary row and column operations, from a matrix

0 <)

we obtain <l; S) and then (g ;), where e and f are multiples

of ¢ and hence of d; hence, with an invertible column operation, we

get
d 0
(0 7)

where again d | f. Applying such transformations as needed to pairs
of entries in D yields (4.9). The number k is uniquely determined
by X. We have shown that every subgroup of F' is generated by a
set of at most n elements. Then we may assume N = (X), so that
F/N is as desired. O

Porism 137.1. Every subgroup of a free abelian group on n gener-
ators is free abelian on n generators or fewer.

In the theorem, not only is k unique, but the numbers d; are also
unique. This can be established by means of an alternative classifi-
cation of the finitely generated abelian groups.
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Theorem 138 (Chinese Remainder). If ged(m,n) = |, then the
homomorphism x — (x,x) from Ly, to Ly, ®Zy, is an isomorphism.

Proof. Ifz =0 (mod m)and z =0 (mod n), thenz =0 (mod mn).
Hence the given homomorphism is injective. Since Z,,,, and Z,, ®Z,
both have order mn, the given homomorphism must also be surjec-
tive, by Theorem 43 on page 59. O

The Chinese Remainder Theorem will be generalized as Theorem 194
on page 217. In the usual formulation of the theorem, every system

z=a (modm), z=b (modn)

of congruences has a unique solution modulo mn; but this solution is
just the inverse image of (a, b) under the isomorphism z +— (z, ).

Theorem 139. For every finite abelian group, there is a unique list
(pi i < k) of primes, where

Po < - < Pr—1,

there are unique elements m(0), ..., m(k — 1) of N, and there is a
unique r i @ such that

G%Zpomw)@"'@z

Pr—1

mk—1) DL D---DL.
————

r

Proof. To obtain the analysis, apply the Chinese Remainder Theo-
rem to Theorem 137. The analysis is unique, provided it is unique
in the case where all of the p; are the same. But in this case, the
analysis is unique, by repeated application of the observation that
the order of the group is the highest prime power appearing in the
factorization. O
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Theorem 140. The group of units of every finite field is cyclic. In
particular, if p is prime, then

Ly 27y

Proof. Let F be a finite field. By Theorem 137,
F* = %4y @®Za,_, ® L,
for some d(i) and m such that
do|di N+ Ndy_y | m.

In particular,
m < |[FX|.

Also, every element of F'* is a zero of the polynomial ™ — |. But
this polynomial can have at most m roots in a field. Thus

|F*| < m.
Hence |F*| =m and so F* & Z,,. O
If Z, is cyclic, then its generators are called primitive roots of

n; Gauss |9, p. 37] attributes the terminology to Euler. Recall from
page 128 the definition

Thus, if Z,,* is indeed cyclic, it is isomorphic to Lp(n)-

Theorem 141. If n has a primitive root a, then it has exactly
G (d(n)) primitive roots, namely those a® such that gcd(k, dp(n)) =
1
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By Theorem 140, primes have primitive roots. We have to find them
by trial. For example, 2 is not a primitive root of 7, but 3 is, by
the following computations.

KTO[T] 2] 3] 4] 5] (mod8)
21T (23] 1| 2] 3] (mod?)
T3] 2] 1] -3]-2| (mod7)

Then 5 (or —2) is the only other primitive root of 7.
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5.1. Semidirect products

Recall from page 138 that conjugation in a group is an operation
x +— axa~" for some element a of the group. The following is remi-
niscent of Cayley’s Theorem (Theorem 49 on page 66), although the
homomorphism now need not be an embedding.

Theorem 142. Conjugation in a group is an automorphism. For
every group G, the function

g (x> gzg™")

from G to Aut(G) is a homomorphism.

Conjugation by an arbitrary element of a group is also called an in-
ner automorphism of the group. The kernel of the homomorphism
in the theorem is the center of G, denoted by

C(G).

We shall generalize this notion in §5.5 (page 187).* Meanwhile, it will
be useful to have the following generalization of the last theorem.

*Repeating the process of forming inner automorphisms, we can define a func-
tion a — G« on the class of ordinals so that Gg = G, and G/ = Aut(Ga),
and if 8 is a limit, then Gg is the so-called direct limit of (Ga: a < B).
Then for some ordinal «, for all ordinals 3, if 8 > «, then Gg = G: Simon
Thomas [35] shows this in case G has trivial center; Joel Hamkins [13], in
the general case.

170
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Theorem 143. For every group G, if N < G, then there is a ho-
momorphism
g (x> geg™")

from G to Aut(N).
In the theorem, let the homomorphism be g — o4. Suppose also H <
G, and NNH = {e}. Then the conditions of Theorem 111 (page 132)

are met, and NH is an internal semidirect product. Equation (3.7)
describing multiplication on N H, namely

(mg)(nh) = (m - gng™")(gh),

can be rewritten as

(mg)(nh) = (m - o4(n))(gh).

Theorem 144. Suppose N and H are groups, and g — o4 is a
homomorphism from H to Aut(N). Then the set N x H becomes a
group when multiplication is defined by

(m7g)(n7 h) = (m ’ Ug(n)agh)'

The group given by the theorem is the semidirect product of N
and H with respect to o; it can be denoted by

N x, H.

The bijection in Theorem 111 is an isomorphism from N x, H to
NH when ¢ is the homomorphism in Theorem 143.

Now recall from Theorem 72 (page 94) that for every associative ring
(R, 1,-), the function = — A, embeds the ring in (End(R),idg, o).
From this we obtain the following.
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Theorem 145. For every associative ring (R, 1,-), the function
T Ay

embeds (R,-)” in Aut(R).

The embedding is sometimes an isomorphism:

Theorem 146. For all n in N, the function
T Ay
is an isomorphism from Z,” to Aut(Z,).

Theorem 147. If p and q are primes such that

qlp—1,

then there is an embedding o of Z, in Aut(Z,), and hence there is

a semidirect product
Ly Ng Lg,

which is not abelian. If T is another embedding of Zy in Aut(Zy),
then for some n in Zq, the map

(y,2) = (y,nx)

is an isomorphism from Zy, X Zq to Zy Xg Zg.

Proof. The prime p has a primitive root a by Theorem 140 (page 168).
Letting b = a?~1/4_ we have an isomorphism z — b* from Zq to
(b), and (b) is the unique subgroup of Z,™ of order ¢ (Theorem 98,
page 121). By the last theorem, the map « — Ap= is an embedding
of Zq in Aut(Z,). Calling this embedding o, we can form

Ly X Lg.
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Now suppose 7 is an arbitrary embedding of Z, in Aut(Z,). By
uniqueness of (b) as a subgroup of Z,” of order g, the images of 7
and o must be the same, and so 77 = Ap» for some n in Z,*, and
hence

Te = Onx-

The function f from Z, x Z, to itself given by

fy,z) = (y,nz)

is a bijection. If we denote multiplication in Z, x, Z; by -7, and
likewise with o for 7, then

f((e,b) 7 (y,2)) = fle+1(y), b+ )
= (c+on(y),n(b+ )
= (c+ onp(y), nb + nx)
= (c;nb) -7 (y, nx)
= f(c,0) 7 f(y,x).

Thus f is an isomorphism from Z,, X, Zq to Z, X Zq. O

In case ¢ = 2, the group in the theorem is isomorphic to Dih(p). We
investigate groups of order pq a bit more in the next section. The
final classification of them will be Theorem 159 on page 184.

5.2. Cauchy’s Theorem

We can partition a group G into subsets {a, a”! }. Many of these
may indeed have size 2; but {e,e”'} = {e}. Hence, if G is finite of
even order, we must have {a,a~'} = {a} for some a other than e.
In this case, a has order 2.
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We can recast this argument as follows. The function z — 2z~ is

a permutation ¢ of G as a set. The function f from Z; to Sym(G)
given by

fo=1idg, fi=o

is a homomorphism. Then G is partitioned by the sets {f.(a): x €
Zy}. The size of such a set is | or 2. Hence the number of such sets
of size 1 is congruent modulo 2 to the order of G.

Now we can generalize by replacing 2 with an arbitrary prime. Thus
we obtain the first promised partial converse of the Lagrange The-
orem (page 126). Galois apparently used the following in 1831—2;
Cauchy published a proof in 1844 |2, pp. 142—4].

Theorem 148 (Cauchy). For all primes p, every finite group whose
order is a multiple of p has an element of order p.

Proof (J. H. McKay [27]). Suppose G is a finite group whose order
is divisible by p. Let A be the range of the map

(IOa s 7'rp—2) = (1‘0, ceey Tp_2, (IO o "Tp—2)7l)'

from GP~! to GP. Thus

A:{(xi:i<p)€Gp: Hxi:e}, Al = |GP7.
i<p
If (z;:i<p)eAand O <k <p— 1, then
($O"~$k7|)_l =Tk Tp—1,

and so (zg,. .. 3Ty 15 TQs - - - ,Zp_1) € A. Thus we have a homomor-
phism f from Z, to Sym(A) given by

fk(wa"7xkf|7xk7"'7xp7|) = (xk)"'axp717$07"'7xk7|)'
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Then

fe(x) = fu(z) = fr(z) ==,
{k€Zy: frlx) =x} < Z,.

Subgroups of Z, have order | or p, and so the set {fi(x): k € Z,}
has size p or 1. Such subsets partition A. One of the subsets, namely

{(e,...,e)}, has size 1. Since |A| is a multiple of p, there must be x
in A different from (e, ...,e) such that fi(z) = « for all k£ in Z,,. In
this case,  must be (z,...,z) for some z in G \ {e}. Thus x has
order p. O

A p-group is a group the order of whose every element is a power
of p.

Corollary 148.1. A finite group is a p-group if and only if its order
s a power of p.

Proof. Let £ be a prime different from p. if ¢ divides |G|, then G has
an element of order ¢, so G is not a p-group. Conversely, if g € G
and ¢ divides |g|, then ¢ divides |G|. O

For example, the trivial group {e} is a p-group for every prime p.
All groups Z,x, and direct sums of them, are p-groups. If n > 1,
then Dih(2™) is a nonabelian 2-group.

By Cauchy’s Theorem, the hypothesis of the following is always sat-
isfied.

Theorem 149. Suppose p and q are distinct primes, and G is a
group of order pq. If a and b are elements of G of orders p and q
respectively, then

(@) N (b) = {e}, G = {a)(b).
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In the theorem, if (a) is a normal subgroup of G, then G is a semidi-
rect product, by Theorem 111 on page 132. If also (b) < G, then
G is actually a direct product, isomorphic to Z, x Z,. Otherwise,
G is not abelian, and by Theorem 147 there is only one possibility.
With Theorem 159 on page 184, we shall show that one of (a) and
(b) must be a normal subgroup of G, and so G is indeed either a
direct or a semidirect product.

5.3. Actions of groups

A homomorphism from a group G to the symmetry group of a set
A is called an action of G on A. An alternative characterization of
actions is given by the following.

Theorem 150. Let G be a group, and A a set. There is a one-to-
one correspondence between

1. homomorphisms g — (a — ga) from G into Sym(A), and
2. functions (g,a) — ga from G x A into A such that

ea=a, (gh)a = g(ha) (5-1)
for all h and h in G and a in A.

Proof. If g — (a — ga) maps G homomorphically into Sym(A),
then the identities in (5.1) follow. Suppose conversely that these
hold. Then, in particular,

glg~'a) = (99 Na=ca=a

and likewise ¢! (ga) =a,soa— ¢~ 'a is the inverse of a — ga, and

the function g — (a — ga) does map G into Sym(A), homomorphi-
cally by (5.1). O
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Usually it is a function (g, a) — ga from G'x A to A as in the theorem
that is called an action of G on A. So in the notation of the proof of
Cauchy’s Theorem, the function (k,x) — fi(x) is an action of Z,
on A. Immediately, for any set A, the function (o, x) — o(z) from
Sym(A) x A to A is an action of Sym(A) on A. Other examples that
will be of interest to us are given by the following.

Theorem 151. Let G be a group and H < G. Then G acts:

a) on itself by (g,x) — Ag(z) (left multiplication),

b) on G/H by (g,xH) — gxH (left multiplication),

¢) on itself by (g,z) — grg~" (conjugation),

d) on {zHz"": 2z € G} by (9,K) — gKg~" (conjugation).
Suppose (g, ) — gz is an arbitrary action of G on A. If a € A, then
the subset {g: ga = a} of G is the stabilizer of a, denoted by

Ga;
the subset {ga: g € G} of A is the orbit of a, denoted by
Ga.
The subset {z: G, = G} of A can be denoted by
Ap.
Note how all of these were used in the proof of Cauchy’s Theorem.

Also, in the proof we established the appropriate case of the follow-
ing.
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Theorem 152. Suppose a group G acts on a set A. Then the orbits
of the elements of A under the action are a partition of A, that is,

Ga#Gb = GanGb=o, | Ga= A

a€A

Moreover, for all a in A,

G, <G, (G : G, = |Gal.

Proof. Let the action be (g,z) — gx. for the last equation, we
establish a bijection between G /G, and Ga by noting that

9Gy =hG, <= h™'ge G, < ga = ha;
so the bijection is gG, — ga. O

Corollary 152.1. If there are only finitely many orbits in A under
G, then

Al = Aol + > _[G: G (5-2)

aeX

for some set X of elements of A whose orbits are nontrivial.

Equation (5.2) is called the class equation. We used it implicitly
in the proof of Cauchy’s Theorem. In fact we used it to derive the
appropriate case of the following.

Theorem 153. If A is acted on by a finite p-group, then

|A| =|A4g| (mod p)

Proof. In the class equation, [G : G,] is a multiple of p in each
case. O
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5.3.1. Centralizers

Suppose G acts on itself by conjugation, and @ € G. Then Ga is the
conjugacy class of a, while G, is the centralizer of a, denoted
by?

Ca(a). (5-3)
Finally, G is the center of GG, denoted by

C(G);

this is a normal subgroup of G. The class equation for the present
case can now be written as

Gl = IC(G)| + Y _[G: Ca(a)].

aeX
Theorem 154. All groups of order p* are abelian.
Proof. Let G have order p%. In particular, G is a p-group. By
Theorem 153, either C(G) = G, in which case G is abelian, or else
|C(G)| = p. In the latter case, let a € G \ Cg(a). Then
G = C(G){a).
But elements of C(G) commute with all elements of G; and a com-

mutes with itself. If the generators commute with one another, the
whole group is abelian. Therefore G must be abelian. O

Porism 154.1. Every nontrivial p-group has nontrivial center.

2More generally, if H < G, then Cg(g) = {h € H: hgh~! = g}.
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5.3.2. Normalizers

If H < G, let G act on the set of conjugates of H by conjugation.
The stabilizer of H under this action is called the normalizer of H
in G and is denoted by3

Ng(H).

Explanation of the name is given by the following.

Theorem 155. If H < K < G, then
H<aK < K <Ng(H).

We establish some technical results for the sake of proving the Sylow
Theorems of the next subsection.

Lemma 11. Suppose H < G, and let H act on G/H by left multi-
plication. Then
(G/H)o = Ng(H)/H.

Proof. Supposing g € G, we have gH € (G/H)g if and only if, for
all hin H,

hgH = gH,

g~ 'hgH = H,

g_lhg € H.

Thus
gH e (G/H)y < ¢ 'Hg=H
> g €Ng(H)

< g € Ng(H)
<= gH € Ng(H)/H. O

3More generally, if also K < G, then N (H) = {k € K: kHk~' = H}.
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A p-subgroup of a group is a subgroup that is a p-group. Ev-
ery group has at least one p-subgroup, namely the trivial subgroup

{e}.

Lemma 12. If H is a p-subgroup of G, then

[G:H]=[Ng(H): H (mod p).

Proof. Theorem 153 and the last lemma. O

Lemma 13. If H is a p-subgroup of G, and p divides |G : H], then
for some subgroup K of G,

H < K, [K : H] =p.

Proof. By the last lemma, p divides [Ng(H) : H|. Since H <
N¢(H), the quotient Ng(H)/H is a group. By Cauchy’s Theorem
(Theorem 148), this group has an element gH of order p. Then H(g)
is the desired group K. O

Now can start proving the Sylow Theorems.

5.3.3- Sylow subgroups

A Sylow p-subgroup of a group is a maximal p-subgroup. Then
every p-subgroup of a finite group G is a subgroup of a Sylow p-
subgroup of G.4 In particular, since G does have the p-subgroup
{e}, it has at least one Sylow p-subgroup. We now establish that
the order of every Sylow p-subgroup of a finite group is as large as
Lagrange’s Theorem (page 126) allows it to be.

4The same is true for infinite groups G, by the version of the Axiom of Choice
known as Zorn’s Lemma; but we shall not make use of this result.
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Theorem 156 (Sylow I). If G is a finite group of order p"m, where
ged(p,m) = 1, then every Sylow p-subgroup of G has order p".
Proof. Use the last lemma repeatedly. O
Porism 156.1. If |G| = p™m, where ptm, then there is a chain
Ho< H, << H,
of p-subgroups of G, where
Hp = {e}, H, <H;,, [H; - Hi] =p.

In particular, H, is a Sylow p-subgroup of G. FEvery p-subgroup of
G appears on such a chain.

In the notation of the porism, although H; < H;,| and H;y| <
H, 5, we need not have H; < H; . For a counterexample, consider

Dih(4):
((1:3)) <{(1 3),(02)), ((1'3),(0 2)) < Dih(4),
but ((1 3)) ¢ Dih(4) since
(0 1 2 3) € Dih(4), (3210)(13)0123)=(02).

The following is as close as can be to a converse of Lagrange’s The-
orem.

Corollary 156.1. Suppose G is a finite group. Then G has a sub-
group of every order that divides |G|, provided that order is a prime
power.

The converse of the first part of the following will be the Second
Sylow Theorem.
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Corollary 156.2. Fvery conjugate of every Sylow p-subgroup of a
finite group is also a Sylow p-subgroup. Thus if a finite group has a
unique Sylow p-subgroup, this must be a normal subgroup.

To prove the Second Sylow Theorem, we shall use a generalization
of Lemma 11.

Lemma 14. Suppose G is a group with subgroups H and K. Under
the action of H on G/K by left multiplication,

gK € (G/K)y = H < gKg~".

Proof. The first part of the proof of Lemma 11 shows this. Indeed,
for all g in G, we have gK € (G/K)q if and only if, for all h in H,

hgK = gK,
g 'hgK = K,
gilthK,
hegKg ' O

Theorem 157 (Sylow II). All Sylow p-subgroups of finite groups
are conjugate.

Proof. Say H and K are Sylow p-subgroups of G. Then H acts on
the set G/K by left multiplication. By Theorem 153, since [G : K]
is not a multiple of p, the set (G/K)p has an element aK. By
the lemma, H < aKa~'. Then H = aKa~' by the First Sylow
Theorem. O

Theorem 158 (Sylow III). If |G| = p"m, where ged(p,m) = 1,
and A is the set of Sylow p-subgroups of G, then

[Al=1 (mod p), |A| divides m.



184 5. Finite groups

Proof. G acts on A by conjugation, by the First Sylow Theorem
(more precisely, Corollary 156.2). Let H € A. By the Second Sylow
Theorem, the orbit of H is just A. The stabilizer of H is Ng(H).
Since by Theorem 152 the index of the stabilizer is the size of the

orbit, we have
(G :Na(H)] = |A],

and so |A| divides |G|. Now suppose also K € A. Then K must be
the unique Sylow p-subgroup of Ng(K). Considering H as acting
on A by conjugation, we have

K eAy < H<Ng(K)
~— H=K.

Therefore Ag = {H}, so by Theorem 153,
[Al=1 (mod p).

It now follows that |A| divides m. O

5.4. *Classification of small groups
We can now complete the work, begun in §5.1 (page 170), of classi-
fying the groups of order pg for primes p and gq.

Theorem 159. Suppose p and q are distinct primes, with ¢ < p,
and G is a group of order pq. Either

G =7y X Ly,
which is cyclic, or else p =1 (mod q) and

G =7y X Ly
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for some embedding o of Zq in Aut(Zy). In particular, if ¢ = 2,
then
G = Dih(p).

Proof. By Cauchy’s Theorem, G has elements a and b, of orders
p and ¢ respectively. Then (a) and (b) are Sylow subgroups of G.
Let A be the set of Sylow p-subgroups of G. By the Third Sylow
Theorem, |A| divides g. Since p { ¢ — 1, we must have |4] = 1.
Thus (a) is the unique Sylow p-sugroup of G, and so it is a normal
subgroup. By Theorems 149 and 111 (pages 175 and 132), G is
the semidirect product of (a) and (b). If it is not actually a direct
product, then (b) must not be a normal subgroup of G, and so ¢
does divide p — |, and the rest follows. O

We now know all groups of order less than 36, but different from 8,

12,16, 18, 20, 24, 27, 28, 30, and 32.
Theorem 160. Every group of order 8 is isomorphic to one of

Zg, Ly @ Ly, Zy® Ly ® Lo, Dih(4), Qs-

Proof. Say |G| = 8. If G is abelian, then its possibilities are given by
the classification of finitely generated abelian groups (Theorem 137,
page 164). Suppose G is not abelian. Then G has an element a
of order greater than 2 by Theorem 64 (page 84), and so |a| = 4
(since G 2 Zg). Then (a) < G by Theorem 109 (page 130). Let
b € G~ (a). Then b? is either e or a® (since otherwise b would
generate G). In the former case, G = (a) x (b), so G = Dih(4). In
the latter case, G = Qg. O

Theorem 161. The subgroup of Sym(3) x Z4 generated by the two
elements

((012),2), (O 1).1)
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has order 12 and has the presentation
(a,b] a®,a®b?, bab~"a).

Lemma 15. If H < G, and o is the homomorphism g — (xH +—
grH) from G to Sym(G/H), then

ker(o) < H.
Theorem 162. Every group of order |12 is isomorphic to one of

Zio, Zo®Zg, Alt(4), Dih(6), (a,b]|ab a3b? bab~'a).

Proof. Suppose |G| = 12. By Cauchy’s Theorem, G has an element
coforder 3. Then G acts on G/(c) by left multiplication, which gives
us a homomorphism from G to Sym(G/{c)). Since [G : {c)] = 4,
there is a homomorphism from G to Sym(4). If this is an embedding,
then G = Alt(4) by Theorem 120 (page 140). Otherwise, by the
lemma, the kernel of the homorphism must be (¢). In this case,

(¢) < G.

Now let H be a Sylow 2-subgroup of G. Having order 22, it is
abelian (Theorem 154, page 179). If G is not abelian, then the
action of H on (¢) by conjugation must be nontrivial. But since
|[Aut({c))| = 6, which is indivisible by the order of H, there must be
some d in H that commutes with c¢. Then (c,d) = Zg. Let a = cd,
so {a) = (c,d). Let b € G \ {(a), so

G = {a,b).
If |b| = 2, then G = Dih(6). In any case, conjugation by b is a non-

trivial automorphism of (a), and in particular bab~! is a generator

of {(a) different from a. There is only one of these, namely a~', so

bab~' =a~". (5-4)
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Also b? = a* for some k in Zg. If k = +1, then G = (b). Suppose
k = =£2. Then |b| = 6, so (b) < G, and therefore

ab"'a"" =b. (5.5)

From (5.4) we have
ab~' =b""a ", ba=a"'b. (5.6)
From (5.5) we have ab~' = ba, so all members of the equations

in (5.6) are equal to one another. In particular,
ab™! :a_lb, ba:b_la_l7

which yield a? = b% and b% = a~2 respectively, contradicting that
la| = 6. The only remaining possibility is ¥ = 3, which yields the
last group listed. O

5.5. Nilpotent groups

For a group, what is the next best thing to being abelian? A group
G is abelian if and only if C(G) = G. To weaken this condition, we
define the commutator of two elements a and b of G to be

aba='b! ;
this can be denoted by
[a,b].

Then
C(G)={geG:Va(zeG=[g,z]=¢)}.

We now generalize this by defining

Co(G) = {e}, Cpyi(G) = {g €G:Vz (ze€G=ga]e Cn(G))}.
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Then C(G) = C,(G). Also,
Co(G) = {geG: Va (:BEG”: H [[g,mo],xl],n-},xnl} :e>}.

The following general result will now be useful.

Theorem 163. Suppose N < G. Every subgroup H of G/N is of
the form K/N for some subgroup K of G of which N is a normal
subgroup. Moreover,

K/N 9G/N < K QG.

Theorem 164. For all groups G, for all n in w,

C,(G) < G, (5-7)
Cn(G) < Cpy1(G), (5-8)
Cny1(G)/ Cou(G) = C(G/ Cu(G)). (5:9)

Proof. We use induction. Trivially, (5.7) holds when n = O. Suppose
it holds when n = k. Then the following are equivalent:

g € Cry1(G),
Vo (z € G = [g,2] € Ci(Q)),
Vz (z € G = [g,2] Cu(G) = Ci(G)),
Vz (z € G = [gCi(G),z Cr(G)] = Ci(@)),
9Cr(G) € C(G/ Ck(G)).

Thus (5.8) and (5.9) hold when n = k. In particular,

Cr1(G)/ Cu(G) € G/ C(G),
and so, by the last theorem, (5.7) holds when n =k + 1. O
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The sequence (C,,(G): n € w) may be written out as
{e} < C(G) < C2(G) 9 C3(G) < - --

although strictly this expression is not a noun, but the conjunction
of the statements {e} < C(G), C(G) < C2(G), C2(G) < C3(G), and
so on. By the last theorem (and Theorem 110 on page 131), the
relation <1 on the set {C,,(G): n € w} is indeed transitive. A group
is called nilpotent if for some n in w,

Cn(G) =G.

So an abelian group is nilpotent, since its center is itself.5 Other
examples of nilpotent groups are given by:

Theorem 165. Finite p-groups are nilpotent.

Proof. If G is a p-group and Ci(G) < G, then G/ Cy(G) is a non-
trivial p-group, so by Porism 154.1 it has a nontrivial center. By
Theorem 164 then, Cx(G) S Ciy i (G). O
The converse fails, because of:

Theorem 166. The direct product of a finite family of nilpotent

groups is nilpotent.

Proof. Use Theorem 136 (page 164) and

C(G x H)=C(G) x C(H).
If C,(G) = G and C,,,(H) = H, then Cpaxin,m}(G x H) = G x
H. O

5 Apparently the term nilpotent arises for the following reason. If C,(G) = G
and, for some g in G, f is the element x — [g, z] of the monoid (G¢,idg, o),
then f™ is the constant function z — e.
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Thus, if all Sylow subgroups of a finite group G are normal sub-
groups, then G must be nilpotent. We now proceed to a partial
converse of this result. Given that G is a finite nilpotent group with
a Sylow p-subgroup P for some prime p, we want to show P < G,
that is, Ng(P) = G.

Lemma 16. If G is a finite group with Sylow p-subgroup P, then

Ng(Ng(P)) = Ng(P).

Proof. Let N = Ng(P). Supppose g € Ng(N), that is,
gNgil = N.

Since P < N, we have also gPg~' < N. But P < N, so P is
the unique Sylow p-subgroup of N. Since gPg~! is also a Sylow
p-subgroup of N, we must have gPg~' = P. Thus

g€ N.

We have now proved Ng(N) < N. O

Now, in the notation of the lemma, we want to show that, if N < G,
then either N S Ng(N), or else G is not finite and nilpotent. We
shall use the following.

Lemma 17. If C,(G) < H, then C,;(G) < Ng(H).

Proof. Say g € C,4(G); we show gHg™' C H. But if h € H,
then [g,h] € C,,(G), so ghg™' € C,,(G)h C H. Therefore gHg~' C
H. O

Lemma 18. If G is nilpotent, and H S G, then H S Ng(H).
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Proof. Let n be maximal such that C,,(G) < H. Then C,,(G) ~
H is non-empty, but, by the last lemma, it contains members of
N¢(H). O

Theorem 167. A finite nilpotent group is the direct product of its
Sylow subgroups.

Proof. Suppose G is a finite nilpotent group. By Lemmas 16 and 18,
every Sylow subgroup of G is a normal subgroup. Suppose the Sy-
low subgroups of G compose a list (P;: ¢ < n), where each P; is a
pi-group, and p; # p; when i # j. If, for some ¢ in n, the product
Py--- P,_, is an internal direct product, then its order is indivisi-
ble by p;, and so Py---P;_; N P; = {e}. Hence, by Theorem 124
(page 147) and induction, each product Py - - - P; is an internal direct
product. Then also the order of Py --- P,,_; is the order of G, so the
two groups are the same. O

Theorems 165, 166, and 167 give us a classification of the finite
nilpotent groups.

5.6. Soluble groups

Having defined the commutator of two elements of a group, we define
the commutator subgroup of a group G to be the subgroup

([, y]: (z,y) € G?)

generated by the commutators of all pairs of elements of G. We
denote this subgroup by
G’

Its interest arises from the following.
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Theorem 168. G’ is the smallest of the normal subgroups N of G
such that G/N is abelian.

Proof. If f is a homomorphism defined on G, then

[z, yl) = [f (), f(y)]-

Thus, if f € Aut(G), then f(G') < G'. In particular, 2G’z~" < G’
for all z in G; so G’ <« G. Suppose N < G; then the following are
equivalent.

1. G/N is abelian.
2. N = [z,y]N for all (z,y) in G2.
3. G’ < N. O
We now define the derived subgroups G(™ of G by
GO =g, Gt = (gmy,
We have a descending sequence
GG >G>

The group G is called soluble or solvable if this sequence reaches
{e} (after finitely many steps).® Immediately, abelian groups are
soluble. For more examples, let K be a field, and if n € N, let G be
the subgroup of GL,,(K) consisting of upper triangular matrices.
So G comprises the matrices

ap *

0 ap—1

SIf f is a polynomial in one variable over Q, let A be the set of its zeros in the
field C, and let G = {0 | A: 0 € Aut(C)}. Then G < Sym(A), and G is
soluble if and only if the elements of A can be obtained from Q by the field
operations and taking nth roots for arbitrary n in N.
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where ag -+ - a,_; # 0. We have

ag * bo * aobo *

0 Ap—| 0 bnfl 0 anflbnfl

and therefore every element of G’ is unitriangular, that is, it takes

the form of
| *

0 |
We also have
1 a * 1 b * | T *
| | _ 1
a,_ b, | Cr|
0 | 0 | 0 1
where ¢; = a; + b; in each case, so the elements of G take the form
of 1 0 *
|
0

Proceeding, we find G+ = {e}.

Theorem 169. Nilpotent groups are soluble.

Proof. Each quotient Cy | (G)/ Ck(G) is the center of some group,
namely G/ Cr(G), so it is abelian. By Theorem 168 then,

Crp1 (G) < CL(G).
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Suppose G is nilpotent, so that G = C,,(G) for some n in w. Then
GO < C,(G).
If G* < C,_x(G), then
G < (Cuik(G)) < Cgent(G)-
By induction, G™ < Co(G) = {e}. O

The foregoing argument might be summarized in the following com-
mutative diagram, which is built up from left to right, the arrows
being inclusions:

/ G2 G3) <o G™)

I S T

C (G)/ -~ Cn—] (G)/ <~ Cn—Z(G)/ <G C(G)/

| | L

Cn(G) =— Cps 1 (G) =—— Cppp(G) =——— Cpp3(G) <o (e}

|
|

Since Sym(3)/ Alt(3) is abelian, we have
Sym(3)’ < Alt(3), Sym(3)" < Alt(3)' = {e},
so Sym(3) is soluble. However,
Sym(3) = Alt(3) x (0 1)),

the semidirect product of its Sylow subgroups; but the product is
not direct, so Sym(3) is not nilpotent.

Theorem 170. Let H < G and N < G.
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1. If G is soluble, then so are H and G/N.
2. If N and G/N are soluble, then so is G.

Proof. 1. H® < G®) and (G/N)*® = GH®IN/N.

2. If G/N is soluble, then G < N for some n. If also N is soluble,
then N(™) = {e} for some m, so Gt < N(™) = [e}. O

Theorem 171. Groups with non-abelian simple subgroups are not
soluble.

Proof. Suppose H is simple. Since H' <1 H, we have either H' = {e}
or H = H. In the former case, H is abelian; in the latter, H is
insoluble. O

In particular, Sym(5) is not soluble if n > 5.7

5.7. Normal series

A normal series for a group G is a list (Gp,...,G,) of subgroups,
where
G=Go> G >...>G, ={e}.

We do not require G > Gy, 2.8 The quotients Gy /G| are called
the factors of the normal series. The series is called

1) a composition series, if the factors are simple;

7This is why the general Sth-degree polynomial equation is insoluble by radi-
cals.

80ne may call a normal series a subnormal series, reserving the term normal
series for the case where G > Gy for each k. However, we shall not be
interested in the distinction recognized by this terminology.
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2) a soluble series, if the factors are abelian.

Theorem 172. A group is soluble if and only if it has a soluble
Series.

Proof. It G = {e}, then (G©,... G™) is a soluble series for G,
by Theorem 168. Suppose conversely (Go,...,G,) is a soluble series
for G. Again by Theorem 168, we have G}’ < Gy, for each k in n.
Since also H < K implies H' < K’, we have

G/<G|7
G' <G\ <Gy,

¢ <q V< <G, <G ={e} O

Since not every finite group is soluble, not every finite group has a
soluble series. However:

Theorem 173. Every finite group has a composition series.

Proof. Trivially ({e}) is a composition series. Every nontrivial finite
group G has at least one proper normal subgroup, namely {e}. Being
finite, G has only finitely many normal subgroups. Therefore G has
a maximal proper normal subgroup, G* (which need not be unique).
Then G/G* is simple, by Theorem 163 (page 188): every normal
subgroup of G/G* is K/G* for some normal subgroup K of G such
that G* < K, and therefore K is either G* or G, so K/G* is either
{e} or G/G*.

Now let Go = G, and let G| = Gi* unless G, = {e}. Since G is
finite and Gy, = Gy 1, we must have G,, = {e} for some n. Then
(Go, - ..,Gy) is the desired composition series. O
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Two normal series are equivalent if they have the same multiset of
(isomorphism classes of) nontrivial factors. A multiset is a set in
which repetitions of members are allowed. For a formal definition,
we can say a multiset is a pair (A, f), where Aisaset and f: A — N.
For example, the two series

(Zéoa <2>7 <6>7 <I 2>7 {e})7 (Zéoa <3>7 <I 5>7 <] 5>7 <3O>7 {e})

are equivalent, because the factors of the first are isomorphic to
Zy, Z3, Ly, and Zs respectively, and the factors of the second are
isomorphic Zs, Zs, {e}, Z,, and Z, respectively, so each series has
the same multiset of factors, namely

{Z9,29,25,Zs}.

These series are not equivalent to (Zsq, (2), (6), {e}), whose factors
are Zy, Zs3, and Zs.

If, from a normal series for a group, another normal series for the
group can be obtained by deleting some terms, then the former series
is a refinement of the latter. So the series (Zgg, (2), (4), (12),{e})
is a refinement of (Zgg, (4), (12),{e}). Every normal series is a re-
finement of a normal series with no trivial factors, and these two
series are equivalent. Among normal series with no trivial factors,
composition series are mazimal in that they have no proper refine-
ments. If

G = Gp(0) > Go(1) > Go(2) > -+ - > Go(no) = {e},
G=G0)>G(1)>G(2)> - >Gi(n) = {e},

and the two normal series are equivalent and have no trivial factors,
this means ng = n, and there is ¢ in Sym(ng) such that

Go(i)/Goli+ 1) =G (a(2))/G (i) + 1)

for each 7 in ng.
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Theorem 174. A soluble series for a finite group has a refinement
in which the nontrivial factors are cyclic of prime order.

We now aim to prove Theorem 176 below. The proof will use the fol-
lowing, which is known as the Butterfly Lemma, because the groups
that it involves form the commutative diagram in Figure 5.1 (in
which arrows are inclusions).

No
H; N Ng Hy N N

Figure 5.1. The Butterfly Lemma

Lemma 19 (Zassenhaus). For a group G, suppose

No < Hp < G, N, < H,| <G,



5.7. Normal series 199

and let
K = (HoN Ny)(H, N Np), H=HyNH,.

Then
K< H,

and for each i in 2, there is a well-defined epimorphism
nh — Kh

from N;H to H/K with kernel N;(H; " N|_;). Hence:
1) N;(H; N Ny_;) < N;H for each i in 2, and

2) the two groups N;H/N;(H; N N|_;) are isomorphic to one an-
other.

Proof. For each i in 2, we have H; N N|_;, <« H by Theorem 110
(page 131). Hence K <« H. If n,n’ € Ny and h,h/ € H and
nh’ = n'h, then

h/h—l _ nfln’

which is in Ng N H and hence in K, so that Kh = Kh'. Thus
nh — Kh (where n € Ng and h € H) is indeed a well-defined ho-
momorphism f from NgH into H/K. It is clear that f is surjective.

Now let n € Ny and h € H, and suppose nh € ker(f), that is,
heK.

Then h = ngn; for some ng in H; N Ng and n; in Hy N N;. Hence
nh = nngn, which is in Ng(Hg N Ny). Thus

nh € No(HoﬂNl).
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Conversely, suppose this last condition holds. Since h = n~'nh, we

now have also
h € No(Hg N Ny).

so h = n'h for some n’ in Ny and some h' in Hy N Ny. Then
n' = h(h')~", which is in H(Hg NN ); but this is a subgroup of H,.
So n’ € Ng N Hy, and therefore n'h’, which is h, is in K, and so
nh € ker(f). Thus ker(f) = No(Hp N Ny). O

Theorem 175 (Schreier). Any two normal series have equivalent
refinements.

Proof. Suppose
G=G;0)>Gi(l)> - > Gi(n;) ={e},
where ¢ < 2. In particular then,
Go(j+ 1) <€ Go(j) <G, Gi(k+ 1)< G (k) <G
Define

Go(j, k) = Go(j + 1) - (Go(j) NG (K)),
G1(j,k) =G (k+1)-(Go(j) NG (K)),

where (j,k) € ng x n;. Then by the Butterfly Lemma

Go(j) = Go(4,0) > -+ > Go(j,n1) = Go(j + 1),
Gi(k) =G (0,k) > --- > G (ng, k) = G (k+ 1),

giving us normal series that are refinements of the original ones, and
also

GO(ja k)/GO(]7k+ 1) = GI (]7 k)/G|(j + Iak)v

so that the two refinements are equivalent. O
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Theorem 176 (Jordan-Holder). Any two composition series of a
group are equivalent.

Proof. By Schreier’s Theorem, any two composition series of a group
have equivalent refinements; but every refinement of a composition
series is already equivalent to that series. O

Combining this with Theorem 173, we have that every finite group
determines a multiset of finite simple groups, and these are just the
nontrivial factors of any composition series of the group. Hence
arises the interest in the classification of the finite simple groups: it
is like studying the prime numbers.
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6. Rings

6.1. Rings

We defined associative rings in §2.5 (page 92). Now we define rings
in general. If F is an abelian group (written additively), then a
multiplication on F is a binary operation - that distributes in
both senses over addition, so that

z-(y+z)=z-y+z-z, (z+y)-z=x-2+y- 2.

A ring is an abelian group with a multiplication. In particular, if
(R, 1,-) is an associative ring, then (R,-) is a ring. However, rings
that are not (reducts of) associative rings are also of interest: see
the next section.

Theorem 177. Fvery ring satisfies the identities
(x—y) z=x-2—y-2 x-(y—z)=z-y—=x-z
Hence, in particular,
0-2=0=2-0,
(—2) y=—(z-y) =z (-y)
By Theorem 63 (page 84), given an abelian group E, we have a
homomorphism n — (x — nz) from the monoid (Z, 1,-) to the

monoid (E¥idg, o). This is actually a homomorphism of associative
rings:

203
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Theorem 178. For every abelian group E,
n— (z+—nz): (2,0,—,+,1,) = (End(E),idg, o).
In particular,

Oz =0, lz ==, (—z = —=z.

In the theorem, if the abelian group has a multiplication, then
0.z =0z,

where the zeros come from the ring and from Z respectively. If,
further, the multiplication has the identity 1, then

l-2z=lzx.
More generally, we have

Theorem 179. For every integer n, every ring satisfies the identi-
ties
(nx) - y=n(z-y) =z ny.

The kernel of the homomorphism in Theorem 178 is (k) for some & in
w, by Theorem g1 (page 116). Then k can then be called the char-
acteristic of F. For example, if n € N, then Z,, has characteristic
n, while Z has characteristic 0.

Theorem 180. If (E, 1,-) is a ring with a multiplicative identity
1, then
ne—nl:(2,0,—+,1,)) = (E,1,).

The kernel of this homomorphism is (k), where k is the characteristic
of E.
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Theorem 181. Every ring embeds in a ring with identity having the
same characteristic, and in a ring with identity having characteristic

0.

Proof. Suppose R is a ring of characteristic n. Let A be Z or Z,,
and give A @ R the multiplication defined by

(m, z)(n,y) = (mn, my + nx + zy);

then (1,0) is an identity, and x — (0, z) is an embedding. O

6.2. Examples

The continuous functions on R with compact support compose a
ring with respect to the operations induced from R. Multiplication
in this ring is associative, but there is no identity.

If n> I, then (n) is a sub-ring of Z with no identity.

On page 114 we obtained H as the sub-ring of My, (C) that is the
image of C @ C under the group-homomorphism

@ (50,

i-(5 o)

so that every element of H is z 4+ wj for some unique (z,w) in C2.
Then H has the automorphism z 4+ wj — z + wj, where

We also defined

z+wj =z —wj.
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then the same construction that creates H out of C can be applied
to H itself, yielding the ring O of octonions; but this ring is not
associative.

In any ring (E,-), we define
[zyl =2y —y-x;

Then the binary operation (z,y) — [z, y] is also a multiplication on
E. This operation can be called the Lie bracket. We have

[z,2] = 0. (6.1)
Theorem 182. In an associative Ting,

[[.9],2] = [2, [y, 2] = [v, [z, 2] (6.2)

The identity (6.2) is called the Jacobi identity. A Lie ring is a
ring whose multiplication has the properties of the Lie bracket given
by the identities (6.1) and (6.2). if (E, |, -) is an associative ring, and
b is the Lie bracket in this ring, then (F,b) is a Lie ring. However,
we shall see presently that there are Lie rings that do not arise in
this way.

If (E,-) is a ring, and D is an element of End(F) satisfying the
Leibniz rule
D(z-y) = Dx-y+az- Dy,

then D is called a derivation of (E, o). For example, let C(R) be
the set of all infinitely differentiable functions from R to itself. This

is an associative ring in the obvious way. Then differentiation is a
derivation of Cy (R).

Theorem 183. The set of derivations of a ring (E,-) is the universe
of an abelian subgroup of End(E) and is closed under the bracket

(X,)Y)—» XoY —-YoX.
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The abelian group of derivations of a ring (E, -) can be denoted by
Der(E,-).

Then (Der(E,-),b) is a sub-ring of End(E), b), but is not generally
closed under o.

6.3. Associative rings

We know from Theorem 74 (page 94) that an associative ring (R, 1,-)
has a group of units, R*. In particular, in an associative ring,
when an element has both a left and a right inverse, they are equal.
However, the example on page g5 shows that some ring elements can
have right inverses that are not units.

A zero-divisor of the ring R is a nonzero element b such that the
equations

bx = 0, yb=0

have nonzero solutions in R. So zero-divisors are not units. For
example, if m > | and n > 1, then m + (mn) and n + (mn) are
zero-divisors in Z,,,. The unique element of the trivial ring Z; is a
unit, but not a zero-divisor.

A commutative ring is an integral domain if it has no zero-divisors
and | # 0. If n € N, the ring Z,, is an integral domain if and only if
n is prime.* Hence the characteristic of an integral domain must be
prime or O. Fields are integral domains, but Z is an integral domain

*Lang refers to integral domains as entire rings [23, p. 91]. It would appear
that integral domains were originally subgroups of C that are closed under
multiplication and that include the integers [4, p. 47].



208 6. Rings

that is not a field. If p is prime, then, by Theorem 105 (page 127),
Z,, is a field, and as such it is denoted by

F,.

An arbitrary associative ring R such that R~ R* = {0} is a divi-
sion ring. So fields are division rings; but H is a non-commutative
division ring.

If R is an associative ring, and G is a group, we can form the direct
sum » gec B, which is, first of all, an abelian group. It becomes
a module over R (in the sense of sub-§3.1.5, page 105) when we
define
r-(zg: 9 €G)=(r-z4: g€Qq)
for all r in R and (z4: 9 € G) in 3 ;R If g € G, we have the
canonical injection t4 of R in dec R as defined on page 146. Let
us denote t,4( 1) also by
g.
Then
(rg: 9€G) = ng-g.
geG
Thus an element of > gec It becomes a formal R-linear combi-
nation of elements of . Then multiplication on - . R is defined
in an obvious way: if 7; € R and g; € G for each ¢ in 2, then

(ro - g0)(r1 - g1) =7ror| - gogi-

The definition extends to all of Y gec B by distributivity. The re-
sulting ring can be denoted by

R(G);

it is the group ring of G over R.
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We can do the same construction with monoids, rather than groups.
For example, if we start with the free monoid generated by a symbol
X, we get a polynomial ring in one variable, denoted by

RIX];

this is the ring of formal R-linear combinations of powers of X. Such
combinations can be written as

Zaka,

k<n

where (ag: k < n) € R, where n € w. In case n = 0, the indicated
combination is 0; in case n = m+ |, the combination can be written
as one of

m
Zaka, ao+a]X+a2X2+--~+ame.
k=0

This combination too is O when each aj, is 0. We could use a second
variable, getting for example R[X, Y], which is just R[X][Y]. Usually
R here is commutative and is in particular a field or at least an
integral domain. We shall develop the theory of polynomial rings in
§87.7 (page 250), but shall use them meanwhile as examples.

6.4. ldeals

Suppose (R,0, —,+,-) is a ring, and ~ is a congruence-relation on
(R,4+,-). By Theorem 85 on page 111, ~ is a congruence-relation
on the ring. (The theorem is stated for associative rings, but does
not require the associativity.) If A = {z € R: x ~ 0}, then by
Theorem 87 (page 112), A is a subgroup of R, that is,

(Aa 07 ) +) < (R,O, ) +)
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Similarly, A is even a sub-ring of R, that is, in addition to being a
subgroup, it is closed under multiplication. We have

b~y <— b—2a~0
<~ b—zxze€ A
~— b+A=zx+ A

In short,
b~xr < b+ A=z+A.

Conversely, given a sub-ring A of R, we can use the last equivalence
as a definition of ~. Then ~ is an equivalence-relation on R by
Corollary 101.1 (page 125), and by this and Theorem 108 (page 129),
~ is even a congruence-relation on R as a group. However, ~ need
not be a congruence-relation on R as a ring. That is, it may not be
possible to define a multiplication on R/A by

(x+A)(y+ A) =zy + A (6.3)

For example, we cannot use this to define a multiplication on Q/Z,
since for example

| 3 I 3

~+Z=2+41Z —+Z 4> +T.

5 + 3 + Z, 7 +7ZF# a +

Theorem 184. Suppose R is a ring and A is a sub-ring. The group
R/A expands to a ring with multiplication as in (6.3) if and only if

reR & acA = rac A & arc A (6.4)
Proof. If R/A does expand to a ring, and a € A, then a + A is O in

this ring, and hence so are ra + A and ar + A by Theorem 177, so
that (6.4) holds. Conversely, suppose this holds. If a + A =z + A
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and b+ A =y + A, then A contains a — x and b — y, so A contains
also

(a—z)-y+a-(b-y),
which is ab — xy, so ab+ A = xy + A. O

Under the equivalent conditions of the theorem, A is called an ideal
of R. The historical reason for the name is suggested in §7.3 (page 221).
Meanwhile, he have the following counterpart of Theorem 112 (page 132).

Theorem 185. A sub-ring of a ring R is an ideal of R if and only

if it is the kernel of a homomorphism on R.

We can express (6.4) as
RAC A, AR C A.

If only one of these holds, then A is called respectively a left ideal
of R or a right ideal of R. However, left ideals and right ideals are
not kinds of ideals; rather, an ideal is a left ideal that is also a right
ideal. One may therefore refer to ideals as two-sided ideals.

For example, the set of matrices

*x 0 ... O
*» 0 ... O
is a left ideal of M,,«, (R), but not a right ideal unless n = 1. Also,

for every element a of an associative ring R, the subset Ra is a left
ideal of R, while RaR is a two-sided ideal.

We have the following counterpart to Theorem 113 for groups.
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Theorem 186. If f is a homomorphism from a ring R to a ring
S, and I is a two-sided ideal of R included in ker(f), then there is
a unique homomorphism [ from R/I to S such that f = f o

Hence the isomorphism theorems, as for groups.

Suppose (A;: i € I) is an indexed family of left ideals of a ring R.
Let the abelian subgroup of R generated by | J;.; A; be denoted by

> Ai

icl
this is the sum of the left ideals A;. This must not be confused with
the direct sums defined in §4.2 (page 144).
Given a finite indexed family (Ag,...,A,_) of left ideals of an
associative ring R, we let the abelian subgroup of R generated by

{ag - an_1:a; € A;}
be denoted by
Ag--Api;

this is the product of the left ideals A;.

Theorem 187. Sums and finite products of left ideals are left ideals;
sums and products of two-sided ideals are two-sided ideals. Addition
and multiplication of ideals are associative; addition is commutative;
multiplication distributes over addition.

Theorem 188. If A and B are left ideals of a ring, then so is ANB.
If they are two-sided ideals, then AB C AN B.

Usually AB does not include AN B, since for example A% might not
include A; such is the case when A = 27, since then A2 = 47Z.
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Throughout this chapter, “ring” means commutative ring. We shall
often identify properties of Z and then consider arbitrary rings with
these properties. If R is a ring (that is, a commutative ring) with
an ideal I, and a + I = b+ I, we may write this as

a=b (modI).

7-1. Commutative rings

A subset A of a ring R determines the ideal denoted by
(4),

namely the smallest ideal including A. This consists of the R-linear
combinations of elements of A, namely the well-defined sums

§ Ta,

a€A

where r, € R; in particular, r, = O for all but finitely many a. If
A ={a;: i <n}, then (A) can be written as one of

(a;: 1 <n), Rag+-+-+ Ra,_;.
In particular, if A = {a}, then (A) is denoted by one of

(a), Ra

213
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and is called a principal ideal. Then
(ai: i< T‘L) = (aO) +""i»(a'n—l)'

In Z, the ideal (a) is the same as the subgroup (a). Therefore every
ideal of Z is principal, by Theorem g1 (page 116). A principal ideal
domain or PID is an integral domain whose every ideal is principal.
Thus Z is a PID, but the polynomial ring Q[X,Y] is not, since the
ideal (X,Y) is not principal.

The following is Proposition VII.30 of Euclid’s Elements. We are
going to be interested in rings besides Z in which the proof can be
carried out. Meanwhile, it will motivate the definition of prime ideal
below.

Theorem 189 (Euclid’s Lemma). If p is a prime number, then for
all integers a and b,

plab & pta = p]|b.
Proof. Given that p { a, we know that ged(p,a) = 1 by the proof
of Theorem 105 (page 127; or by the result of this theorem and

Theorem 94, page 119). Hence by Theorem g3, we can solve az +
py = |. In this case we obtain

abzr + pby = b,

so if p | ab, then, since immediately p | pby, we must have p | b. [

An ideal of a ring is proper if it is not the whole ring. A ring has
a unique improper ideal, namely itself, which can be written as

().
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Thus an ideal is proper if and only if it does not contain 1. When
A is the empty subset of a ring, then the ideal (A), which is {0}, is
usually denoted by

(0).

This can be counted as a principal ideal. Considering the last theo-
rem, and noting that, in Z,

alb < be(a),

we refer to a proper ideal P of a ring R as

® prime, if for all ¢ and b in R,
abe P & a¢ P = be P (7.1)
® maximal, if for all ideals J of R,

IcJ = J=R

Theorem 190. Let R be a ring.
1. R is an integral domain <= (0) is a prime ideal.
2. R is a field <= (0) is a mazimal ideal.

More generally, for an arbitrary ideal I of R:
3. R/I is an integral domain <= I is a prime ideal.

4. R/I is a field < I is a mazimal ideal.

Proof. 1. This is immediate from the definitions of integral domain
and prime ideal, once we note that z € (0) means x = O.

2. If R is a field and (0) C I, then I \ (O) contains some a, and
then a=' -a € I, so I = R. Conversely, if (0) is maximal, then for
all @ in R~ (0) we have (a) = (1), so a is invertible.
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3. The ideal (0) of R/I is {I}, and

(a+D)(b+1)=1 < abel.

4. By Theorem 163 (page 188), every ideal of R/I is J/I for some
subgroup J of R. Moreover, this J must be an ideal of R. In this
case, J is maximal if and only if J/I is a maximal ideal of R/I. O

Corollary 190.1. Mazimal ideals are prime.

The prime ideals of Z are precisely the ideals (0) and (p), where p is
prime. Indeed, (0) is prime because Z is an integral domain, and if
p is prime, then Z, is the field F, so (p) is even maximal. If n > |
and is not prime, so that n = ab for some a and b in {2,...,n— 1},
then a and b are zero-divisors in Z,,, so (n) is not prime.

The converse of the corollary fails easily, since (Q) is a prime but
non-maximal ideal of Z. However, every prime ideal of Z other than
(0) is maximal. This is not the case for Q[X,Y], which has the
prime but non-maximal ideal (X).

In some rings, every prime ideal is maximal. Such is the case for
fields, since their only proper ideals are (0). It is also the case for
Boolean rings. A ring is called Boolean if it satisfies the identity

IZZI’.

In defining ultraproducts in §7.6 (page 236), we shall use the example
established by the following:

Theorem 191. if Q is a set, then P(§2) is a Boolean ring, where
X-Y=XnY, X+Y=XY)U(({lX).

Theorem 192. Every Boolean ring in which O # | has character-
istic 2.
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Proof. In a Boolean ring, 2z = (2x)% = 422 = 4z, so

2z =0. O

The following will be generalized by Theorem 213 (page 242).

Theorem 193. In Boolean rings, all prime ideals are mazximal.

Proof. In a Boolean ring,
=2 -z = =0
z-(z—1)=a"—ax=2—2=0,
so every x is a zero-divisor unless z is O or 1. Therefore there are no

Boolean integral domains besides {0, 1}, which is the field F,. O

In Z, by Theorem g1, the ideal (a, b) is the principal ideal generated
by ged(a, b). So a and b are relatively prime if and only if (a,b) = Z.
We can write this condition as

(a) + (b) = Z.
Then the following generalizes Theorem 138.

Theorem 194 (Chinese Remainder Theorem). Suppose R has an
indezed family (I;: i < n) of ideals such that

1<j<n = Ii—f‘IjZR.
The monomorphism

x+ﬂ[i»—>(x+1i:i<n) (7.2)

i<n

from R/, I to >, R/1; is an isomorphism. That is, every
system

(x=ap (modIp)) & -+ & (v=a,_; (modI, ;))
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of congruences has a solution in R, and the solution is unique mod-
ulo IpN---N1I,_;.

Proof. We proceed by induction. The claim is trivially true when

n= 1. In case n = 2, we have bg +b; = | for some bg in Iy and b,
in I;. Then

bo=0 (mod Ip), bo=1 (mod I)),

by =1 (mod Ip), by =0 (mod I)).
Therefore

biag +bpa; =ag (mod Iy), bjag+boa; =a; (mod I)).
Thus (ag + Ig,a; + I;) is in the image of the map in (7.2).

Finally, if the claim holds when n = m, then it holds when n = m+ |
by the proof of the case n = 2, once we note that if

a; +b; = |

for some a; in I; and b; in I,,, for each i in m, then

I Gai+0:)=1;

<m

but this product® is the sum of [ a; and an element of I,,, and

<m
H a; € ﬂ I;. O
<m i<m

*The technique of multiplying elements of sums of ideals will be used also in
proving Lemma 23, page 244.
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7.2. Division

As in Z (page 64), so in an arbitrary ring R, an element a is called
a divisor or factor of an element b, and a is said to divide b, and
we write

a| b,

if the equation
ar=1»

is soluble in R. Two elements of R that divide each other can be
called associates. Zero is an associate only of itself.

Theorem 195. In any ring:
1. a|b <= (b) C (a);
2. a and b are associates if and only if (a) = (b).
Suppose a = bx.
9. If x is a unit, then a and b are associates.
4. If b is a zero-divisor or O, then so is a.
5. If a is a unit, then so is b.
For example, in Zg, the elements | and 5 are units; the other non-

zero elements are zero-divisors. Of these, 2 and 4 are associates,
since

2.2=4, 4.2=2 (mod 6); (7.3)

but 3 is not an associate of these.

We now distinguish the properties of certain ring-elements that, by
Euclid’s Lemma (page 214), are the same in Z. In an arbitrary ring
R, an element 7 that is neither O nor a unit is called
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® irreducible, if for all ¢ and b in R,
T=ab & a¢ R* = be R*;
® prime, if for all ¢ and b in R,
mlab & mfa = 7 |b.

Theorem 196. A nonzero ring-element 7 is

1) irreducible <= (7) is mazimal among the proper principal
ideals;

2) prime <= (m) is prime.

For example, in Q[X,Y], the element X is both irreducible and
prime, although (X) is not a maximal ideal. However, if (X) C
(f) € Q[X,Y], then f must be constant in Y, and then it must have
degree | in X, and then its constant term must be O; so f is just
aX for some a in Q*, and thus (X) = (f).

If 7 is irreducible or prime, and m = ab, then 7 is an associate of a
or b. However, neither irreducibility nor primality implies the other.
For example, in Zg, the element 2 is prime. Indeed, (2) = {0, 2, 4},
s0 Zg~(2) = {1,3,5}, and the product of no two of these elements
isin (2). Similarly, 4 is prime. However, 2 and 4 are not irreducible,
by (7.3) above.

Also, in C we have
2-3=(1 +V=5)(1 —V-5). (7.4)

The factors 2, 3, and | ++v/—5 are all irreducible in the smallest
sub-ring of C that contains v'—5, but none of these factors divides
another, and so these factors cannot be prime. Details are worked
out in the next section.
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7-3. *Quadratic integers

Every subfield of C includes Q, and every sub-ring of C includes Z.
If w € C, then the smallest subfield of C that contains w is denoted
by

Q(w),

and the smallest sub-ring of C that contains w is denoted by
Z|w).

A squarefree integer, is an element of Z different from | that is
not divisible by the square of a prime number. Suppose D is such.
As groups,

® Z[VD] is the free abelian group (I, VD),
® Q(VD) is the image of Q ® Q under (z,y) — z + yVD.
If x = k +nvD for some k and n in Z, then
(z — k)2 =n2D,
a? - 2kx + k%> —n’D =0.
Thus all elements of Z[v/ D] are solutions in Q(v/D) of quadratic

equations
22 + b +c=0, (7.5)

where b and ¢ are in Z, and there is no leading coefficient.> Con-
versely, from school the solutions of (7.5) are

. —b+ /b2 —4c
2

2If £ is a solution of such an equation, so that «52 = —b€ — ¢, David Hilbert
referred to the group (1,&) as a number ring (Zahlring) [4, p. 49]. This is
apparently the origin of our term ring.
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Suppose one of these is in Q(\/D). Then b% — 4¢ = a?D for some a
in Z, so that

_ —b+aVD

:17 —_— f.

If b is odd, then b —4c¢ =1 (mod 4), so a must be odd and D = |
(mod 4). If b is even, then b?> — 4¢ = O (mod 4), so a is even.
Assume now

D#1 (mod 4).
Then Z[V' D] consists precisely of the solutions in Q(v'D) of equa-
tions of the form (7.5). Therefore the elements of Z[v/ D] are called
the integers of Q(v/D).3 In this context, the elements of Z are the
integers of Q, or the rational integers. Note that Z[v D]NQ = Z.

The field Q(\/ D) has one nontrivial automorphism, namely z — 2/,
where

(z +yVD) =z — yVD.
In case D < O, this automorphism is complex conjugation. In any
case, we next define a function N from Q(\/ D) to Q by

N(z) = 22"

Here N(z) can be called the norm of z. The function N is multi-
plicative, that is,
N(af) = N(a) - N(f).
Also,
N(atJr\/Dy) =22 — Dy?,

so N maps Z[vV' D] into Z. In particular, if o is a unit of Z[v/'D], then
N(a) must be a unit of Z, namely +1. Conversely, if N(a) = 1,
this means a - (£a/) = |, so « is a unit.

3In case D = | (mod 4), the integers of Q(v'D) constitute the ring Z[(1 +
VD)/2].
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If D < O, then N maps Z[vV' D] into N, and so a is a unit in Z[v/'D] if
and only if N(a) = 1. Also, o in Z[V'D] is irreducible if and only if
it has no divisor 8 such that 1 < N(8) < N(«) and N(5) | N(«).

In case D = —5 we have
v [2]3]14v-5 .
N |[4]9] 6 (7.6)

Since no elements of Z[v/—5] have norm 2 or 3, the elements 2, 3,
and | £v/—5 are irreducible. However, they are not prime, because
each of them divides the product of two of the others, but it does
not divide one of the others, since if « | 3, then N(«) | N(B), but
no norm in (7.6) divides another.

There are however factorizations of the relevant ideals. For exam-
ple,

(2,1 +V=5)(2,1 +V=5)= (2,1 +V=5)(2,1 —V-5)
=(4,2+2V-5,6)=(2).

Similarly,

(3)=(3,1 +V-5)(3, 1 —V-5),
(14+vV=5)=(2,1 +V=5)(3,1 + V-5),
(1 =vV=5)=(2,1 +V=5)(3,1 —vV-5).
These factorizations are prime factorizations. We show this as fol-
lows. Every subgroup of (I,v/D) has at most two generators, by

Porism 137.1 (page 166). When that subgroup is a nonzero ideal I
of Z[\/ D], then it must have more than one generator as a group,
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since a cyclic subgroup will not be closed under multiplication by
V'D. For example, since

(a+bVD) VD =bD +aVD,
the ideal (a + bV D) is the group

(a+bVD,bD + aV'D).

Let G be the map

(i Z) — (a+bVD,c+ dVD)

from M,,x,(Z) to the set of subgroups of Z[vV'D]. If G(X) is an ideal,
then det(X) # 0. Also, G(X) < G(Y) if and only if X = ZY for
some Z such that det(Z) # 0. Hence G(X) = G(Y) if and only if
X = ZY for some Z in GLy(Z). By the methods of the proof of

Theorem 137 (page 164), every ideal of Z[v/D] has the form
(a,b+ VD),

where a > b > 0. (This is not a sufficient condition for being an
ideal, however.) We have a well-defined function N from the set of
subgroups of Z[V'D] to N given by

N(G(X)) = [det(X)].

In case D < 0, this new function N agrees with the earlier function
called N in the sense that

N((a+bVD)) =N((a +bVD,bD + aV'D))
- )a2 - sz( = a2 —b2D = N(a + bV D).
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If I and J are ideals of Z[v/D] such that I ¢ J C Z[vV/D], then we
must have

N(J) | N(I), N(I)>N(J) > 1.
In case d = —5, we compute

(2,1 +V=5)=1(2,2V-5,1 + V=5,V=5-5) = (2, | + V-5),
(3,1 £V-5)=(3,3V-5,1 £+ V-5,V-5F5) = (3, | +V-5),

hence
I

|
N

[ (2,1 +vV-5)[ (38,1 £V-5)
2] 3 '

So these ideals are maximal, hence prime. Ideals of the rings Z[v/D]
were originally called ideal numbers.

7-4. Integral domains

We now consider some rings that are increasingly close to having all
of the properties of Z. We start with arbitrary integral domains. We
have noted in effect that the following fails in Zg.

Lemma 20. In an integral domain, if a and b are non-zero asso-
ciates, and
a = bz,

then = is a unit.
Proof. We have also, for some y,
b = ay = bxy, b- (1 —zy) =0, 1 =ay,

since b # 0 and we are in an integral domain. O
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Theorem 197. In an integral domain, prime elements are irre-
ducible.

Proof. If p is prime, and p = ab, then p is an associate of a or b, so
the other is a unit. O

By this and Euclid’s Lemma (page 214), the irreducibles of Z are
precisely the primes.

Recall from page 197 that a multiset is a pair (A, f), where f: A —
N. If A here is a finite subset of a ring, then the product

IER

a€cA

is well-defined (see page 86) and can be called the product of the
multiset. The components of the proof of the following are found
in Euclid, although Gauss’s version [9, 916] seems to be the first
formal statement of the theorem [14, p. 10].

Theorem 198 (Fundamental Theorem of Arithmetic). Fvery ele-
ment of N has a unique prime factorization. That is, every natural
number is the product of a unique multiset of prime numbers.

Proof. We first show that every integer greater than | has a prime
factor: this is Propositions VII.31—2 of the Elements. Suppose m >
1, and let p be the least integer a such that a | m and 1 < a. Then
p must be prime.

Now suppose n > |, and every m such that 1 < m < n has a prime
factorization. If n is prime, then it is its own prime factorization.
If n is not prime, then n = pm for some prime p, where also 1 <
m < n. By hypothesis m has a prime factorization, and hence so
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does n. Therefore, by induction, every element of N has a prime
factorization.

Prime factorizations are unique by Euclid’s Lemma. O

A unique factorization domain or UFD is an integral domain
in which the appropriate formulation of the result of the foregoing
theorem holds. Thus, in a UFD, by definition,

1) every nonzero element has an irreducible factorization, that
is, every nonzero element is the product of a multiset of irre-
ducibles; and

2) that multiset is unique up to replacement of elements by asso-

ciates, so that, if

[Im =11

i<n i<n’
where the m; and 7} are irreducible, then n = n’ and, for some
o in Sym(n), for all 7 in n, 7; and 775;(1') are associates.

Existence of irreducible factorizations in Z, along with Euclid’s Lemma,
ensures that those factorizations are unique, so that Z is a UFD.
Conversely, the definition of a UFD is enough to give us Euclid’s
Lemma:

Theorem 199. In a UFD, irreducibles are prime.

As for Z (page 117), so for any ring, a greatest common divisor of
elements a and b is a common divisor of @ and b that is a maximum
with respect to dividing: that is, it is some ¢ such that ¢ | a and
¢ | b, and for all z, if z | a and = | b, then = | ¢. There can be
more than one greatest common divisor, but they are all associates.
Every element of a ring is a greatest common divisor of itself and

0.
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Theorem 200. In a UFD, any two nonzero elements have a greatest
common divisor.

Proof. We can write the elements as
w H IO v H LION
i<n i<n
where v and v are units and the 7; are irreducibles; then the product
H 7_ri1rnin(a(i),b(i))
i<n

is a greatest common divisor of the first two elements. O

As in Z, so in an arbitrary PID, more is true, and we shall use this
to show that every PID is a UFD. If a¢ and b have a common divisor
d, then

(a,b) € (d),

but we need not have the reverse inclusion, even if d is a greatest
common divisor. For example, Q[X,Y] will be a UFD by Theo-
rem 224 (page 260), and in this ring, X and Y have the greatest
common divisor 1, but (X,Y) # 1. For a PID however, we have the
following generalization of Theorem 93 (page 117).

Theorem 201. In a PID, any two elements a and b have a greatest
common divisor d, and

(a,b) = (d),

so that the equation
ax +by=d

is soluble in the ring.

Now we can generalize Euclid’s Lemma.
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Theorem 202. In a PID, irreducibles are prime.

Proof. Suppose the irreducible 7 divides ab but not a. Then | is
a greatest common divisor of 7 and a, and so by the last theorem,
7wz +ay = | for some z and ¥ in the ring. Now the proof of Euclid’s
Lemma goes through. O

So now, in a PID, if an element has an irreducible factorization, this
factorization is unique. Now, our proof that elements of N have
prime factorizations has two parts. The first part is that every non-
unit has a prime factor. The second part can be understood as
follows. Suppose some ng does not have a prime factorization. But
ng = pg - n; for some prime pg and some n;. Then n; in turn must
have no prime factorization. Thus n; = pn, for some prime p; and
some ny, and so on. We obtain

ng>mnp >nyg>---, (7.7)

which is absurd in N. It follows that ng must have had a prime
factorization.

An arbitrary ring will not have an ordering as N does, but the rela-
tion of divisibility will be an adequate substitute, at least in a PID.
Indeed, with the n; as above, we have

(ng) C (ny) C (ng) C - (7-8)

This is a strictly ascending chain of ideals. A ring is called Noethe-
rian if its every strictly ascending chain of ideals is finite.

Theorem 203. Fvery PID is Noetherian.

Proof. If Io C I} C -, then {J;,, I; is an ideal (a); then a € I, for
some 7, so the chain cannot grow beyond I,,. O
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Now we can adapt to an arbitrary PID the foregoing argument that
elements of N have prime factorizations. In fact that argument can
be streamlined. If ng has no prime factorization, then ng = mg - n
for some non-units mg and n;, where at least m| has no prime
factorization. Again we obtain a descending sequence as in (7.7),
hence an ascending sequence as in (7.8).

Theorem 204. Every PID is a UFD.

Proof. By Theorem 202, irreducibles in a PID are prime, and there-
fore irreducible factorizations are unique when they exist. Indeed,

if

[Im= 11

<n <n’
where the 7; and 7} are irreducible, then, since it divides the right
side, mg must divide one of the 7} (because mg is prime). Thus
7, = u-mg for some u. Also u must be a unit (because = is irreducible
and also, being irreducible, 7 is not a unit). We may assume 7 = O.
The product u - 7 is an associate of m| (by Theorem 195) and is
therefore also irreducible. Replacing 7| with u - 7, we have

II Il ’
T = T

1<i<n 1 <i<n/

since a PID is an integral domain. By induction, n = n’, and for
some o in Sym(n), for all ¢ in n, m; and 77:7(1') are associates.

It remains to show that irreducible factorizations exist in a PID. By
the Axiom of Choice, we can well-order the PID. Suppose, if possible,
a # 0 and has no irreducible factorization. Then a = b - ¢ for some
non-units b and ¢, where ¢ has no irreducible factorization. We have

(@) C ().
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Now let us denote by a’ the least such ¢ in the well-ordering. Then
we can produce a sequence (a;: @ € w), where ag has no irre-
ducible factorization and, assuming a; has no irreducible factoriza-
tion, a;;; = a;/. By induction, each a; does have no irreducible
factorization, and so

(ap) C (ay) C (ag) C -+,
which is contrary to the last theorem. Thus every nonzero element

of a PID has an irreducible factorization, and this is unique. O

We have thus shown that the Fundamental Theorem of Arithmetic
can be founded solely on the status of Z as a PID. We may now
ask further how Z gets this status. The proof of Theorem g1 can be
worked out as follows. The function x — |z| from Z to w (as defined
on page 117) is such that

z=0 < |z| =0.

Given an ideal I of Z that is different from (0), we let a be a nonzero
element such that |a| is minimal. If b € I, then

|b — az| < |al

for some x (as for example the x that minimizes |b — ax|), and then
|b—az| = O (since b — ax € I). Then b = az, and hence b € (a).
Therefore I = (a).

A Euclidean function on an integral domain R is a function 0
from the ring to w such that

d(z)=0 <= 2=0
and, for all @ in R\ {0} and b in R, the inequality

0(b —ax) < 0(a)
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is soluble in R. Thus x +— |z is a Euclidean function on Z. Actually
we need not require the range of a Euclidean function to be a subset
of w; it could be any well-ordered set.

A Euclidean domain or ED is an integral domain with a Euclidean
function. We now have:

Theorem 205. Every ED is a PID.

Other examples of Euclidean domains include the following.

For any field K, the function f on K given by

1, ifa #£0,
f(””)_{o, ifz=0,

is a Euclidean function.

If f is a polynomial > " a; X", where a,, # O, then m is deg(f),
the degree of f. The function f +— deg f on K[X] will be Euclidean
by Theorem 221 (page 254).

The Gaussian integers are the elements of Z[\/— 1], that is, the
integers of Q(\/—]) (see §7.3, page 221). Writing i for V-1 as
usual, we have that the norm function z — |z\2 on Z[i] is Euclidean,
where

‘2

|z +yil® = 2% + 2.

Indeed, if a € Z[i] ~ {0} and b € Z[i], then b/a is an element s+ ti
of Q(i). There are elements x and y of Z such that

1
) |t_y|<§

N —

|s — x| <



7.5. Localization 233

Let ¢ =z 4+ yi; then

Zq‘—|5x+(ty)i|<\/22<l

and so |b— ag| < |a| (and hence |b— ag|? < |a|?).

7.5. Localization

We shall now generalize the construction of Q from Z that is sug-
gested by Theorem 30 (page 52). A nonempty subset of a ring is
called multiplicative if it is closed under multiplication. For ex-
ample, Z ~ {0} is a multiplicative subset of Z, and more generally,
the complement of any prime ideal of any ring is multiplicative.

Lemma 21. If S is a multiplicative subset of a ring R, then on
R x S there is an equivalence-relation ~ given by

(a,b) ~ (¢,d) < (ad —bc)-e=0 for some e in S. (7.9)
If R is an integral domain and O ¢ S, then
(a,b) ~ (¢,d) < ad = be.
Proof. Reflexivity and symmetry are obvious. For transitivity, note

that, if (a,b) ~ (¢,d) and (¢,d) ~ (e, f), so that, for some g and h
in S,

0= (ad —bc)g = adg —bcg, 0= (cf —de)h=cfh—deh,
then

(af — be)edgh = afcdgh — becdgh
= adgcfh — begdeh = begefh — begefh = 0,

so (a,b) ~ (e, f). O
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In the notation of the lemma, the equivalence-class of (a,b) is de-

noted by a/b or
a

ga
and the quotient R x S/~ is denoted by

S~'R.

If 0 € S, then S~'R has exactly one element. An instance where
R is not an integral domain will be considered in the next section

(§7.6).
Theorem 206. Suppose R is a ring with multiplicative subset S.

1. In S7'R, ifce S,

a ac

b be
2. ST'R is a ring in which the operations are given by

ac

a ¢ _ac gig ad *+ be
b d  bd’ b~ d  bd

3. There is a ring-homomorphism ¢ from R to S~'R where, for
every a in S,

If 1 €8, then p(z) =z/1.
Suppose in particular R is an integral domain and O ¢ S.

4. ST'R is an integral domain, and the homomorphism ¢ is an
embedding.

5. If S = R~ {0}, then S~'R is a field, and if If 1 is an embed-
ding of R in a field K, then there is an embedding v of ST'R
in K such that v o p = ).
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When S is the complement of a prime ideal p, then S~'R is called
the localization of R at p and can be denoted by

R,.

(See Appendix A, page 262, for Fraktur letters like p.) If R is an
integral domain, so that (Q) is prime, then localization R0y (which
is a field by the theorem) is the quotient-field of R. In this case,
the last part of the theorem describes the quotient field in terms of a
universal property in the sense of page 144. However, it is important
to note that, if R is not an integral domain, then the homomorphism
xz+— x/] from R to R, might not be an embedding. The following
will be generalized as Theorem 214 (page 243 below).

Theorem 207. For every Boolean ring R, for every prime ideal p
of R, the homomorphism x — z/1 from R to R, is surjective and
has kernel p. Thus

IFZ = R/p = Rp.

A local ring is a ring with a unique maximal ideal. The connec-
tion between localizations and local rings is made by the theorem
below.

Lemma 22. An ideal m of a ring R is a unique mazimal ideal of R
if and only if
R* =R~ m.

Theorem 208. The localization R, of a ring R at a prime ideal p
is a local Ting whose unique maximal ideal is

pRpa

namely the ideal generated by the image of p.
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Proof. The ideal pR, consists of those a/b such that a € p. In this
case, if ¢/d = a/b, then ¢b = da, which is in p, so ¢ € p since p is
prime and b ¢ p. Hence for all z/y in R,,

zfy ¢ Rop < w¢p
<= z/y has an inverse, namely y/x.

By the lemma, we are done. O

7.6. *Ultraproducts of fields

An wultraproduct of fields is the quotient of the direct product of a
family of fields by a maximal ideal. An algebraic investigation of this
construction will involve maximal ideals, prime ideals, localizations,
and our theorems about them. First we shall establish the usual tool
by which the very existence of maximal ideals is established:

7.6.1. Zorn’s Lemma

On page 14 we established a Recursion Theorem for N as an algebra,
and hence for w. Now we establish another such theorem, for arbi-
trary ordinals, not just w; but the ordinals are now to be considered
as well-ordered sets, not algebras.

Theorem 209 (Transfinite Recursion). For all sets A, for all or-
dinals o, for all functions f from |J{AP: B < a} to A, there is a
unique element

(ag: B <)
of A* such that, for all 8 in «,

flay: vy < B) = ag.
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Proof. We first prove uniqueness. Suppose, if possible, (a’ﬁ: B < )
is another element of A% as desired, and let 8 be minimal such that
ag # ag. Then

(ay:y < B) = (a}: v < B),

so by definition ag = a’B. We now prove existence. If the the-
orem fails for some «, let o be minimal such that it fails. Say
f: U{4%: B < a} — A. By hypothesis, for each 3 in a, there is a
unique element (a,: v < ) of A% such that, for all v in 3,

flas: 6 <) =a,.

As before, a is independent of the choice of 5 such that v < 8 < a.
Then for all # in o we are free to define

ag = flay: v < p).

Then the element (ag: 8 < a) of A* shows that the theorem does
not fail for a. O

Our proof used the method of the minimal counterexample: we
showed that there could not be such a counterexample.

We now proceed to Zorn’s Lemma. Suppose €2 is a set and A C
2(Q). Then proper inclusion (C) is a transitive irreflexive relation
on A and on each of its subsets (see Theorems 18 and 19, page 41).
A subset C of A is called a chain in A if proper inclusion is also a
total relation on C', so that C'is linearly ordered by proper inclusion
(see Theorem 20). An upper bound of C is a set that includes
each element of C'. In particular, | JC is an upper bound, and every
upper bound includes this union. A maximal element of A is an
element that is not properly included in any other element.

The union of every chain of proper ideals of a ring is itself a proper
ideal of the ring. A maximal ideal of the ring is more precisely a
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maximal element of the set of proper ideals of the ring. By the
following, rings do have maximal ideals.

Theorem 210 (Zorn’s Lemma). For all sets Q), for all subsets A of
P(Q), if A contains an upper bound for each of its chains, then A
has a maximal element.*

Proof. By the Axiom of Choice, there is a bijection a — B, from
some cardinal x to A. By the Recursion Theorem, there is a function
a— C, from k to A such that, for all @ in &, if {Cs: f < a}isa
chain, and if v is minimal such that B, is an upper bound of this
chain, then

o _|Bv B € B

Ba, if B, C Ba;

in particular, {Cg: 8 < a} is a chain. If {Cs: 8 < a} is not a chain,
then we can define C, = Bp. But we never have to do this: for
all o in &, the set {Cs: B < a} is a chain, since there can be no
minimal counterexample to this assertion. Indeed, if « is minimal
such that {Cs: f < a} is not a chain, there must be § and ~ in
a such that v < 8 and neither of Cs and C, includes the other.
But by assumption {Cs: d < S} is a chain, and so by definition
{Cs: 6 < B} is a chain, and in particular one of Cg and C, must
include the other.

4In 1935, Zorn [40| presented this statement for the case where the upper
bounds of the chains are actually the unions of the chains. He called the
statement the “maximum principle” and suggested that using it would make
proofs more algebraic than when the “well-ordering theorem” is used. Proba-
bly this theorem is what we have called the Axiom of Choice. Zorn promised
to prove, in a later paper, that the maximum principle and the Axiom of
Choice are equivalent; but it seems such a paper never appeared. Earlier, in
1922, Kuratowski [21, (42), p. 89] proved “Zorn’s Lemma” for the case where
the chains in question are well-ordered.



7.6. *Ultraproducts of fields 239

By a similar argument, {Cy: o < k} is a chain, so it has an upper
bound D in A. Suppose for some a we have D C B,. Then C, =
B,, since otherwise, by definition, C, = B, for some « such that
B, € B,: in this case Cy € Bq, so Co € D, which is absurd. Thus
C. = B, and hence B, C D, so D = B,. Therefore D is a maximal
element of A. O

As we said, it follows that rings have maximal ideals. We shall
use Zorn’s Lemma further to show that there are ideals that are
maximal with respect to having certain properties. In our examples,
these ideals will turn out to be prime.

7.6.2. Boolean rings

Recall that all rings now are commutative rings. For every such ring
R, the set of its prime ideals is called its spectrum and can be
denoted by

Spec(R).
If a € R, let us use the notation
[a] = {p € Spec(R): a & p}.
Theorem 211. For every ring R, for all a and b in R,

[a] N [b] = [ab].

Proof. Since every p in Spec(R) is prime, we have

pelanfp] <= a¢p & bép
<~ abé¢p
<= p € [ad]. m
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As a consequence of the theorem, the spectrum of a ring can be given
the Zariski topology, in which the sets [a] are basic open sets. This
topology is used in algebraic geometry, especially when the ring is
one of the polynomial rings defined below in sub-§7.7.1. We are now
interested in the case of Boolean rings. We showed in Theorem 191
(page 216) that the power set of every set can be understood as a
Boolean ring in which the operations are defined by

X-Y=XnY, X+Y = (X Y)U(Y ~X).
We may abbreviate (X \Y)U (Y \ X) by
XAY;

it is the symmetric difference of X and Y. Immediately from
the definition, every sub-ring of a Boolean ring is a Boolean ring.
We now show that every Boolean ring embeds in a Boolean ring
whose underlying set is the power set of some set. This is an ana-
logue of Cayley’s Theorem for groups (page 66) and Theorem 72 for
associative rings (page 94).

Theorem 212 (Stone [33]). For every Boolean ring R, for all a and
b in R,
[a] & [b] = [a + 0],

and the map x — [x] is an embedding of R in & (Spec(R)).

Proof. By Theorem 192 (page 216), the characteristic of R is at most
2, and so for all @ in R we have

a-(1+a)=0.

Suppose p € Spec(R). Since p is prime and (like every ideal) contains
0, it must contain a or 1 + a. If p contains neither a nor b, then it
contains the sum of | +a and | + b, which is a + b. Since the sum



7.6. *Ultraproducts of fields 241

of any two elements of the subset {a,b,a + b} of R is equal to the
third element, every p in Spec(R) contains either one element or all
elements of this set. Therefore

pEla+b < a+béyp
< (a€psbdep)
= (pdlaepel))
< p € [a] A [b].

By this and the previous theorem, = +— [z] is a homomorphism
of Boolean rings. It remains to show that this homomorphism is
injective. Say x € R~ {0}. The union of a chain of ideals of R that
do not contain z is an ideal of R that does not contain x. Therefore,
by Zorn’s Lemma, there is an ideal m of R that is maximal among
those ideals that do not contain z. If a and b are not in m, then by
maximality

z €m+ (a), zem+(b),

and therefore
2% € m + (ab).

(We made a similar computation in proving the Chinese Remainder
Theorem, page 167.) Since 22 ¢ m, we must have ab ¢ m. Thus m
is prime, and so m € [z]. In particular, [z] # @. O

Equipped with the Zariski topology, the spectrum of a Boolean ring
is the Stone space of the ring.

7.6.3. Regular rings

The Boolean rings are members of a larger class of rings that satisfy
the conclusion of Theorem 193 (page 217). We can establish this by
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first noting that, for every set ), there is an isomorphism U — xy
from the Boolean ring () to the direct power F,*, where

@) 1, ifieU,
1) =
xv 0, ificQ-U.

Here x can be called the characteristic function of U (as a subset
of Q). The power F,® is a special case of the product [Lico K,
where each K is a field. If a € [][,cq K, there is an element a* of
the product given by

e mi(a)~",  if m(a) # 0,
m@){a if 71;(a) = O.
Then

aa*a = a.

In particular, for every z in the ring [[, .o K; there is y in the ring

such that

i€Q

YT = 2.
Therefore the ring ], , K; is called a (von Neumann) regular
ring.5 Thus Boolean rings are also regular rings in this sense, since
xxx = x in a Boolean ring. A regular ring can also be understood
as a ring in which

z e (z?)

for all z in the ring. The following generalizes Theorem 193 (page 217).
Theorem 213. In regular rings, all prime ideals are maximal.
Proof. If R is a regular ring, and p is a prime ideal, then for all = in
R, for some y in R,

(zy — 1) -2 =0, (7.10)

5In general, a regular ring need not be commutative; see |19, IX.3, ex. 5, p. 442].
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and so at least one of zyy — | and z is in p. Hence if = + p is not O
in R/p, then x + p has the inverse y + p. Thus R/p is a field, so p is
maximal. O

Now we can generalize Theorem 207 (page 235).

Theorem 214. Ifp is a prime ideal of a regular ring R, then there
is a well-defined isomorphism

x+p—z/l

from R/p to R,.

Proof. If a € R and b € R~ p, and beb = b, then the elements a/b
and ac/1 of R, are equal since

(a — bac)b = ab — abeb = ab — ab = 0.

Thus the homomorphism z — z/l from R to R, guaranteed by
Theorem 206 is surjective. By the last theorem, p is maximal, and
hence R, is a field. Supposing x € p, as in that theorem we have
(7.10) for some y, but | —zy ¢ p. This shows zz/1 = 0/ 1. Hence, if
y+p = z+p for some y and z, so that y — z € p, then y/1 = z/1.
Thus the epimorphism x + p — x/1 is well-defined. Its kernel then
cannot be all of the field R/p, so the epimorphism must also be an
embedding. O

The foregoing two theorems turn out to characterize regular rings.
That is, every ring of which the conclusions of these theorems hold
must be regular. In fact a somewhat stronger statement is true; this
is the next theorem below. For the sake of the theorem, we make the
following definitions. An element = of a ring R is called nilpotent
if 2™ = O for some n in N.
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Lemma 23. The ideal (| Spec(R) of a ring R is precisely the set of
nilpotent elements of R.

Proof. Let N be the set of nilpotent elements of R. Easily N C
() Spec(R). Now suppose x € R~ N; we show z ¢ [ Spec(R). Using
Zorn’s Lemma, we may let p be an ideal of R that is maximal among
those ideals that contain no power of x. We show p € Spec(R).
Suppose neither @ nor b is in p. Then both p + (a) and p + (b)
contain powers of z. Hence the product p + (ab) contains® a power
of x. Therefore p is prime, although = ¢ p. O

The ideal () Spec(R) of a ring R is called the nilradical of R. A
ring is reduced if its nilradical is (0O).

Theorem 215. The following are equivalent conditions on a Ting
R.7

1. R is reqular.

2. Bvery prime ideal of R is mazximal, and R is reduced.

3. The localization Ry is a field for all mazimal ideals m of R.
Proof. 1. Inregular rings, prime ideals are maximal by Theorem 213.

Also, if zyz = z, but 22 = 0, then = = 22y = 0; so regular rings
are reduced.

6A similar idea was used in the proof of the Chinese Remainder Theorem,
page 217, to reduce the case n = m + | to the case n = 2.

7The equivalence of these conditions is part of [11, Thm 1.16, p. 7]. This
theorem adds a fourth equivalent condition: “All simple R-modules are in-
jective.” The proofs given involve module theory, except the proof that, if all
prime ideals are maximal, and the ring is reduced, then each localization at
a maximal ideal is a field. That proof is reproduced below.
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2. Now suppose every prime ideal of R is maximal, and R is reduced.
Let m be a maximal ideal of R. By Theorem 208 (page 235), mRy,
is the unique maximal ideal of R,,. By Zorn’s Lemma, every prime
ideal 8 of Ry, is included in a maximal ideal, which must be mR,,.
Now, the intersection mR,, N R is a proper ideal of R that includes
m, so it is m. Hence P N R is a prime ideal of R that is included
in m, so it is m, and therefore 8 = mR,,. Thus this maximal ideal
is the unique prime ideal of Ry. By the lemma, this ideal is the
nilradical of the ring. Thus for all r/s in mRy,, for some n in N, we
have (r/s)™ = 0, so r"/s" = 0, and therefore ¢r" = O for some ¢ in
R~ m. In this case, (tr)" = 0, so tr = 0, and therefore r/s = 0. In
short, mRy,, = (0). Therefore Ry, is a field.

3. Finally, suppose Ry, is a field for all maximal ideals m of R. If
r € R, define

I={reR:rze(z?))}

This is an ideal of R containing x. We shall show that it contains 1.
We do this by showing that it is not included in any maximal ideal
m. If v ¢ m, then I ¢ m. If z € m, then x/1 ¢ (Ry)™, so, since Ry
is a field, we have x/1 = 0/1, and hence

re =0

for some 7 in R~ m; but » € I. Again I ¢ m. Thus I must be (1),
so z € (z2). Therefore R is regular. O

We again consider the special case of a product [] K, where K is an
indexed family (K;: i € Q) of fields. Here [] K is a regular ring, and
za*x = x when z* is defined as above. Hence every sub-ring of []
that is closed under the operation x — «* is also a regular ring. We
now prove the converse: every regular ring is isomorphic to such a
ring.
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Theorem 216. For every regular ring R, the homomorphism
x— (x+p: p € Spec(R))

is an embedding of R in the product

II =&»

peSpec(R)

of fields. The image of this embedding is closed under x +— x*.

Proof. The indicated map is an embedding, just as the map = — [z]
in Stone’s Theorem (page 240) is an embedding. Indeed, suppose R
is a regular ring, and x € R~ {0}. Let m be maximal among those
ideals of R that do not contain z. If ¢ and b are in R ~. m, then

v (mt(@)n (mt®),
2% € m+ (ab),
x € m+ (ab),

so ab ¢ m. Thus m is a prime ideal, and z+m # O in R/m. Therefore
the map x — (x +p:pe Spec(R)) is an embedding.

Let this embedding be called f. Given x in R, we have to show that
f(z)* is in the image of f. Now, there is y in R such that zyx = x,
and therefore
f@)f(y)f(x) = f(x).
For each p in Spec(R), by applying the canonical projection m,, we
obtain
(@+p)y+p)(z+p) =z+p

If x +p # 0, we can cancel it, obtaining

y+p=(z+p)"" =m(f(z)).
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However, possibly z +p = 0, while y +p # O, so that f(y) # f(x)*.
In this case, letting z = yxy, we have

TZX = TYTYT = TYT = T, 2ZTZ = YTYTYTY = YTYTY = YTy = 2.

In short, zzx = x and zxz = z. Then

TEP < zE€pP, xr¢p = (z4+p)” =xz+p,

so f(z) = f(z)". O

7-6.4. Ultraproducts

If R is a Boolean ring, then by Stone’s Theorem (page 240), R
embeds in & (Spec(R)). We have also shown

P (Spec(R)) = FySPec(h),

Finally, for each p in Spec(R), by Theorem 207 (page 235), the
quotient R/p is isomorphic to F,, and so

F2Spcc(R) o~ H R/]J
pESpec(R)

In this way, Stone’s Theorem becomes a special case of the foregoing
theorem.

The field F; can be considered as a subset of each every field, al-
though not a subfield (unless the field has characteristic 2). This
observation gives rise to the following.

Theorem 217. For every indexed family (K;: i € Q) of fields, each
ideal I of [];cq Ki is generated by the set

{aa": a € I}.
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This set is itself an ideal, when considered as a subset of Fo*. Hence
the map I — {aa™: a € I} is a bijection from the set of ideals of
[Licq K to the set of ideals of Tyt

Proof. We need only check that {aa*: a € I} is closed under addi-
tion in F,®. If @ and b are in I, then aa* = x4 and bb* = yp for
some subsets A and B of Q. In Fy, the sum aa* + bb* is xaaB,
which can be computed in ], , K; as

XaaB - (a+b)(a+b);

and this is in 1. O

If € is an indexed family (K;: i € Q) of fields, Let 8 be a prime
ideal of [[K. Then the quotient [[X/P is a field, and this field
is called an ultraproduct of IC. The ideal 3 could be a principal
ideal (a). This ideal is equal to (aa*) and therefore to (xy) for some
subset U of Q. But (a) is maximal, and therefore U =  \ {i} for
some ¢ in €. In this case,

[1K/3= kK.

However, if €2 is infinite, then £2(Q2) has the proper ideal I consisting
of the the finite subsets of Q. Then {xy: U € I'} generates a proper
ideal of []K. If B includes this ideal, then B is not principal, and
the field [J /B is called a nonprincipal ultraproduct of K. Such
ideals P exist by Zorn’s Lemma.

If a € [[K, the subset {i € Q: a; # O} of Q can be called the
support of a and be denoted by

supp(a).
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In particular, supp(xy) = U. By the last theorem, we have a bijec-
tion

P = {supp(z): = € P}

from Spec(]] K) to Spec(Z(2)). Suppose the image of B under this
map is p. Then for all ¢ and b in [[ K we have, modulo B,

a=b = {ieQ:ma)#mb)} € p.

We may think of the elements of p as “small” sets; their complements
are “large.” Then every subset of §2 is small or large. Two elements
of [[ K are congruent modulo B if and only if they agree on a large
set of indices in Q. If B is the principal ideal (© ~\ {i}), then the
large subsets of €2 are just those that contain i.

Suppose however B is nonprincipal. Then all finite subsets of (2
are small, and all cofinite subsets of Q are large, and each map
x = y(z) + P from K; to [[K/P is the zero map. Thus no one
field K; affects the ultraproduct [ /%B. Rather, the ultraproduct
is a kind of “average” of all of the fields K;. Say for example Q2 is
the set of prime numbers in N, and for each p in €2, the field K, is
F,. Then [][K/9 has characteristic O, since for each prime p, the
element p - | of [, F¢ disagrees with O on a large set.

Since in general an ultraproduct [, , K;/*B of fields depends only
on (K;: 4 € Q) and a prime ideal of Z(Q1), we can replace the fields
K; with arbitrary structures (all having the same signature). The
notion that a nonprincipal ultraproduct is an average of the factors
is made precise by the result known as Y.o§’s Theorem, because it
can be extracted from Lo$’s 1955 paper [24]. The proof is straight-
forward, but requires careful attention to logic.
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7.7- Polynomial rings
7.7-1. Universal property

Given a ring R, we defined the polynomial ring R[X] on page 209
as the set of formal sums
> X',

<m

where (a;: i < m) € R™, where m € w. This means that, assuming
m < n, we have

> aX' =) biX'
i<m <n
<~ (a;:i<m)=(bi:i<m) & b, =0 & -+ & b,_; =0.
We understand ), _, a; X" to be ag, an element of R. Thus R is
included in R[X].

We can now define the family of polynomial rings R[Xg,..., X, _1]
recursively:

R, ifn=0,

R[Xo,..., X, 1] =
Xose s X {R[XO,...,Xk_l}[Xk], ifn="k+1.

These polynomial rings have a certain universal property in the sense
of page 144:

Theorem 218. For all rings R, for all n in w, for all rings S, for
all homomorphisms ¢ from R to S, for all a in S™, there is a unique
homomorphism H from R[Xg,...,X,_1] to S such that

HI|R=¢, (H(X;):i<n)=a.
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Proof. We use induction. The claim is trivially true when n = O.
When n = 1, given a in S, we must have H | A= ¢ and H(X) =a
and therefore

H(Z ka’“> = p(bi) - a

k<m k<m

for all (b;: i <m) in R™, for all m in w. Thus H is determined on
all of R[X]. The general inductive step follows in the same way. [

In the notation of the theorem, if f € R[Xq,...,X,_], then we
may denote H(f) by

f?(a).
if also ¢ = idg, then H(f) is just

f(a).

Given a ring R, we can define a category (in the sense of §4.5,
page 154) whose objects are pairs (S, ), where S is a ring and
 is @ homomorphism from R to S. If (T, 1) is also in the category,
then a morphism from (S, ) to (T, ) is a homomorphism A from
S to T such that h oy = 1.

Then for each n in w, the pair (R[Xq,...,X,,_],idgr) is an object
in this category, and by the last theorem, in the sense of sub-§4.5.3
(page 160), it is a free object on n, with respect to the map i — X;
on n. Then R[Xy,...,X,,_] is uniquely determined (up to isomor-
phism) by this property, by Theorem 130.
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7.7-2. Division
If R is aring, and f is the element Y . 5a; X" of R[X], and a,, # 0,
then:

® n is called the degree of f, and we may write
deg(f) = n;

® cach q; is a coefficient of f and is the coefficient of X?;
® a, is the leading coefficient of f;
® if this leading coefficient is 1, then f is called monic.

We define also
deg(0) = —oo,

and for all &k in w,
—o00o+k=—00=Fk— o0,

so that the next lemma makes sense in all cases. We said in §7.4
(page 232) that, if K is a field, then f +— deg(f) is a Euclidean
function on K[X]. We now prove this.

Lemma 24. Suppose f and g are polynomials in one variable X
over a ring R. then

deg(f + g) < max(deg f,degg),
with equality if deg(f) # deg(g). Also

deg(f - g) < deg f + degg,

with equality if the product of the leading coefficients of f and g is
not Q. In particular, if R is an integral domain, then so is R[X].
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Theorem 219 (Division Algorithm). If f and g are polynomials in
X over a ring R, and the leading coefficient of g is |, then

f=q-g+r (7.11)
for some unique g and r in R[X] such that deg(r) < deg(g).

Proof. To prove uniqueness, we note that if for each 7 in 2 we have

fi=aq g+,

where qg # ¢, and deg(rg) and deg(r;) are less than deg(g), then
by the lemma

deg(fo — f1) =deg((qo—q1)-g+ro—11) >degg >0,

so fo # f1. To prove existence, if deg(f) < deg(g), we let ¢ = O.
Suppose deg(g) < deg(f). Given an arbitrary polynomial h over R
with leading coefficient a such that deg(g) < deg(f), we define

Wt —h— aXdeg(h)*deg(g) - g.
Then deg(h*) < deg(h) and
h = qXdee(h)—des(9) . g 4 p*,

Now define fo = f, and f| = fo*, and so on until deg(f%) < deg(g).
Let a; be the leading coefficient of f;, and let n; = deg(f;) — deg(g).
Then (7.11) holds when r = f;, and

q=agX™ 4+ -+ ap_ X", O

Corollary 219.1 (Remainder Theorem). If ¢ € R and f € R[X],
then

f=q- (X =0+ £

for some unique q in R[X].
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Proof. By the Division Algorithm, f = ¢-(X —¢)+d for some unique
¢ in R[X] and d in R. Then f(c) =q(c) - (c—c¢c)+d=d. O

If f(¢) =0, then c is a zero of f.

Theorem 220. For every polynomial f over a ring, for every c in
the Ting,

fl)=0 <= (X - f.

If the ring an integral domain, and f # O, then the number of
distinct zeros of f is at most deg(f).

Proof. By the Remainder Theorem, c is a zero of f if and only if
f =4¢q- (X —c¢) for some g. In this case, if the ring is an integral
domain, and d is another zero of f, then, since d — ¢ # O, we must
have that d is a zero of q. Hence, if deg(f) = n, and f has the distinct
Zeros rq, ..., 'm_1, then repeated application of the Remainder
Theorem yields

f=q- (X =ro)- (X =rp_i)

for some q. If f # O, then ¢ # 0, and deg(f) > m. O

Recall however from the proof of Theorem 193 (page 217) that every
element of a Boolean ring is a zero of X - (1 + X), that is, X + X?;
but some Boolean rings have more than two elements. In Zg, the
same polynomial X + X2 has the zeros 0, 2, 3, and 5.

Theorem 221. If K is a field, then f — deg(f) is a Fuclidean
function on K[X].

Proof. Over a field, the Division Algorithm does not require the
leading coefficient of the divisor to be 1. O
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Thus for all fields K, the ring K[X] is a ED, therefore a PID, therefore
a UFD.

7-7-3. *Multiple zeros

A zero c of a polynomial over an integral domain has multiplicity
m if the polynomial is a product ¢ - (X — ¢)™, where ¢ is not a
zero of g. A zero with multiplicity greater than | is a multiple
zero. Derivations were defined on page 206; they will be useful for
recognizing the existence of multiple roots.

Lemma 25. If § is a derivation of a ring R, then for all x in R
and n in w,

8(z") = na"" ' 6(x).
Proof. Since
S(Hy=6(1-1)y=456(1)-1T41-6(1)=2-6(1),

we have 6(1) = 0, so the claim holds when n = Q. If it holds when
n = k, then

S(zF1y = 6(x) - 2 + - 6(2F)
=0(x) - 2® +ka® 5(x) = (k+ 1) 2" 5(z),
so the claim holds when n =k + 1. O

Theorem 222. On a polynomial ring R[X], there is a unique deriva-
tion f — f’ such that

|
o

X' =1, c
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for all c in R. This derivation is given by

n / n—1
(Z aka> =) (k+1)-ap X" (7.12)
k=0

k=0

Proof. Let ¢ be the operation f — f’ on K[X] defined by (7.12). By
the lemma and the definition of a derivation, ¢ is the only operation
that can meet the desired conditions. It remains to show that ¢ is
indeed a derivation. We have

5(2 aka> = Z ag - 5(Xk)
k=0 k=0
Also

6(XkX€) — 5(Xk+f) — (k—FE) .Xk+ffl
= EXFI XXX = 5(XF) - X+ XF (XY,

Therefore § is indeed a derivation:

b ( > axt Ny nge>

k<m <n
- <Z Zaka : ngé>
k<m f<n
= > > arb, - 6(XFX)
k<mt<n
=3 ) abe- (5(XF) - X+ XF5(XY))
k<ml<n

= > (ar-6(X*) b X"+ aX* by 5(XY))

k<ml<n
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= ap - 0(XF) D b XD ar XD b 6(XY)

k<m L<n k<m L<n
= 5(2 aka> D b X+ ) apx” 5(2ng4>. O
k<m <n k<m <n

In the notation of the theorem, f’ is the derivative of f.

Lemma 26. Let R be an integral domain, and suppose f € R[X]
and f(c) = 0. Then c is a multiple zero of f if and only if

f'(c)=0.

Proof. Write f as (X —¢)™ - g, where g(c) 2 0. Then m > 1, so
flem- (X —o™ g+ (X =™ 4.

If m > 1, then f'(c) = 0. If f'(¢) =0, then m-0""" . g(c) =0, so
0™~! = 0 and hence m > 1. O

If L is a field with subfield K, then a polynomial over K may be
irreducible over K, but not over L. For example, X2+ 1 is irreducible
over Q, but not over Q(i). Likewise, the polynomial may have zeros
from L, but not K. Hence it makes sense to speak of zeros of an
irreducible polynomial.

Theorem 223. If f is an irreducible polynomial with multiple zeros
over a field K, then K has characteristic p for some prime number
p, and

f=9(X?)

for some polynomial g over K.
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Proof. If f has the multiple zero ¢, then by the lemma X — ¢ is a
common factor of f and f’. Since f is irreducible, itself must be a
common factor of f and f’, so f’ can only be O, since deg(f’) <
deg(f). Say f =S gaxXk, so f/ = S0k 4+ 1) - apy X5 If
/=0, but apy; # 0, then £ + | must be O in K, that is, its
image under the homomorphism from Z to K must be O. Then this
homomorphism has a kernel (p) for some prime number p. Hence
ar = O whenever p{ k, so f can be written as >-7" g a,; X*/, which
is g(X?), where g = Y77 g ap; X7. O

7-7-4- Factorization

Throughout this subsection, R is a UFD with quotient field K. We
know from Theorem 221 that K[X] is a Euclidean domain and there-
fore a UFD. Now we shall show that R[X] too is a UFD. It will then
follow that each of the polynomial rings R[ X, ..., X,,_] is a UFD.

A polynomial over R is called primitive if | is a greatest common
divisor of its coefficients. Gauss proved a version of the following for
the case where R is Z [9, §42].

Lemma 27 (Gauss). The product of primitive polynomials over R
18 primitive.

Proof. Let f=Y"" garX"* and g = 3"} _o b X*. Then

mn

fg=> ax",

k=0

where
Ccp = Z aib; = agby + ayby_| + -+ arbp.
itj=k
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Suppose f is primitive, but fg is not, so the coefficients ¢, have a
common prime factor 7. There is some £ such that 7 | a; when i < ¢,
but 7 { ag. Then 7 divides

ce — (agbe + -+ + ag_1by),
which is agbg, so 7 | bg. Hence 7 divides

corr — (aobey 1 + -+ +ag1b2) —agi1bo,
which is agb|, so 7 | b, and so on. Thus g is not primitive. O

Lemma 28. Primitive polynomials over R that are associates over
K are assoctates over R.

Proof. Suppose f and g are polynomials that are defined over R
and are associates over K. Then uf = ¢ for some u in K*, and
consequently bu = a for some a and b in R, so af = bg. If f and ¢
are primitive, then a and b must be associates in R, and therefore
u € R*, so f and g are associates over R. O

Lemma 29. Primitive polynomials over R are irreducible over R if
and only if they are irreducible over K.

Proof. Suppose f and g are polynomials over K such that the prod-
uct fg is a primitive polynomial over R. For some a and b in K,
the polynomials af and bg have coefficients in R and are primitive
over R. By Gauss’s Lemma, abfg is primitive. Since fg is already
primitive, ab must be a unit in R. In particular, abu = 1 for some
w in R*. Then af and bug are primitive polynomials over R whose
product is fg.

Now, the units of K[X] are just the polynomials of degree O, that
is, the elements of K. In particular,

feK[X]" < af € K[X]".
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The unit primitive elements of R[X] are the elements of R*. Thus
af € K[X|* <= af € RIX]".
Therefore fg is irreducible over K if and only if over R. O

Note however that if f is primitive and irreducible over R, and a in
R is not a unit or O, then af is still irreducible over K (since a is a
unit in K') but not over R.

Theorem 224. R[X] is a UFD.

Proof. Every nonzero element of R[X] can be written as af, where
a € R~ {0} and f is primitive. Then f has a prime factorization
over K (since K[X] is a Euclidean domain): say f = fo - fn_1-
There are b in K such that by fi is a primitive polynomial over R.
The product of these is still primitive by Gauss’s Lemma, so the
product of the by must be a unit in R. We may assume this unit is
1. Thus f has an irreducible factorization

(bOfO)"'(bn—lfn—l)

over R. Its uniqueness follows from its uniqueness over K and
Lemma 28. Since a has a unique irreducible factorization ag - - - a,,,_1,
we obtain a unique irreducible factorization of af. O

We end with a test for irreducibility.

Theorem 225 (Eisenstein’s Criterion). If 7 is an irreducible ele-
ment of R and f is a polynomial

ag+a X+ +a, X"
over R such that
2
™ '|'Cl0, 7T|Cl0, 7T|Cl|7 ey 7T|an—|7 71'1'&,,“

then f is irreducible over K and, if primitive, over R.
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Proof. Suppose f = gh, where

gzzn:kak, hzzn:Cka,
k=0 k=0

all coefficients being from R. We may assume f is primitive, so g
and h must be primitive. We may assume 7 divides bg, but not
co- Let ¢ be such that 7 | by when k& < ¢. If £ = n, then (since
g is primitive) we must have b, # 0, so deg(g) = n. In this case
deg(h) = 0, so h is a unit. If £ < n, then, since 7 | a,, but

ap =bgcy +byco_) + -+ + beco,

we have 7 | by. By induction, 7 | by whenever k < n, so as before
deg(g) = n. O

An application is the following.
Theorem 226. If p is a prime number, then the polynomial

I+ X+ + X7

1s irreducible.

Proof. It is enough to establish the irreducibility of ZZ;%(X + 1)k,
We have

S-S5 (- S ()-5( 1)

i=0

which meets the Eisenstein Criterion since

(]i)):p’ (afl) (- 3—21)')<j+1>!’

which is divisible by p if and only if j <p— 1. O




A. The German script

In his encyclopedic Model Theory of 1993, Wilfrid Hodges observes
[17, Ch. 1, p. 21]:

Until about a dozen years ago, most model theorists
named structures in horrible Fraktur lettering. Recent
writers sometimes adopt a notation according to which
all structures are named M, M’, M*, M, My, M; or
occasionally N. I hope I cause no offence by using a
more freewheeling notation.

For Hodges, structures (as defined in §1.6 on page 45 above) are de-
noted by the letters A, B, C, and so forth; he refers to their universes
as domains and denotes these by dom(A) and so forth. This prac-
tice is convenient if one is using a typewriter (as in the preparation
of another of Hodges’s books [18], from 1985). In his Model Theory:
An Introduction of 2002, David Marker [26] uses “calligraphic” let-
ters to denote structures, as distinct from their universes: so M is
the universe of M, and N of N. I still prefer the older practice of
using capital Fraktur letters for structures:

A B ¢ D ¢ F & H T J /& £ M
N O P QR G T U4V WX Y 3

Here are the minuscule Fraktur letters, which are used in this text,
starting on page 235, for denoting ideals:

a b c 0o e f gbh i j &I m
n o pgqg¢v s t uov w7ygxr oy ;3
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A way to write these letters by hand is seen on the page reproduced
in Figure A.1 from a 1931 textbook [15] on the German language:

Aa Bb Cc

How LA L

Hh }i. Ji
g/ I JF
Oo .P;‘) Qq

Vv . Wow

Dd

AP

K k
7

Rr
B

X x
L

Ee

&

L1
Ll

Ss
3"//

Py

Ff G g
S Gy
Mm Non
Y
Tt }}u
ZL UW.»
Zz

A7

Figure A.1. The German alphabet
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