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0 Introduction

Linear algebra takes some of the concepts of high-school algebra and broadens
their application, in such a way that new concepts arise. For example, linear
algebra gives a way to define dimension and to exhibit spaces of all finite dimen-
sions and of infinite dimensions. It has applications to subjects beyond algebra,
such as the solution of differential equations.

These notes are intended as a terse summary of basic linear algebra and
its background; as such they are but a supplement to a human lecturer or a
textbook. They are fairly theoretical. Comments and corrections are welcome;
the writing and editing is ongoing.

High-school algebra is largely a study of real numbers under the operations
of addition and multiplication. Having studied high-school algebra, one should
be able to apply the following facts and conventions almost instinctively. Real
numbers themselves are generally symbolized by (plain-face, italic) letters, such
as a, b, c or x, y, z. To an ordered pair (x, y) of real numbers x and y, the
operation of addition assigns a sum, usually symbolized x + y. So, addition
is a binary or 2-ary operation. Multiplication assigns to (x, y) the product
symbolized by x · y or xy; thus multiplication is also a binary operation.

There are particular real numbers 0 and 1, and on real numbers there are
additional operations, derived from addition and multiplication. For every real
number x there is an additive inverse or negative, −x. The operation of additive
inversion is thus a unary or 1-ary operation. In particular, there is a real
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number −1, and −x is the product of −1 and x. There is a binary operation of
subtraction, assigning to (x, y) the difference x− y, which is the sum of −y and
x.

For every real number x different from 0, there is a multiplicative inverse
or reciprocal, x−1; its product with x is 1. There is a partial binary operation
of division, assigning to the pair (x, y) the quotient x/y, provided y 6= 0. This
quotient is the product of y−1 and x, and is written also

x
y

.

Note that x−1 = 1/x.
When operations are combined in an expression, one needs to know which

to apply first. A standard (although not unique) convention is to find results in
this order:

1. reciprocals,

2. negatives,

3. products,

4. quotients,

5. sums,

6. differences,

and otherwise to perform computations left to right. Bracketed quantities are
treated as single numbers. In particular then, x + yz means x + (yz). Also,
x/yz means x/(yz), but x/y + z means (x/y)+ z. However, when quotients are
indicated with a horizontal line, this line acts as brackets for what is above and
below. So,

x + y
z − w

means (x + y)/(z − w).
As a set with its operations +, · and − and its particular elements 0 and 1,

the real numbers can be denoted by R. The algebraic properties of R are the
properties of what is called a field. Two other fields are the set Q of rational
numbers and the set C of complex numbers.

Definition. A field is a set containing distinct elements 0 and 1, and equipped
with binary operations + and · and a unary operation −, such that for all ele-
ments x, y and z, the following axioms are satisfied (when interpreted according
to the notational conventions described above):

1. x + (y + z) = x + y + z;

2. x + 0 = x;

3. x + (−x) = 0;
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4. y + x = x + y;

5. x(y + z) = xy + xz;

6. (x + y)z = xz + yz;

7. x(yz) = xyz;

8. 1x = x;

9. if x 6= 0, then there exists w such that xw = 1;

10. yx = xy.

In Axiom 9, for each x different from 0, the element w is unique and can be
denoted by x−1. (Proof: if xw = 1 and xv = 1, then xvw = 1w, so (by Axioms
7 and 8) x(vw) = w, hence (by Axiom 10) x(wv) = w, hence xwv = w, hence
1v = w, so finally v = w.)

Subtraction and division can be defined on any field as they are on R.
Axiom 6 follows from Axioms 5 and 10. The following facts are straightfor-

ward consequences of the axioms. For all x, y and z in a field, we have

• if x + y = x + z, then y = z;

• 0x = 0;

• −x = (−1)x;

• if xy = 0, then x = 0 or y = 0.

Note that in any field, the elements 0 and 1 are combined according to the
following tables:

+ 0 1
0 0 1
1 1

and
· 0 1
0 0 0
1 0 1

.

Only the value of 1 + 1 is not determined by the properties of a field. There is
a field F2, whose only elements are 0 and 1 and in which 1 + 1 = 0.

In a field F, the operation +, for example, can also be described as a map
or function from F× F to F.

1 Basic properties of a vector space

Let F be a field. If you like, you can think throughout that F is the field R
of real numbers. In any case, we may refer to F as the scalar field, and to its
elements as scalars.

If n is a positive integer, we write Fn for the set of ordered n-tuples

(x1, . . . , xn)
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of elements xi of F. We may abbreviate such an n-tuple by x. Addition of such
n-tuples can be defined in an obvious way:

x + y = (x1 + y1, . . . , xn + yn).

Likewise, we can define −x to be (−x1, . . . ,−xn). We also write 0 for (0, . . . , 0).
With these definitions, Axioms 1, 2, 3 and 4 for fields hold.

It is possible to define a multiplication of n-tuples:

x · y = (x1y1, . . . , xnyn).

Equipped with these operations of addition and multiplication, and with the
tuples (0, . . . , 0) and (1, . . . , 1) replacing 0 and 1 respectively, Fn satisfies the
axioms of a field, except Axiom 9. Note also for example that in R2 we have
(1, 0) · (0, 1) = (0, 0), but neither (1, 0) nor (0, 1) is equal to (0, 0).

In linear algebra, we shall not be interested in the sort of multiplication just
defined. Note however that we can also multiply a tuple by a scalar to get
another tuple:

ax = (ax1, . . . , axn).

The operation so defined is called scalar multiplication (that is, multiplication
by a scalar).

In the order of operations on Fn, we shall treat scalar multiplication as we
do multiplication of scalars: so, ax + y means (ax) + y, and x + ay means
x + (ay). (A sum like x + a is not well-defined anyway.)

Equipped +, −, scalar multiplication and the element 0, the set Fn satisfies
the following.

Definition. A vector space or linear space over the field F is a set V con-
taining an element 0, equipped with a binary operation + and a unary operation
−, and equipped also, for each a in F, with a unary operation a· taking x to ax
(also written a · x), such that for each x, y and z in V , and for each a and b in
F, the following axioms hold:

1. x + (y + z) = x + y + z;

2. x + 0 = x;

3. x + (−x) = 0;

4. y + x = x + y;

5. a(x + y) = ax + ay;

6. (a + b)x = ax + bx;

7. a(bx) = abx;

8. 1x = x.
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Elements of a vector space are called vectors. Note the formal similarity of
the vector-space axioms to the first eight axioms for fields. Note however that
in vector spaces, the operation · combines things of different sorts (a scalar and
a vector). We may write x− y for x + (−y).

The following are consequences of the axioms, by the same proofs, formally,
as the corresponding facts about fields. For all vectors x, y and z and for any
scalar a, we have

• if x + y = x + z, then y = z;

• 0x = 0;

• −x = (−1)x;

• if ax = 0, then a = 0 or x = 0.

In particular, the operation − and the element 0 of a vector space can be derived
from the operation · and an arbitrary element of the space.

Note well that, strictly, a vector space is not a set, but a set with certain
operations. Formally, one can understand a vector space to be a certain sort of
sextuple (6-tuple), such as

(V,F, +, ·,−,0),

where the six terms are related as in the definition above. Again though, since
− and 0 can be derived from the rest of the terms, we can consider a vector
space to be a quadruple (4-tuple), such as

(V,F, +, ·).

For any such a quadruple to be a vector space, first, the following must hold:

• V must be a nonempty set;

• F must be a field;

• + must be a binary operation on V , that is, a map from V × V to V ;

• · must be a map F× V → V .

If these hold, then the quadruple is the sort of structure for which the axioms
in the definition make sense. If the axioms are true for the quadruple, then it
is a vector space.

If (V,F,+, ·) is a vector space, we customarily let the set V stand for the
whole space if there is no uncertainty about what the scalar field F is, or what
the operations of addition or scalar multiplication are. Strictly, V is the universe
or underlying set of the space.
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2 Subspaces

Let (V,F, +, ·) be a vector space. A subspace of V is a subset W of V such
that:

• 0 is in W ;

• x + y and ax are in W whenever x and y are in W and a is in F.

In other words, a subspace of a vector space is a subset that is closed under
the vector-space operations, including the operation distinguishing the zero-
element. But this zero-element is 0 · x for any x in the space. Therefore, a
subspace of a vector space is precisely a nonempty subset of the space that is
closed under addition and scalar multiplication.

We can now recognize two sorts of problems:

1. Is a given quadruple (V,F,+, ·) a vector space?

2. Is a given subset of a known vector space (V,F,+, ·) a subset of V ?

Note that a subspace is in fact a vector space itself, when equipped with the
operations from the larger space. So, to establish that a particular quadruple is
a vector space, it may be enough to show that it is a subspace of some known
vector space.
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