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This note is based on the paper called “Numbers”, edition of January , , available
at http://metu.edu.tr/~dpierce/Mathematics/Numbers/. Writing that paper was a
way to record certain things I had noticed. The writing itself caused me to notice more
things and put them in the paper. Now it is necessary to see where I have got with all
of this.

This note identifies the points of the paper, in order, that seem to me most interesting
or important. They are not all original; some of them appear only in footnotes of the
paper; some are developed more here than in the paper; other points could be dropped
from a later edition of the paper. Sections here correspond to those of the paper.

The main point is that some mathematicians and logicians, even Peano himself, have been
confused about the distinction between induction and recursion on natural numbers. In
trying to clarify these matters, I have observed that, for each algebraic signature S , we
can consider “new” kinds of sets, which violate the Extension Axiom in the usual form;
but with these sets, we can build up a class ωS that behaves as ω does in the ordinary
universe of sets.

In one sense, ωS is nothing new: it is isomorphic to the algebra of closed terms in
S . But ωS is a subclass of a class ONS , which corresponds to the usual class ON
of ordinals. (In some cases of S at least, a sort of “generalized ordinal arithmetic” is
possible in ONS , though this will have to be developed in a later edition of the paper.)

Because of the inconsistency of the full Comprehension Axiom, which we have known
about for over a century, classes must be made into sets with care. For some reason, this
care is not usually extended to the point of establishing ω as a class before declaring
that it (or some other model of the “Peano axioms”) is a set. However, this paper does
not generally require ω to be a set.

Epigraph

There is poetry in numbers and in their historical development.

Regarding the historical development of numbers, one might liken the various mistakes
and infelicities (confusing induction and recursion; the “Comprehension Axiom”; letting
succession in N be x 7→ {x} rather than x 7→ x ∪ {x}) to, say, Agamemnon’s conflict
with Achilles before the walls of Troy, or Romeo’s not getting Friar Laurence’s letter
about Juliet’s faked death. (The analogy is strained; but after writing the paper, I read
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Logicomix, which develops an analogy between foundational studies in mathematics and
the Oresteia of Aeschylus.)



But also “poetry” in Greek means literally making; here after studying the “natural”
numbers I make a new kind of generalization (not like the generalization from N to Z to
Q to R to . . . ).

This generalization arises from observing a correspondence:

. The initial natural number is like the empty set.
. A natural number has one successor, as there is one kind of non-empty set.
. A successor is a successor of one number, as a set has one kind of element.

If we replace the natural numbers with an arbitrary free algebra, we can obtain a corre-
sponding set theory, in which that free algebra can be constructed just as von Neumann
constructs the natural numbers in the usual set theory.



There are four properties of the natural numbers that are taught as being equivalent,
though they are not: induction, well-ordering, strong induction, recursion.

The confusion perhaps arises from a confusion between “naturalistic” and “axiomatic”
mathematics. [I don’t know if anything like this distinction can be found in the literature;
but it seems to be generally assumed that Euclid was trying to develop an axiomatic
system, though he failed, because he overlooked some assumptions. I don’t think this
claim is fair:]

Euclid is naturalistic, but still, beginning students of mathematics ought to read him as
a model of how to do and present mathematics.

Though I call Euclid’s geometry “naturalistic”, nature did not cause Euclid to work out
the Elements. Herodotus traces of the origins of geometry to land-surveying in Egypt,
but this is oversimplifying.

Hilbert uses algebra to prove consistency of his geometry, although one might take the
existence of the Euclidean plane (or space) as being more obvious or self-evident than
the existence of an ordered field that is closed under taking square roots.

With set theory we can construct natural numbers; but since, in our lives, counting
is more fundamental than forming sets [or is it?], this construction tends to justify set
theory more than set theory justifies counting.



Although it is an excellent textbook, Spivak’s Calculus makes the errors about the prop-
erties of the natural numbers that I mentioned above. Logicians should take note, since
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Spivak is generally careful about notational matters (such as distinguishing functions
from their values).



To fix terminology: recursion is a method of defining sets and functions; induction is
a method of proof.

We can see the natural numbers as being defined recursively, so that they admit proofs
by induction.

The definition is: 1 is a natural number, and if x is, then so is its “successor”. It is
redundant to say “nothing else is a natural number”, though some writers do this (just
as they redundantly use “iff” in definitions).

Strictly, the recursive definition of the set of natural numbers is “impredicative”, because
it defines N in terms of a totality that contains it (namely the totality of sets that
contain 1 and are closed under succession).

Similarly, Zermelo’s proof of the Schröder–Bernstein Theorem is impredicative.

But it is a good proof:

. It can be given in a “heuristic” fashion, though a better word, historically, than “heuris-
tic” would be “analytic” [or now “abductive”?].

. Unlike the more usual proof today, Zermelo’s does not require making a recursive
definion on N: such a definition requires knowing more about N than that this set
itself can be defined recursively.

But let us assume for now that we can make recursive definitions on N. Skolem uses this
possibility to define the properties of N and in particular its ordering. He prefers not to
define m < n in terms of the existence of some x such that m + x = n. The recursive
definition of ordering is used later in my paper.

Boole was inspired by the observation that, just as “P and P ” has the same truth-value—
“true” or “false”—as P , so x2 = x has the two solutions  and .

The “recursive” operations on N appearing in Gödel’s incompleteness paper are not re-
cursively defined, individually; but the set of recursive operations is defined recursively.



Henkin discusses the distinction between induction and recursion and observes that,
unlike addition and multiplication, exponentiation on N requires more than induction to
ensure its existence.

But Henkin starts his natural numbers with 0. If we start with 1, we find that exponen-
tiation on Z/(n) is well-defined just in case n is 1, 2, 6, 42, or 1806.

These numbers are the products of successive entries in the list 2, 3, 7, 43. Each entry
of this list is 1 plus the product of the previous entries. As Mazur points out, because
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we can continue this list indefinitely, we know, as Euclid does, the infinitude of the set
of prime numbers.

However, Euclid does not exactly say there are “infinitely many” prime numbers, as if
they compose a multitude that can be counted; rather, they cannot be counted. [So
Euclid does not use an Axiom of Infinity.]

Peano himself confused induction and recursion, as have other mathematicians and lo-
gicians since him; but Dedekind did not make this mistake. [Should one conclude that
being sensitive to logic does not necessarily lead to better mathematics?]

To prove that functions on N can be defined recursively, it is sufficient (as well as neces-
sary) to assume that succession is injective, but not surjective, and that N admits proofs
by induction. This is the “Recursion Theorem”. There are two ways to prove this: we
can obtain a recursively defined function on N as an intersection or a union—by “cutting
down” or “building up”, say. But cutting down requires assuming N is a set, which one
might prefer not to do.



Dedekind claimed to prove the existence of a “simply infinite system”, that is, N; but the
consistency of the axioms for N is as self-evident as the consistency of Euclid’s system
(which, however, Hilbert thought should be proved).

The soundness of Zermelo’s set-theory as a foundation for mathematics is more evident
if, in this theory, N can be obtained as a class without assuming that it is a set.

An “iterative structure” (that is, an algebra in the signature {1, S}) can be said admit
induction, even if the universe of the structure is a proper class. [This would be a scheme
of theorems in the formal theory.]

In setting up the formal theory, we use recursion to define formulas. But one aim of the
theory is to construct N and prove that it allows recursive definition of functions. This
is not a problem, since the theory does not strictly require there to be a set of formulas
on which functions are defined recursively.

If we try to obtain N as a union—by “building up” as above—, so that N will be the
closure of {∅} under x 7→ {x}, we run into problems unless we make use of the Foundation
Axiom, which was missing from Zermelo’s original system.

Without the Axiom of Infinity, the “class form” of Foundation (strictly, an axiom scheme)
is not implied by the set form (a single axiom). [I just don’t know whether this has been
pointed out somewhere in the literature.]

Nothing can prevent a simply infinite system from containing an infinite descending
sequence, as seen from outside. (This happens in non-standard analysis.)
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

The notion of recursion on an ordered set is often defined in rather complicated ways.
But it suffices to say g is defined recursively on (A, <) if there is a function F such that

g(x) = F ({g(y) : y < x}). (∗)

[I don’t know of a textbook that makes this observation, though I have not made an
exhaustive search.]

On totally ordered sets, recursion is equivalent to induction and to being well-ordered;
possibly this theorem has helped to perpetuate the confusion between induction and
recursion on iterative structures.

The von Neumann definition of the ordinals is natural, arising as it does from letting F
in (∗) by the identity. [This is my response to Poizat’s claim that it takes “a strangely
warped mind” to find the definition natural.]

From von Neumann’s definition, we obtain ω as a class. Then the Axiom of Infinity can
be expressed as, “ω is a set.”

Even Fraenkel et al. seem to miss this point however, although they explicitly aim, where
possible, to express the axioms for sets in such a form, as instances of the “Comprehension
Axiom”.

If an iterative structure is ordered so that x < S(x), then the structure admits induction
if and only if it is well-ordered and every element is 1 or a successor.

Even if one prefers to use Zermelo’s definition of N, one can use the notion of well-ordering
to build up this N as a class.

All of the Zermelo–Fraenkel axioms, with Choice, are consistent with axioms that, with
the exception of Extension, are instances of Comprehension.



The set ω is used to give the general definition of a structure. There is no need for the
universe of a structure to be a set.

The Recursion Theorem can be formulated and proved for an arbitrary algebra.

In an arbitrary signature, one example of a free algebra is an algebra of strings: a “term
algebra”. Proving that this is free is neglected in some logic texts.

Proving that a term algebra admits induction uses the well-ordering of ω, which is the
set of lengths of terms.

But we shall also obtain free algebras uniformly, without first obtaining ω, but rather
defining each of them just as ω is defined.
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

One can prove directly that an arbitrary simply infinite system N (starting with 1) is
well-ordered by the relation given by

x < y ⇐⇒ ∃z x + z = y.

But this takes work.

Again, as von Neumann may have done in defining the ordinals, we may note that the set-
theoretic universe is an iterative structure initial element ∅ and succession x 7→ x∪ {x}.
The homomorphism from N to this universe is an embedding with image ω.

Then the isomorphism between N and ω can be used to order the former.

Alternatively, we can define the ordering of N recursively (rather as Skolem did). We
use this definition as a paradigm for ordering an arbitrary free algebra, in an arbitrary
signature S . We get a characterization of free algebras of S among all algebras of S .

As with N, so with an arbitrary free algebra, we want to embed it in the set-theoretic
universe. To do this, we introduce a “type” of set for each symbol in S ; each of these
sets has a number of “grades” of elements, the grade corresponding to the “arity” of the
type. Then the free algebra does embed in the universe of these new sets, and the image,
ωS , is what corresponds to ω.



But we can obtain ω, not as the image of some N, but as a subclass of the class of all
ordinals, so we can obtain ωS as a subclass of a larger class corresponding to the original
class of ordinals.


