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Abstract Vector-spaces over unspecified fields can be axiomatized as one-sorted
structures, namely, abelian groups with the relation of parallelism. Parallelism is
binary linear dependence. When equipped with the n-ary relation of linear depen-
dence for some positive integer n, a vector-space is existentially closed if and only
if it is n-dimensional over an algebraically closed field. In the signature with an
n-ary predicate for linear dependence for each positive integer n, the theory of
infinite-dimensional vector-spaces over algebraically closed fields is the model-
completion of the theory of vector-spaces.
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0 Introduction

In Abraham Robinson’s original definition [14, §2.2], a (first-order) theory T is
model-complete if the theory T ∪ diagM is complete whenever M |= T . Two
equivalent formulations are as follows, in current notation, where M and N are
models of T :

1. M ⊆ N =⇒ M 41 N (Robinson’s Test) [14, 2.3.1];
2. M ⊆ N =⇒ M 4 N [14, 2.4.1].

Model-completeness is of use in the discovery of complete theories, since a model-
complete theory with a model that embeds in every other model is complete [14,
4.1.6]. Discovery of model-complete theories—complete or not—is also of inter-
est in itself.
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Robinson gives some examples of model-complete theories, including the the-
ories of non-trivial torsion-free divisible abelian groups [14, §3.1], algebraically
closed fields [14, §3.2], and real-closed fields [14, §3.3]; these examples are now
standard [12, ch. 3]. Robinson notes also, in effect, that the theory of non-trivial
vector-spaces over a given field is model-complete [14, §3.6]. However, although
his notation would seem to allow it, he does not appear to consider the theory of
vector-spaces tout court (over an unspecified field).

In the most usual formulation, a vector-space is a two-sorted structure. About
early versions of model-theory, Angus Macintyre notes [11, §2.4, p. 198]:

For no good reason, natural structures were forced into a one-sorted for-
mulation (and by now it is a considerable nuisance that there is no basic
model-theory text in a many-sorted setting).

Nonetheless, the possibility of treating vector-spaces as two-sorted structures has
been acknowledged in one textbook [15, §5.4]; also, modules in general have been
treated as two-sorted structures [8, ch. 9]. A natural signature for this treatment of
vector-spaces includes:
1. the signature of abelian groups, for the vectors;
2. the signature of rings, for the scalars;
3. a symbol for multiplication of vectors by scalars (in the present paper, this

symbol is ∗).
In this signature, let T be the theory of vector-spaces, and if n∈ {1,2,3, . . .}∪{∞},
let Tn be the theory of vector-spaces of dimension n. Andrey Kuzichev [10] gives
an explicit elimination of quantified vector-variables in Tn. Indeed, suppose C is a
formula whose vector-variables are from the tuple (x1, . . . ,xm,y). (Kuzichev says
m > 1, but this is not necessary if summations ∑0

i=1 fi are understood to be 0.)
Let C′ be the result of replacing each y in C with ∑m

i=1 αi ∗ xi, and let C∗ be the
result of replacing each atomic sub-formula λ ∗ y = ∑m

i=1 µi ∗ xi of C with λ =
0∧∑m

i=1 µi ∗ xi = 0. Then

T ` ∃y C ↔ (∃ααα C′∨ (C∗ ∧∃y ∀ααα y 6=
m
∑
i=1

αi ∗ xi)).

In each of the theories Tn, we can express the formula ∃y ∀ααα y 6= ∑m
i=1 αi ∗ xi

without quantified vector-variables. Kuzichev gives the corollary that, if U is a
complete theory of the scalar-field, then Tn ∪U is complete.

However, these complete theories Tn ∪U are never model-complete, unless
n = 1. They are not even inductive: the union of a chain of models need not be a
model (no matter what U is, unless n = 1; see §2 below). The problem is the lack
of a way to express linear independence with an existential formula. The picture
changes if predicates for linear independence or dependence are added.

I arrive, myself, at the example of vector-spaces by noting first that, in the
Elements [5], Euclid gives a geometric formulation of certain field-theoretic iden-
tities. For example, the identity (x+y)(x−y)+y2 = x2 is Euclid’s Proposition II.5,
but Euclid expresses it in terms of the squares and rectangles bounded by certain
straight lines (εÙθε�αι γραµµαί, what we might call line-segments; see Figure 0.1).

At the beginning of the Geometry [2], René Descartes shows how straight
lines (lignes droites) can be multiplied to produce lines rather than rectangles, if
one line is chosen as unit:
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Fig. 0.2 Descartes’s geometric multiplication

Soit par exemple AB l’vnité, & qu’il faille multiplier BD par BC, ie n’ay
qu’a ioindre les poins A & C, puis tirer DE parallele a CA, & BE est le
produit de cete Multiplication1 [Fig. 0.2].

By means of Descartes’s observation, we can interpret the scalar-field in a
vector-space of dimension at least two by means of the binary relation of paral-
lelism, that is, binary linear dependence (§1). So vector-spaces of dimension at
least two are axiomatizable, as one-sorted structures, in the signature of abelian
groups with a binary predicate. Also, the axioms can be chosen to be ∀∃.

When the predicate for parallelism is used, then the existentially closed vector-
spaces are two-dimensional. (It does not matter whether a separate sort for the
scalars is retained or not.) If, more generally, an n-ary predicate for linear depen-
dence is used, then the existentially closed vector-spaces are n-dimensional over
algebraically closed fields (§2). The class of such models being elementary, its
theory is model-complete, although it does not admit full quantifier-elimination.

On the value of looking at basic structures, I quote again Descartes, this time
from near the end of the fourth of his Rules for the Direction of the Mind [4]:

Quant à moi, conscient de ma faiblesse, j’ai décidé d’observer opiniâ-
trement, dans ma quête de connaissances, un ordre tel qu’en partant tou-
jours des choses les plus simples et les plus faciles, je m’interdise de passer
à d’autres, avant que dans les premières il ne m’apparaisse qu’il ne reste
plus rien à désirer; c’est pourquoi j’ai poussé jusqu’à ce jour, aussi loin
que j’ai pu, l’étude de cette mathématique universelle. . . 2

The result about existentially closed vector-spaces means, in part, that a vector-
space of n+1 dimensions can be embedded in an n-dimensional space so that lin-
ear independence of n-element sets (more precisely, n-tuples) is preserved. A sim-

1 ‘For example, let AB be taken as unity, and let it be required to multiply BD by BC. I have
only to join the points A and C, and draw DE parallel to CA; then BE is the product of BD and
BC’ [2, p. 5].

2 ‘Aware how slender my powers are, I have resolved in my search for knowledge of things
to adhere unswervingly to a definite order, always starting with the simplest and easiest things
and never going beyond them till there seems to be nothing further which is worth achieving
where they are concerned. Up to now, therefore, I have devoted all my energies to this universal
mathematics. . . ’ [3, p. 20].
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ilar result arises in the model-theory of fields: Let (a0, . . . ,an) be algebraically in-
dependent over a field K, and let (b,c) be a generic solution to ∑n

i=0 aixi = y. (This
generalizes [12, Example 8.1.2, p. 291]; see also [13, Example 2.1.8, p. 77].) Then
tr-deg(K(a0, . . . ,an)/K) = n+1, while tr-deg(K(a0, . . . ,an,b,c)/K(b,c)) = n, al-
though every n-tuple of elements of K(a0, . . . ,an) that is algebraically independent
over K is still independent over K(b,c).

Recently and independently, Moshe Kamensky [9] has worked with (two-
sorted) vector-spaces and has given theories of them that have elimination of
quantifiers; this elimination is achieved by means of additional sorts, as for the
Grassmannians of the finite powers of the scalar-field.

1 Interpretation of the field in the vector-space

In a chapter of his own textbook on the subject, Robin Hartshorne [6, ch. 3]
presents Descartes’s approach to geometry. It is perhaps a Cartesian spirit that
allows Alfred Tarski [17,18] to axiomatize Euclidean geometry by means of the
ternary relation of between-ness and the quaternary relation of equidistance; these
relations allow the underlying (real-closed) field to be recovered from the space.

In the present section, I specify an origin in space and work with the group-
structure determined by it; then only a binary relation is needed to recover the
underlying (arbitrary) field. This observation was useful to me in showing that a
field equipped with a space and Lie-ring of derivations can be described as a one-
sorted structure in two ways: as a field with certain operators, or as a Lie-ring with
certain operators.

A vector-space can be defined as a triple (V,K,∗), where V is an abelian group
(of vectors), K is a field (of scalars), and ∗ is a function (x,vvv) 7→ x∗vvv from K ×V
to V so that:

1. the functions vvv 7→ a∗ vvv (where a ∈ K) are endomorphisms of V , and
2. the function x 7→ (vvv 7→ x∗vvv) is a ring-homomorphism from K into (End(V ),◦).
Since K is a field, the homomorphism into (End(V ),◦) is an embedding, unless
V is trivial; excluding this case, we may treat the homomorphism as an inclusion,
so that multiplication in K is literally composition. Even in the trivial case, let us
retain the symbol for composition to denote multiplication of scalars.

Model-theoretically then, a vector-space is a two-sorted structure, in the sig-
nature {+,−,000,◦,0,1,∗}; here the elements of {+,−} do double duty, taking
arguments from the sort of vectors or the sort of scalars. I shall use normal-face
variables for scalars (as 0), and boldface for vectors (as 000) or, in more general
contexts, for tuples of variables.

In every vector-space, the binary relation ‖ on the sort of vectors is defined by
the sentence

xxx ‖ yyy ↔∃u ∃v (u∗ xxx+ v∗ yyy = 000∧ (u 6= 0∨ v 6= 0)). (1.1)

(Here and throughout the paper, outer universal quantifiers are suppressed.) The
sentence (1.1) has the form

α ↔∃z0 · · ·∃zn−1 β , (1.2)
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where α and β are quantifier-free, and none of the zi appears in α; such a sentence
is equivalent to the conjunction of the ∀∃-sentence ∃z0 · · ·∃zn−1 (α → β ) and the
universal sentence β → α .

Let VS2 be the theory of vector-spaces that have been expanded to the sig-
nature {+,−,000,◦,0,1,∗,‖} so as to satisfy (1.1). (The subscript 2 alludes to the
number of arguments that ‖ takes.) Models of the theory VS2 can be extended so
as to satisfy also

∃xxx ∃yyy xxx ∦ yyy. (1.3)

Let VSm
2 be the theory of the resulting structures: the vector-spaces, with par-

allelism, of dimension at least two. (The superscript ‘m’ refers to a minimum
dimension.) This theory is inductive.

Reduction of a one-sorted structure is the discarding of some named oper-
ations or relations; we may understand reduction of a many-sorted structure to
involve also the discarding of some sorts. In this sense, every model (V,K,∗,‖)
of VSm

2 has a one-sorted reduct (V,‖) in the signature {+,−,000,‖}. This reduct is
an abelian group with a certain binary relation; we might just call the reduct an
abelian group with parallelism. Let VSr

2 be the theory of these structures. The
theories VSm

2 and VSr
2 will be related in Theorem 1.1.

In general, the models of a theory T in a signature L are the objects of a
category whose morphisms are either embeddings or elementary embeddings. Let
the two possibilities for the category be Mod⊆(T ) and Mod4(T ) respectively. If
L ⊆L ′, and T ′ is a theory of L ′, and reducts to L of models of T ′ are models of
T , then we may speak of reduction from T ′ to T : it is a functor R from Mod4(T ′)
to Mod4(T ), and from Mod⊆(T ′) to Mod⊆(T ) (this is a trivial case of Lemma 1.1
below).

Possibly, along with the reduction-functor R from Mod4(T ′) to Mod4(T ),
there is an expansion-functor E from Mod4(T ) to Mod4(T ′) such that R ◦E is
the identity, and for each model A of T ′, there is a ‘reasonable’ isomorphism σ A

ER
from A to E(R(A))—reasonable in the sense that, for all models A and A

∗ of T ′,
for every elementary embedding h of A in A∗, the following diagram commutes:

A
h−−−−→ A

∗

σA
EF





y





yσA∗
ER

E(R(A)) −−−−→
E(R(h))

E(R(A∗))

In a word then, R is an equivalence of categories; we might say also that R is
a weakly conservative reduction. For example, R is weakly conservative in case
T ′ is VS2, and L is {+,−,000,◦,0,1,∗} (so that T is just the theory of vector-
spaces). However, in this case, E is not functorial on Mod⊆(T ). For example,
(C,R,∗) ⊆ (C,C,∗), but (C,R,∗,‖) 6⊆ (C,C,∗,‖). This is a point to be devel-
oped in §2. Briefly, E is not functorial here, because non-parallelism does not
have an existential definition. In cases where E is functorial on Mod⊆(T ), and the
diagram above commutes whenever h embeds A in A

∗, so that R is an equiva-
lence of Mod⊆(T ′) and Mod⊆(T ),—in such cases, we may say that R is simply a
conservative reduction.
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Now the statement of Theorem 1.1 makes sense. For the proof, I first note that
reduction and expansion are instances of interpretation. In the account of Wilfrid
Hodges [7, §5.3, p. 212], an interpretation of a (one-sorted) structure A whose
signature is L in a structure B whose signature is L ′ consists, for some positive
integer n, of:

1. a function ϕ 7→ ϕI converting each k-ary unnested atomic formula of L , for
each k in ω, into an nk-ary formula of L ′,

2. an n-ary formula δI of L ′, and
3. a surjective function f B

I from δI
B to A, such that

B |= ϕI(bbb) ⇐⇒ A |= ϕ( f B
I (bbb)) (1.4)

for all bbb from δI
B.

We may assume that the universe A of A is literally the set δI
B, modulo the

equivalence-relation defined in B by (x = y)I . Then f B
I is the quotient-map, and

A is uniquely determined by B and ϕ 7→ϕI and δI [7, 5.3.3, p. 216]: we may write
A = I(B). Thus we have a function I converting structures of L ′ into structures
of L .

In case A has several sorts, composing a tuple (Aα : α ∈ S) perhaps, then the
definition must be modified: For each α in S, for some positive integer nα , there
will be an formula δI,α in some nα -tuple of variables (each variable being assigned
to a sort), along with a function f B

I,α from δI,α
B onto Aα , so that a variant of (1.4)

holds, namely,

B |= ϕI(bbbα(0), . . . ,bbbα(k−1)) ⇐⇒ A |= ϕ( f B

I,α(0)(bbbα(0)), . . . , f B

I,α(k−1)(bbbα(k−1)))

(1.5)
where bbbα( j) ∈ δI,α( j)

B.
The function ϕ 7→ ϕI extends so that its domain comprises all unnested formu-

las of L , and (1.4) or (1.5) still holds [7, 5.3.2, p. 214]: the extension takes ϕ ∧ψ
to ϕI ∧ψI , and ¬ϕ to ¬(ϕI), and ∃x ϕ to ∃(x0, . . . ,xn−1) (ϕI ∧ δI(x0, . . . ,xn−1))
(with appropriate modifications in the many-sorted case).

If there are theories T of L and T ′ of L ′ such that I(B) |= T whenever
B |= T ′, then let us say that I is an interpretation from T ′ to T . In this case, we
can understand I as a functor from Mod4(T ′) to Mod4(T ), where, if B and B

∗

are models of T ′, and h is an elementary embedding of B in B
∗, then I(h) is the

well-defined elementary embedding of I(B) in I(B∗) given by

I(h)( f B
I (bbb)) = f B

∗
I (h(bbb)) (1.6)

[7, 5.3.4(a), p. 217]. If the formulas involved in I are simple enough, then more
follows:

Lemma 1.1 If I is an interpretation from T ′ to T (and therefore a functor from
Mod4(T ′) to Mod4(T )), then I is also a functor from Mod⊆(T ′) to Mod⊆(T ),
provided both that the formula δI is existential, and also that the formula ϕI is
existential whenever ϕ is an unnested atomic formula of L , or is ¬(x = y), or is
¬Rx0 · · ·xk−1 for some predicate R in L .
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Proof The claim is a variant of [7, 5.3.4(b), p. 217] and a refinement of [7, §5.4,
exercise 3, p. 225].

An interpretation I from T ′ to T , paired with an interpretation J from T to T ′,
is a bi-interpretation of T ′ and T if there are formulas χIJ of L , and χJI of L ′,
such that, whenever A |= T , then the set

{(a, f J(A)
I ( f A

J (bbb0), . . . , f A
J (bbbn−1))) : A |= χIJ(a,bbb0, . . . ,bbbn−1)} (1.7)

is (the graph of) an isomorphism σ A
IJ from A to I(J(A)), and similarly for all

models of T ′, with the places of I and J reversed (Hodges [7, §5.4(c), p. 222],
generalizing Ahlbrandt and Ziegler [1, p. 67]; in the case of several sorts, there
will be several formulas χIJ,α , indexed with the sorts, and the graph of σ A

IJ will
have components of the form {(a, f J(A)

I,α ( f A

J,β (0)(bbb0), . . . , f A

J,β (nα−1)(bbbnα−1))) : A |=
χIJ,α (a,bbb0, . . . ,bbbnα−1)}). A special case was alluded to above, where reduction
can be ‘undone’ by an expansion.

Lemma 1.2 If (I,J) is a bi-interpretation of T ′ and T , then I is an equivalence
of the categories Mod4(T ′) and Mod4(T ); if I and J are also functorial between
Mod⊆(T ′) and Mod⊆(T ), then these categories too are equivalent, provided that
the formulas χIJ and χJI are existential.

Proof To prove the first claim, if A and A∗ are models of T , and h is an elementary
embedding of A in A

∗, then we show that the following diagram commutes (and
likewise for models of T ′):

A
h−−−−→ A

∗

σA
IJ





y





yσA
∗

IJ

I(J(A)) −−−−→
I(J(h))

I(J(A∗))

Suppose a ∈ A (and all models are one-sorted; extra sorts would be a challenge
only to the notation.) Then (abbreviating the notation in (1.7)) we have σ A

IJ (a) =

f J(A)
I ( f A

J (bbb)) for some bbb such that A |= χIJ(a,bbb). Then A
∗ |= χIJ(h(a),h(bbb)) since

h is elementary, so by (1.6)

σA
∗

IJ (h(a)) = f J(A∗)
I ( f A

∗
J (h(bbb))) = f J(A∗)

I (J(h)( f A
J (bbb)))

= I(J(h))( f J(A)
I ( f A

J (bbb)) = I(J(h))(σA
IJ (a)).

So the diagram does commute, and the first claim is proved. If h is merely an
embedding, but I(h) is still well-defined as an embedding by (1.6), then the same
argument works, provided also χIJ is existential. ut

Now let us return to the special case of reductions and expansions. The fol-
lowing lemma singles out some of the basic properties of vector-spaces to be used
in proving Theorem 1.1.

Lemma 1.3 Suppose (V,K,∗,‖) |= VSm
2 .
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1. Say xxx,yyy ∈V, and xxx 6= 0. Then

xxx ‖ yyy ⇐⇒ ∃u u∗ xxx = yyy ⇐⇒ ∃!u u∗ xxx = yyy.

2. The relation ‖, restricted to V r{000}, is an equivalence-relation.
3. The set {yyy ∈ V : xxx ‖ yyy} is a subgroup of V , for all xxx in V .
4. Let xxx, zzz, and www be vectors in V such that xxx ∦ zzz; let u ∈ K; and let yyy = u ∗ xxx.

Then
u∗ zzz = www ⇐⇒ zzz ‖ www & xxx− zzz ‖ yyy−www.

Proof I write a proof for item 4 only, assuming items 1, 2, and 3. Assume xxx ∦ zzz
and yyy = u∗xxx. Part of item 3 is that 000 is parallel to every vector; so zzz 6= 000. Similarly,
but with the help of item 2, we have zzz ∦ xxx− zzz, so xxx− zzz 6= 000. Hence, if u ∗ zzz = www,
then zzz ‖ www by item 1, and also yyy − www = u ∗ (xxx − zzz), which is parallel to xxx − zzz
for the same reason. Conversely, say zzz ‖ www. Then www = t ∗ zzz for some t in K, so
that yyy− www = u ∗ xxx− t ∗ zzz = u ∗ (xxx − zzz) + (u − t) ∗ zzz. If also xxx − zzz ‖ yyy− www, then
(u− t)∗ zzz ‖ xxx− zzz by item 3, so u = t. ut

Theorem 1.1 Reduction from VSm
2 to VSr

2 is conservative.

Proof We have R from Mod⊆(VSm
2 ) to Mod⊆(VSr

2). To go the other way, we want
to interpret an arbitrary model (V,K,∗,‖) of VSm

2 in its reduct, (V,‖), obtaining an
expansion-functor E. (It will follow that the reducts (V,‖) compose an elementary
class.) In the notation for interpretations given earlier, we shall need formulas
δE,vec and δE,sca; these will be xxx = xxx and

xxx0 6= 000∧ xxx0 ‖ xxx1,

respectively. Then f (V,‖)
E,vec will be the identity on V , while f (V,‖)

E,sca will be given by

f (V,‖)
E,sca(aaa0,aaa1) = b ⇐⇒ (V,K,∗,‖) |= b∗aaa0 = aaa1. (1.8)

Indeed, the function f (V,‖)
E,sca is well defined on δE,sca(V,‖), and is surjective onto K,

by Lemma 1.3 (item 1):

1. If (V,‖) |= δE,sca(aaa0,aaa1), then there is a unique b in K such that (V,K,∗,‖) |=
b∗aaa0 = aaa1.

2. If b ∈ K, and aaa 6= 000, then (V,‖) |= δE,sca(aaa,b∗aaa).

Let f (V,‖)
E,sca be denoted by

(xxx,yyy) 7→ [xxx : yyy ].

We have to define the function ϕ 7→ ϕE . This will be the identity at all formulas
with no scalar-variables. It is now enough to suppose that ϕ is one of

x = y, x+ y = z, x◦ y = z, x∗ yyy = zzz.

The formula (x = y)E will be the equation

[xxx0 : xxx1 ] = [yyy0 : yyy1 ], (1.9)
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expressed in {+,−,0,‖}. To obtain this expression, first note that

yyy0 6= 000 & [xxx0 : xxx1 ]∗ yyy0 = yyy1 ⇐⇒ [xxx0 : xxx1 ] = [yyy0 : yyy1 ]. (1.10)

Now let ψ(xxx0,xxx1,yyy0,yyy1) denote the formula

xxx0 ∦ yyy0 ∧ xxx0 ‖ xxx1 ∧ yyy0 ‖ yyy1 ∧ xxx0 − yyy0 ‖ xxx1 − yyy1.

(The situation can be illustrated by Fig. 0.2 of §0, with (A,B,C,D,E) replaced
with (xxx0,000,yyy0,xxx1,yyy1).) This formula ψ defines a subset of δE,sca

(V,‖) ×δE,sca
(V,‖);

that is, it defines a binary relation on δE,sca
(V,‖). This relation is symmetric, though

not reflexive, and not quite transitive. However, by Lemma 1.3 (item 4) and (1.10),
and by the assumption that dimK V > 2, we have

[xxx0 : xxx1 ] = [yyy0 : yyy1 ] & xxx0 ∦ yyy0 ⇐⇒ ψ(xxx0,xxx1,yyy0,yyy1);
[xxx0 : xxx1 ] = [yyy0 : yyy1 ] & xxx0 ‖ yyy0 ⇐⇒ xxx0 ‖ yyy0 & ∃zzz0 ∃zzz1

(ψ(xxx0,xxx1,zzz0,zzz1) & ψ(zzz0,zzz1,yyy0,yyy1)).

From these observations, we obtain (1.9) as a formula of {+,−,0,‖}. A slight
simplification is possible: (x = y)E can be the existential formula

∃zzz0 ∃zzz1 (ψ(xxx0,xxx1,yyy0,yyy1)∨ (ψ(xxx0,xxx1,zzz0,zzz1)∧ψ(zzz0,zzz1,yyy0,yyy1))). (1.11)

We obtain the remaining formulas ϕE by means of (1.10) and the following iden-
tities:

[xxx : yyy ]+ [xxx : zzz ] = [xxx : yyy+ zzz ];
[yyy : zzz ]◦ [xxx : yyy ] = [xxx : zzz ].

In particular, writing (1.9) as an abbreviation for (1.11), we can tabulate the results:

ϕ ϕE
x+ y = z ∃www ([xxx0 : www ] = [yyy0 : yyy1 ]∧ [xxx0 : xxx1 +www ] = [zzz0 : zzz1 ])
x◦ y = z ∃www ([yyy1 : www ] = [xxx0 : xxx1 ]∧ [yyy0 : www ] = [zzz0 : zzz1 ])
x∗ yyy = zzz [xxx0 : xxx1 ] = [yyy : zzz ]∨ (yyy = 000∧ zzz = 000).

These formulas ϕE are existential. Also, ¬((x = y)E) is equivalent to the existen-
tial formula

∃www ([xxx0 : xxx1 ] = [yyy0 : www ]∧www 6= yyy1).

Now we have E as a functor from Mod⊆(VSr
2) to Mod⊆(VSm

2 ), by Lemma 1.1.
The composition R◦E is the identity, and σ (V,‖)

RE is the identity, and χRE is xxx = yyy.
For the other side, σ (V,K,∗,‖)

ER is the identity on V , while on K it takes y to the
equivalence-class {(xxx0,xxx1) : xxx0 6= 000 & y ∗ xxx0 = xxx1}; correspondingly, χER,vec is
xxx = yyy, while χER,sca is xxx0 6= 000 & y∗xxx0 = xxx1. By Lemma 1.2, the proof is complete.

ut
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2 Existentially closed vector-spaces

It was said in §0 that, if U is a complete theory of fields, then the theory, in
{+,−,000,◦,0,1,∗}, of n-dimensional vector-spaces whose scalar-fields are models
of U is complete, but not model-complete or even inductive, if n > 1. Indeed, sup-
pose V is a vector-space with basis (bbb0, . . . ,bbbn−1) over a model K of U , and n > 1.
If K ⊂ K ′, then the bbbi span a vector-space W over K ′, but we can have bbb0 = a∗bbb1
for some a in K ′ r K, so that dimK′ W 6 n− 1. Still, (V,K,∗) is a substructure of
(W,K ′,∗). We can have K ′ |= U , and we can extend W to an n-dimensional space
V ′ over K ′. So (V,K,∗) is a substructure of (V ′,K′,∗), and both are models of
Tn ∪U . Continuing, we form a chain

(V,K,∗) ⊂ (V ′,K′,∗) ⊂ ·· · ⊂ (V (k),K(k),∗) ⊂ ·· · (2.1)

of models of Tn ∪U ; the union of this chain has dimension at most n− 1. The
chain can have dimension one, even if n = ∞: for each k, let V (k) have basis
(bbbk,bbbk+1, . . .), and assume bbbk = ak ∗bbbk+1 for some ak in K(k+1) r K(k).

However, when the structures in (2.1) expand to models of VSm
2 , they no longer

form a chain: non-parallelism is not preserved in super-structures. Nonetheless, we
shall see that there are chains where non-parallelism is preserved in going up, but
the union has dimension two. The conclusion will be that the existentially closed
models of VSm

2 are two-dimensional. There is a generalization involving chains
that preserve n-ary linear independence.

If n > 0, let Pn be an n-ary predicate for linear dependence. (So P2xxxyyy means
xxx ‖ yyy; but P1 is superfluous, since P1xxx is equivalent to xxx = 000.) For each positive
n, there is a theory VSn of vector-spaces in the signature {+,−,000,◦,0,1,∗,Pn},
axiomatized by the usual vector-space axioms, along with

Pnxxx0 · · ·xxxn−1 ↔∃y0 · · ·∃yn−1
(

∑
i<n

yi ∗ xxxi = 000∧
∨

i<n
yi 6= 0

)

. (2.2)

Having the form of (1.2), the axiom (2.2) is equivalent to an ∀∃-sentence. So VSn
is inductive. Models of VSn have two sorts. But let VSm

n be the theory of models
of VSn of dimension at least n; so VSm

n has the additional axiom

∃xxx0 · · ·∃xxxn−1 ¬Pnxxx0 · · ·xxxn−1.

In this theory, when n > 2, we can define non-parallelism and parallelism in VSm
n

by means of the existential formulas

∃(xxx2, . . . ,xxxn−1) ¬Pnxxx0 · · ·xxxn−1,

∃(xxx2, . . . ,xxxn)
(

xxx1 = 0∨
(

¬Pnxxx1 · · ·xxxn ∧
n

∧

j=2
Pnxxx0 · · ·xxx j−1xxx j+1 · · ·xxxn

)

)

.

Indeed, if (aaa1, . . . ,aaan) is linearly independent, but (aaa0, . . . ,aaai−1,aaai+1, . . . ,aaan) is
not, then aaa0 is a unique linear combination of (aaa1, . . . ,aaan), and this combination
does not use aaa j . If that is so, whenever 2 6 j 6 n, then aaa0 must be a multiple of aaa1.
If we reduce a model of VSm

n to the sort of vectors, in the signature {+,−,000,Pn},
the reduct might be termed an abelian group with n-ary linear dependence. As
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a porism from Theorem 1.1, we have that the reduction from VSm
n to the theory

of abelian groups with n-ary linear dependence is conservative. By Theorem 2.3
below, the model-companion of VSn—hence, of VSm

n —is the theory VSn
∗ of n-

dimensional vector-spaces over algebraically closed fields. Hence the theory of
abelian groups with n-ary linear dependence is likewise companionable.

To warm up for the proof of Theorem 2.3, I consider first VS1, the theory of
non-trivial vector-spaces. I shall generally write models as (V,K), rather than the
full (V,K,∗):

Theorem 2.1 The theory VS1 is companionable; its model-companion is the the-
ory VS1

∗. The model-companion is not a model-completion; much less does it ad-
mit quantifier-elimination; but it is the model-completion of the theory of vector-
spaces of dimension at most 1.

Proof Suppose (V,K) |= VS1 and has basis B. We may assume that B is a subset
of a field extending K (while still being linearly independent over K). Then we
can form (K(B)alg,K(B)alg), a model of VS1

∗ in which (V,K) embeds.
Suppose (V,K) |= VS1∗ and is a substructure of the models (W,L) and (W ′,L′),

which have equal cardinality greater than |K|. Then |L| = |L′|, so L ∼= L′ over K;
hence

(W,L) ∼= (L⊗K V,L) ∼= (L′⊗K V,L′) ∼= (W ′,L′)

over (V,K). So VS1∗∪diag (V,K) is categorical in powers greater than |K|; having
also no finite models, the theory is complete. Therefore VS1

∗ is model-complete,
so it is the model-companion of VS1.

In the foregoing argument, it is enough to suppose merely that (V,K) is one-
dimensional; K need not be algebraically closed. Even if V = {000}, the theory
VS1

∗ ∪ diag(V,K) is complete. This shows that VS1
∗ is the model-completion of

the theory of vector-spaces of dimension at most 1.
The model (Qalg,Qalg) of VS1

∗ has the two substructures (〈1,
√

2〉,Q) and
(〈1,

√
3〉,Q), which are two-dimensional isomorphic models of VS1, although the

formula
∃z (z◦ z = 1+1∧ z∗ xxx0 = xxx1)

is satisfied in (Qalg,Qalg) by (1,
√

2), but not by (1,
√

3). Therefore the theory
VS1

∗ ∪ diag(〈1,
√

2〉,Q) is the same as VS1
∗ ∪ diag(〈1,

√
3〉,Q) (as long as the

same symbol denotes
√

2 and
√

3 respectively), but this theory is not complete.
Thus VS1

∗ is not a model-completion of VS1. ut

Proving the more general Theorem 2.3 below requires some preliminary work
on matrices. I shall understand an m×n matrix (m rows, n columns) as a function
on m×n, that is, on {(i, j)∈ω

2 : i < m & j < n}. Such a function can be denoted
by

(ui
j)

i<m
j<n ;

its transpose is (ui
j)

j<n
i<m. I shall consider elements of a Cartesian power like Kn as

row-vectors, that is, 1×n matrices.



12 David Pierce

Lemma 2.1 For all positive integers n, if U is an n× n matrix (over some field),
and uuu is n×1, and aaa is 1×n, then

det
(

U uuu
aaa 1

)

= det(U −uuu ·aaa). (2.3)

Proof Start with the identity
(

U uuu
aaa 1

)

·
(

In 000
−aaa 1

)

=

(

U −uuu ·aaa uuu
000 1

)

and take the determinant of either side. ut

The lemma can be interpreted as follows. Let K be a field, and let V be
Kn+1. The space of alternating n-forms on V has dimension

(n+1
n

)

, or n + 1.
Now understand V n as comprising the n × (n + 1) matrices over K. The func-

tion
(

U uuu
)

7→ det
(

U uuu
aaa 1

)

from V n to K is an alternating n-form on V that takes
(

In 000
)

to 1, and that takes
(

U uuu
)

to 0 if one of its rows is
(

aaa 1
)

. There is only
one such function; the function

(

U uuu
)

7→ det(U −uuu ·aaa) has the same properties;
(2.3) follows.

Suppose further πi is xxx 7→ xi on V , so πi ∈ V ∗. If B ∈ V n, let ΦB be the func-

tion det
(

B
π0 · · · πn

)

: this is an element ∑n
i=0 ci ·πi of V ∗. Then (c0, . . . ,cn) is the

cross-product [16, pp. 83 f.] of (the rows of) B: it is the element ×B of V such
that xxx · (×B) = ΦBxxx for all xxx in V .

Lemma 2.2 Let K be a field, V = Kn+1, and B ∈ V n. Say K ⊂ L, and aaa ∈ Ln+1,
and aaa is linearly independent over K. The following are equivalent:
1. ×B = 0;
2. det

(

B
aaa

)

= 0;
3. The rows of B are linearly dependent over K;
4. The rows of B are linearly dependent over L.

Proof The equivalence of (1) and (2) follows from the definition of ×B and the
linear independence of aaa over K. The equivalence of (3) and (4) follows from the
observation that if the equation xxx ·B = 000 has a non-trivial solution at all, it has one
in Kn. Finally, aaa is not in the span over L of the rows of B: if it were, then ccc ·B = aaa
for some ccc in Ln, which would mean that the n + 1 entries of aaa belonged to the
span over K of the n entries of ccc. Hence (2) and (4) are equivalent. ut

Theorem 2.2 Suppose L/K is a field-extension, and [L : K] > n + 1. Then the
vector-space (Kn+1,K) embeds in (Ln,L) so as to preserve linear independence
of n-tuples: that is, the embedding is of the structure (Kn+1,K,Pn) in (Ln,L,Pn).
One such embedding is

xxx 7−→ xxx ·
(

In
−aaa

)

, (2.4)

where aaa in Ln is such that (a0, . . . ,an−1,1) is linearly independent over K.
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Proof Assume that (a0, . . . ,an−1,1) is linearly independent over K. Treating n
vectors from Kn+1 as the rows of an n× (n+1) matrix, we can write the result as
(

U uuu
)

. By Lemma 2.2, the rows of
(

U uuu
)

are linearly dependent over K if and
only if

det
(

U uuu
aaa 1

)

= 0. (2.5)

The images of those rows under the transformation in (2.4) are the rows of the

product
(

U uuu
)

·
(

In
−aaa

)

. This product is U − uuu · aaa. So the images are linearly

dependent over L if and only if

det(U −uuu ·aaa) = 0. (2.6)

By Lemma 2.1, equations (2.5) and (2.6) are equivalent. Hence the transformation
in (2.4) is an embedding that preserves independence of n-tuples. ut

Not every embedding of (Kn+1,K) in (Ln,K) preserves independence of n-
tuples: Just use an embedding as in (2.4), but replace some—not all—entries of aaa
with 0.

Theorem 2.3 For each positive n, the theory VSn
∗ is the model-companion of

VSn; it is not a model-completion of VSn or even of VSm
n , but is the model-

completion of the theory of n-dimensional vector-spaces.

Proof The proof is, in part, as for Theorem 2.1. Since VSn is inductive, every
model embeds in an existentially closed model. Such models are models of VSn

∗.
Indeed, every model (V,K,Pn) of VSn embeds in (Kalg ⊗K V,Kalg,Pn); so ex-
istentially closed models must have algebraically closed scalar-fields. Also, if
dimK V = m < n, then (V,K,Pn) fails to have a solution to

¬Pnxxx0 · · ·xxxn−1; (2.7)

but (V,K,Pn) embeds in (V ⊕Kn−m,K,Pn), where (2.7) does have a solution; so
(V,K,Pn) was not existentially closed. Finally, say dimK V > n, so that there is a
linearly independent (n+1)-tuple (aaa0, . . . ,aaan) of vectors in V . Then (V,K,Pn) has
no solution to

n
∑
i=0

xi ∗aaai = 000∧
n

∨

i=0
xi 6= 0. (2.8)

But analyse V as V0 ⊕V1, where V0 is spanned by the vectors aaai. By Theorem 2.2,
there is a model (W,L,Pn) of VSn in which (V0,K,Pn) embeds, but which has a
solution to (2.8). Then (V,K,Pn) embeds in (W ⊕L⊗K V1,L,Pn), and the latter
has a solution to (2.8). So again (V,K,Pn) was not existentially closed.

So the existentially closed models of VSn are models of VSn
∗; in particular,

every model of VSn embeds in a model of VSn
∗. If (V,K,Pn) is an n-dimensional

model of VSn, then VSn
∗∪diag (V,K,Pn) is complete, by a categoricity argument

as in the proof of Theorem 2.1. Therefore VSn
∗ is the model-completion of the

theory of n-dimensional models of VSn.
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However, VSn
∗ is not the model-completion of VSm

n (much less of VSn). In-
deed, let (a0, . . . ,an) be an (n+1)-tuple of algebraic numbers such that the (n+2)-
tuple (a0, . . . ,an,1) is linearly independent over Q. By Theorem 2.2, the row-
spaces of the matrices

(

In
a0 · · · an−1

)

and
(

In
a1 · · · an

)

are substructures A and B of ((Qalg)n,Qalg,Pn). Being (n+1)-dimensional, they
are isomorphic models of VSm

n ; but no automorphism of ((Qalg)n,Qalg,Pn) takes
A to B. ut

We can let VS∞ be the union of the theories VSn; so it is the theory of vector-
spaces in the signature {+,−,000,◦,0,1,∗,P1,P2,P3, . . .}. Let VS∞

∗ be the the-
ory, in the same signature, of infinite-dimensional vector-spaces over algebraically
closed fields.

Theorem 2.4 The theory VS∞
∗ is the model-completion of VS∞, but does not ad-

mit quantifier-elimination.

Proof Every model (V,K,P1, . . .) of VS∞ embeds in the model

(Kalg ⊗K V ⊕ (Kalg)ω,Kalg,P1, . . .)

of VS∞
∗. Also, let (V,K,P1, . . .) |= VS∞, and κ = ℵ0 + |V |+ |K|. Then VS∞

∗ ∪
diag(V,K,P1, . . .) is complete, since all of its models (W,L,P1) are isomorphic,
provided tr-deg(L/K) = κ and dimL(W/(L ⊗K V )) = κ; but these are just the
models of size κ that realize certain types. So VS∞

∗ is the model-completion of
VS∞.

Finally, the example at the end of the proof of Theorem 2.1 shows that VS∞
∗

does not admit elimination of quantifiers. Indeed, (〈1,
√

2〉,Q) expands to a sub-
structure of a model of VS∞

∗ in which 1 ‖
√

2, but VS∞
∗∪diag(〈1,

√
2〉,P1,P2, . . .)

is not complete, since it does not specify which scalars ensure that 1 ‖
√

2. ut

Theorem 2.5 The completions of the model-complete theories VSn∗ are obtained
by specifying a characteristic for the scalar field. The completions are ω-stable.

Proof Let VSn,p
∗ be the theory of models of VSn

∗ whose scalar fields have char-
acteristic p (positive or zero). If n is finite, then VSn,p

∗ is uncountably categorical,
hence complete and ω-stable.

All models of VS∞,p
∗ have a substructure isomorphic to ({000},Fp), where

Fp is a prime field of characteristic p. Hence VS∞,p
∗ ` diag({000},Fp). But here

({000},Fp) |= VS∞, so the theory VS∞
∗∪diag({000},Fp) is complete by Theorem 2.4.

Therefore VS∞,p
∗ is complete.

Finally, let (V,K) be a countable, definably closed substructure of a big model
of VS∞

∗. This implies that, if some vectors in V are linearly dependent, then scalars
witnessing this can be found in K. A complete type of xxx over (V,K) says either
that xxx is linearly independent from V , or—for some aaai in V—that xxx = ∑i<n t i ∗aaai
for some scalars t i. In the latter case, the type also specifies a variety over K of
which (t0, . . . ,tn−1) is a generic point. If (u0, . . . ,un−1) is another generic point of
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the same variety, there is an automorphism of the big model, over (V,K), taking
∑i<n t i∗aaai to ∑i<n ui∗aaai. Thus there are just countably many types of xxx over (V,K).
Similarly for types of a scalar variable t: If V = {000}, then these types correspond
to types over K, of which there are countably many. If V contains a non-zero
vector aaa, then for every type p(t) over (V,K), there is a type of xxx that includes
{∃t (xxx = t ∗aaa∧ϕ(t) : ϕ ∈ p}; but the union of any two such sets is inconsistent.

ut

Acknowledgements I read Euclid and Descartes as a student at St John’s College, Annapolis
and Santa Fe. At Logic Colloquium 2006 in Nijmegen, Ehud Hrushovski pointed out an error
in an earlier version of this work (and informed me of Kamensky’s work [9]). The anonymous
referee offered some helpful suggestions and corrections.

References

1. Ahlbrandt, G., Ziegler, M.: Quasi-finitely axiomatizable totally categorical theories. Ann.
Pure Appl. Logic 30(1), 63–82 (1986). Stability in model theory (Trento, 1984)
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