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Abstract. The existentially closed models of the theory of fields (of arbitrary characteristic)with an as-

signed finite number of commuting derivations can be given a first-order geometric characterization in several

ways. In each case, the existentially closed models are those models that contain points of certain differential

varieties, which are determined by certain ordinary varieties.

How can we tell whether a given system of partial differential equations has a solu-
tion? An answer given in this paper is that, if we differentiate the equations enough
times, and no contradiction arises, then it never will, and the system is soluble. Here,
the meaning of ‘enough times’ can be expresseduniformly; this is one way of showing
that the theory,m-DF, of fields with a finite numberm of commuting derivations has a
model-companion,m-DCF. In fact, this theorem is worked out here (as Corollary 4.6,
of Theorem 4.5), not in terms of polynomials, but in terms of the varieties that they
define, and the function-fields of these: in a word, the treatment isgeometric.

The model-companion ofm-DF0 (in characteristic 0) has been axiomatized before,
explicitly in terms of differential polynomials: see§ 3. The existence of a model-
companion ofm-DF (with no specified characteristic) appears to be a new result when
m> 1 (despite a remark by Saharon Shelah [23, p. 315]: ‘I am quitesure that for char-
acteristicp as well, [makingmgreater than 1] does not make any essential difference’).

The theory of model-companions and model-completions was worked out decades
ago; perhaps for that very reason, it may be worthwhile to review the theory here, as
I do in § 1. I try to give the original references, when I have been ableto consult
them. In§ 2, I review the various known characterizations of existentially closed fields
with single derivations. In fact, little of this work is of use in the passage to several
derivations; but this near-irrelevance is itself interesting. In § 3, I analyze the error
of my earlier attempt, in [12], to axiomatizem-DCF0 in terms of differential forms.
Something of value from this earlier work does remain: when we do havem-DCF0, or
more generallym-DCF, then we can obtain from it a model-companion of the theory of
fields withmderivations whose linear span over the field is closed under the Lie bracket.
In § 4, I obtainm-DCF itself.

sect:mt

§1. Model-theoretic background. LetM be an arbitrary (first-order) structure; its
theory is Th(M). Let T be an arbitrary consistent (first-order) theory; its modelscom-
pose the class Mod(T). Every classK of structures in some signature has a theory,
Th(K). ThenK ⊆ Mod(Th(K)); in case of equality,K is elementary. Always,
Th(Mod(T)) = T.
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The structureM has the universeM. The structure denoted byMM is the expansion
ofM that has a name for every element ofM. ThenM embeds inN if and only ifMM

embeds in an expansion ofN. However, although the class of structures in whichM em-
beds need not be elementary, the class of structures in whichMM embedsis elementary.
The theory of the latter class is thediagram ofM, or diag(M): it is axiomatized by the
quantifier-free sentences in Th(MM) [17, Thm 2.1.3, p. 24]. The class of structures in
whichMM embedselementarilyis also elementary, and its theory is just Th(MM). The
class of substructures of models ofT is elementary, and its theory is denoted byT∀: this
is axiomatized by the universal sentences ofT [17, Thm 3.3.2, p. 71].

By a system over M, I mean a finite conjunction of atomic and negated atomic for-
mulas in the signature ofMM; likewise, a systemover T is in the signature ofT. A
structureM solves a systemϕ(x) if M |= ∃x ϕ(x). Note well here thatx, in boldface,
is a tupleof variables, perhaps (x0, . . . , xn−1). By anextension of a model ofT, I mean
another model ofT of which the first is a substructure. Two systems over a modelM of
T areequivalent if they are soluble in the same extensions.

An existentially closed model ofT is a model ofT that solves every system over
itself that is soluble in some extension. So a modelM of T is existentially closed if and
only if T ∪ diag(M) ⊢ Th(MM)∀, that is, every extension ofM is a substructure of an
elementary extension ([5,§ 7] or [24,§ 2]).

A theory ismodel-complete if its every model is existentially closed. An equivalent
formulation explains the name:T is model-complete if and only ifT ∪ diag(M) is
complete wheneverM |= T [18, Ch. 2].

Suppose every model ofT has an existentially closed extension. Such is the case
whenT is inductive, that is, Mod(T) is closed under unions of chains [5, Thm 7.12]:
equivalently,T = T∀∃ [8, 3]. Suppose further that we have a uniform first-order wayto
tell when systems over models ofT are soluble in extensions: more precisely, suppose
there is a function

ϕ(x,y) 7−→ ϕ̂(x,y), (1)

whereϕ(x,y) ranges over the systems overT (with variables analyzed as shown), such
that, for every modelM of T and every tuplea of parameters fromM, the system
ϕ(x,a) is soluble in some extension ofM just in casêϕ(x,a) is soluble inM. Then
the existentially closed models ofT compose an elementary class, whose theoryT∗ is
axiomatized byT together with the sentences

∀y (∃x ϕ̂(x,y)⇒ ∃x ϕ(x,y)). (2)

Immediately,T∗ is model-complete, soT∗ ∪ diag(M) is complete whenM |= T∗. What
is more,T∗ ∪ diag(M) is complete wheneverM |= T [17, Thm 5.5.1].

In general,T∗ is a model-completion of T if T∗∀ ⊆ T ⊆ T∗ and T∗ ∪ diag(M)
is complete wheneverM |= T. Model-completions are unique [16, (2.8)]. We have
sketched the proof of part of the following (the rest is [16, (3.5)]):

lem:rob-crit Lemma 1.1 (Robinson’s Criterion).Let T be inductive. Then T has a model-comple-
tion if and only if a functionϕ(x,y) 7→ ϕ̂(x,y) exists as in(1). In this case, the
model-completion is axiomatizedmoduloT by the sentences in(2).

If T∀ = T∗∀ andT∗ is model-complete, thenT∗ is a model-companion of T ([1,
§ 5]; cf. [5, § 2]). Model-completions are model-companions, and model-companions
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are unique [1, Thm 5.3]. IfT has a model-companion, then its models are just the
existentially closed models ofT [5, Prop. 7.10]. Conversely, ifT is inductive, and the
class of existentially closed models ofT is elementary, then the theory of this class is
the model-companion ofT [5, Cor. 7.13].

sect:one

§2. Fields with one derivation. Let DF be the theory of fields with a derivationD,
and let DPF be the theory of models of DF that, for each primeℓ, satisfy also

∀x ∃y (1+ · · · + 1︸      ︷︷      ︸
ℓ

= 0 & Dx = 0⇒ y · · · y︸︷︷︸
ℓ

= x).

So models of DPF aredifferentially perfect. A subscript on the name of one of these
theories will indicate a required characteristic for the field. In particular, we have DPF0,
which is the same as DF0.

Abraham Seidenberg [22] shows the existence of the functionin Lemma 1.1 in case
T is DPFp, wherep is prime or 0. Consequently:

Theorem 2.1 (Robinson). DF0 has a model-completion, calledDCF0.

Theorem 2.2 (Wood [28]). If p is prime, thenDFp has a model-companion,DCFp,
which is the model-completion ofDPFp.

The existence of a model-companion or -completion of a theory does not necessarily
tell us much about the existentially closed models of the theory. Since it involvesall
systems over a given theory, Robinson’s criterion yields the crudest possible axioma-
tization for a model-completion. In the case of DCFp, there are two ways of refining
the axiomatization—refining in the sense of finding weaker conditions on models of
DFp that are still sufficient for being existentially closed. It suffices to consider either
systems in only one variable or systems involving only first derivatives. In the general-
ization to several derivations, the former refinement seemsto be of little use; the latter
refinement is of use indirectly, through its introduction ofgeometric ideas.

subsect:one-var

2.1. Single variables. Though the theory ACF of algebraically closed fields is the
model-completion of the theory of fields, its axioms (modulothe latter theory) can in-
volve only systems in one variable (indeed, single equations in one variable). A gener-
alization of this observation is the following, which can beextracted from the proof of
[20, Thm 17.2, pp. 89–91] (see also [2]):

lem:blum Lemma 2.3 (Blum’s Criterion).Say T∗∀ ⊆ T ⊆ T∗.

(i) The theory T∗ is the model-completion of T if and only if the commutative diagram

M

A

OO

// B

``

of structures and embeddings can be completed as indicated whenA andB are
models of T andM is a |B|+-saturated model of T∗.

item:blum2 (ii) If T = T∀, it is enough to assume thatB is generated overA by a single element.

This allows a refinement of Lemma 1.1 in a special case:

Lemma 2.4. Suppose T= T∀. Then Lemma 1.1 still holds whenϕ(x,y) is replaced
with ϕ(x,y) (where x is a single variable).
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From Lemma 2.3, Lenore Blum obtains Theorem 2.5 below in characteristic 0, in
which case the first two numbered conditions amount toK |= ACF ([20, pp. 298ff.]
or [2]). If p > 0, then DPFp is not universal, so part (ii) of Blum’s criterion does
not apply; Carol Wood instead uses a primitive-element theoremof Seidenberg [21] to
obtain new axioms for DCFp [29]. These can be combined with Blum’s axioms for
DCF0 to yield the following. (Here SCF is the theory of separably closed fields.)

thm:dcf-1 Theorem 2.5 (Blum, Wood).A model(K,D) of DF is existentially closed if and only
if

(i) K |= SCF;
(ii) (K,D) |= DPF;
(iii) ( K,D) |= ∃x ( f (x,Dx, . . . ,Dn+1x) = 0 & g(x,Dx, . . . ,Dnx) , 0) whenever f

and g are ordinary polynomials over K in tuples(x0, . . . , xn+1) and(x0, . . . , xn) of
variables respectively such that g, 0 and∂ f /∂xn+1

, 0.

HenceDF has a model-companion,DCF.

There is a similar characterization of the existentially closedordered differential
fields [25].sect:first-der

2.2. First derivatives. Alternative simplified axioms for DCF are parallel to those
found for the model-companion ACFA of the theory of fields with an automorphism
[9, 4]. Suppose (K,D) |= DPF andK |= SCF. Given a system over (K,D), we can
ensure thatD is applied only to variables or derivatives of variables; then we can replace
each derivative with a new variable, obtaining a system

∧

f

f = 0 & g , 0 & Dx = y, (3)

wheref ,g ∈ K[x,y]. We can write also
∧

f f (x,Dx) = 0 & g(x,Dx) , 0. Suppose (3)
has the solution (a, b). ThenK(a, b)/K is separable [13, Lem. 1.5, p. 1328]. LetV and
W be the varieties overK with generic pointsa and (a, b) respectively, letTD(V) be
the twisted tangent bundle ofV, and letU be the open subset ofW defined by the
inequationg , 0. In characteristic 0, the model (K,D) of DF is existentially closed if
and only if, in every such geometric situation,U contains aK-rational point (c,Dc);
this yields the so-called geometric axioms for DCF0 found with Anand Pillay [14]. In
positive characteristic, it is still true that, if (a, b) is a generic point ofV, thenD extends
to K(a) so thatDa = b. However, an additional condition is needed to ensure thatD
extends to all ofK(a, b); it is enough to require that the projection ofTD(W) ontoTD(V)
contain a generic point ofW; this yields Piotr Kowalski’s geometric axioms for DCFp

[7].
By the usual trick of replacingg , 0 with z · g = 1, we may assume that there is no

inequation in (3). In an alternative geometric approach to DCF, we can then consider (3)
as a special case of

∧

f

f = 0 &
∧

i<k

Dxi = gi , (4)

where f ∈ K[x0, . . . , xn−1] andgi ∈ K(x0, . . . , xn−1). Suppose this has solutiona, which
is a generic point of a varietyV. It is enough to assume that (a0, . . . ,ak−1) is a separating
transcendence-basis ofK(a)/K. Then we have a dominant, separable rational mapx 7→

(x0, . . . , xk−1) or ϕ from V ontoAk, and another rational mapx 7→ (g0(x), . . . ,gk−1(x))
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or ψ from V to Ak. So (K,D) is existentially closed if and only ifV always has a
K-rational pointP such thatD(ϕ(P)) = ψ(P) [13, Thm 1.6, p. 1328].

sect:several

§3. Fields with several derivations. Let m-DF be the theory of fields withm com-
muting derivations. Tracey McGrail [11] axiomatizes the model-completion,m-DCF0,
of m-DF0. Alternative axiomatizations arise as special cases in work of Yoav Yaffe [30]
and Marcus Tressl [27]. There is a common theme: A differential ideal has a generating
set of a special form; in the terminology of Joseph Ritt [15,§ I.5, p. 5] (whenm= 1) and
Ellis Kolchin [6, § I.10, pp. 81ff.], this is acharacteristic set.There is a first-order way
to tell, uniformly in the parameters, whether a given set of differential polynomials is a
characteristic set of some differential ideal, and then to tell, if itis a characteristic set,
whether it has a root. In short, the functionϕ 7→ ϕ̂ in Robinson’s criterion (Lemma 1.1)
is defined for sufficiently many systemsϕ. (Applying Blum’s criterion, McGrail and
Yaffe consider only systems in one variable, so they must includeinequations in these
systems; Tressl uses only equations, in arbitrarily many variables.)

I do not give the definition of a characteristic set, as not allingredients of the defini-
tion are needed for the arguments presented in§ 4. However, some of the ingredients
areneeded; these are in 4.1.subsect:fga

3.1. Spaces of derivations. In [12] I attempted to apply the geometric approach
described in 2.2 tom-DF0. I worked more generally with DFm0 , where DFm is the theory
of structures (K,D0, . . . ,Dm−1) such that (K,Di) |= DF for eachi, and each bracket
[D j ,Dk] is a K-linear combination of theDi . (This is roughly what Yaffe did too.)
In [13, § 2] I made some minor corrections and otherwise adapted the argument to
arbitrary characteristic. Nonetheless, in May, 2006, EhudHrushovski showed me a
counterexample to [12, Thm A, p. 926], a theorem that was an introductory formulation
of [12, Thm 5.7, p. 942]. Then I found an error at the end of the proof of the latter
theorem. That theorem is simply wrong; the present paper does not so much correct the
theorem as replace it.

The developments leading up to the wrong theorem are still ofsome use. The general
situation is as follows. Let (K,D0, . . . ,Dm−1) |= DFm, and letE be theK-linear span of
theDi . ThenE is a Lie-ring, as well as a vector-space overK. As a vector-space,E has
a dual,E∗; and there is a derivation d fromK into E∗ given byD(d x) = Dx. ThenE∗

has a basis (dti : i < ℓ) for someti in K and someℓ no greater thanm [12, Lem. 4.4,
p. 932], and this basis is dual to a basis (∂i : i < ℓ) of E, where [∂i , ∂ j ] = 0 in each case,
and d can be given by

d x =
∑

i<ℓ

d ti · ∂i x (5)

[12, Lem. 4.7, p. 934]. We can use these ideas to prove the following.

thm:if-mDF Theorem 3.1. If m-DF has a model-companion, then so doesDFm.

Proof. In characteristic 0, the result is implicit in [12, Thm 5.3 and proof], explicit
in [26, § 3]; but the proof works generally. The main point is to find, for any model
(K,D0, . . . ,Dm−1) of DFm, an extension in which the named derivations are linearly
independent over the larger field. As above, the space spanned overK by theDi has a
basis (∂i : i < ℓ) of commuting derivations ofK. If ℓ < m, then letL = K(αℓ, . . . , αm−1),
where (αℓ, . . . , αm−1) is algebraically independent overK. Extend the∂i to L so that they
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are 0 at theα j ; then, ifℓ 6 k < m, define∂k to be 0 onK and to beδ j
k atα j . Then (∂i : i <

m) is a linearly independentm-tuple of commuting derivations onL; from this, we
obtain linearly independent extensionsD̃i of theDi to L such that the brackets [D̃ j , D̃k]
are the same linear combinations of theD̃i that the [D j ,Dk] are of theDi (by [12,
Lem. 5.2, p. 937]—or [26, Lem. 2.1, p. 1930], by a different method—in characteristic
0; generally, [13, Lem. 2.4, p. 1334]). Then (K,Di , . . . ,Dm−1) ⊆ (L, D̃0, . . . , D̃m−1),
and the latter is a model of DFm. Moreover, (L, D̃0, . . . , D̃m−1) is an existentially closed
model if and only if (L, ∂0, . . . , ∂m−1) is an existentially closed model of DFm; so a
model-companion of DFm can be derived from a model-companion ofm-DF. ⊣

That much stands, and differential forms are convenient for establishing it. The the-
orem, combined with the results of§ 4, will yield a model-companion, DCFm, of DFm.

3.2. False steps with differential forms. In [12] I tried also to obtain DCFm0 inde-
pendently as follows. Suppose now we have a separably closedfield K, along with
a Lie-ring and finite-dimensional spaceE of derivations ofK; as a space,E has a
basis (∂i : i < m), whose dual is (dti : i < m), so that the∂i commute. We may as-
sume that (K, ∂0, . . . , ∂m−1) is differentiably perfect [13, Lem. 2.4]. Every system over
(K, ∂0, . . . , ∂m−1) is equivalent to a system of the form of (4), generalized to

∧

f

f = 0 &
∧

j<k

∧

i<m

∂i x
j = g j

i . (6)

By means of (5), we can also write this as
∧

f

f = 0 &
∧

j<k

d x j =
∑

i<m

d ti · g j
i . (7)

If a is a solution (from some extension), it is enough to assume that (a0, . . . ,aℓ) is a sep-
arating transcendence-basis ofK(a)/K for someℓ such thatk 6 ℓ < n. That we cannot
generally assumek = ℓ is an important difference from the case of one derivation; it is
what causes the difficulties in the case of several derivations. The solutiona to (7) can
be understood as follows. First we have the fieldK(a), and then (7) can be be written
as ∧

j<k

da j =
∑

i<m

d ti · g j
i (a). (8)

A solution of this can be understood as a model (L, ∂̃0, . . . , ∂̃m−1) of m-DF extending
(K, ∂0, . . . , ∂m−1) such thatK(a) ⊆ L and (8) holds when da j =

∑
i<m d ti · ∂̃ia j , that is,

∧

j<k

∧

i<m

∂̃ia
j = g j

i (a). (9)

Since the∂̃i commute, it is necessary that
∧

j<k

∧

h<i<m

∂̃h(g j
i (a)) = ∂̃i(g

j
h(a)) (10)

[12, § 1, p. 926]. Any derivative with respect tõ∂i of an element ofK(a) is a constant
plus a linear combination of the derivatives∂̃ia j , where j < ℓ (by [13, Fact 1.1 (0, 2)],
for example); we know what these derivatives∂̃ia j are whenj < k, by (9); so (10)
becomes a linear system overK(a) in the unknowns̃∂ia j wherek 6 j < ℓ.

If k = ℓ, then this linear system has no variables, so it is true or false; its truth is a
sufficient condition for (8) to have a solution. Ifk < ℓ, then the linear system is soluble
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or not. If it is soluble, then it is possible to extend the∂i to derivations∂̃i as required
by (9) that commute onK(a0, . . . ,ak−1); but these derivations need not commute on all
of K(a). In [12] I claimed that they could commute, and that the solubility of (10) was
sufficient for solubility of (8) in the sense above. I was wrong.

If we take a solution to the linear system, we now have an extension ofK(a), and we
have to check extensibility of the commuting derivations tothis. That is, we are back
in the same kind situation we started with. However, it turnsout that there is a bound
on the number of times that we need to repeat this process in order to ensure solubility
of the original differential system. This is what is shown in§ 4; differential forms are
apparently not useful for this after all.

3.3. A counterexample. Over a model of DF2, let (a,b, c) be an algebraically inde-
pendent triple. The counterexample supplied by Hrushovskiis the system

da = d t0 · c2 + d t1 · c, db = d t0 · 2a+ d t1 · c (11)

(wherec2 is the square ofc; the constants (k, ℓ) of § 3.1 are now (2,3)). Equivalently,
by (5), the system comprises the equations

∂0a = c2, ∂1a = c, ∂0b = 2a, ∂1b = c.

From these, we compute

∂1∂0a = 2c · ∂1c, ∂0∂1a = ∂0c, ∂1∂0b = 2 · ∂1a = 2c, ∂0∂1b = ∂0c.

Equating∂0∂1 and∂1∂0 yields the linear system

∂0c− 2c · ∂1c = 0, ∂0c = 2c, (12)

which has the solution (∂0c, ∂1c) = (2c,1). But then we must have∂1∂0c = 2 · ∂1c = 2,
while ∂0∂1c = ∂01 = 0, which means (11) has no solution, contrary to my claim in [12].

For the record, the mistake is at the end of the proof of [12, Thm 5.7, p. 942] and can
be seen as follows. Write the system (11) as da = α, db = β; then

dα = dc∧ (d t0 · 2c+ d t1),
dβ = da∧ d t0 · 2+ dc∧ d t1

= (dc− d t0 · 2c) ∧ d t1.
(13)

Since also dβ = d2 b = 0, we now have a condition on dc ∧ d t1, hence on∂0c; in
particular,∂0c = 2c, which is what we found above. But there is no apparent condition
on∂1c, so I try introducing a new transcendental,d, for this derivative. By (12) then,

dc = d t0 · 2c+ d t1 · d,

which by (13) yields dα = d t0 ∧ d t1 · 2c(1− d). But we must have dα = 0, sod = 1,
contrary to assumption. In short, the next to last sentence of the proof of [12, Thm 5.7]
(beginning ‘This ideal is linearly disjoint from’) is simply wrong. (I had not attempted
to argue that it was correct.)

sect:resolution

§4. Resolution. For a correct understanding of the existentially closed differential
fields, it is better not to introduce differential forms from the beginning, but to allow
equations to involve any number of applications of the derivations. In contrast to 2.1,
there does not seem to be an advantage now in restricting attention to equations in one
variable.
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subsect:terms

4.1. Terminology. I shall now avoid working with differential polynomials as such,
but shall work instead with the algebraic dependencies thatthey determine.

Let (K, ∂0, . . . , ∂m−1) |= m-DF. Higher-order derivatives with respect to the∂i can
be indexed by elements ofωm: so, for∂0

σ(0) · · · ∂m−1
σ(m−1)x, we may write∂σx. Let 6

be the product ordering ofωm. Then the derivative∂σx is below ∂τx (and the latter is
above the former) ifσ 6 τ. (In particular, a derivative is both below and above itself.)
If n ∈ ω, then two elements ofωn × n will be related by6 only if they agree in the last
coordinate, so that

(σ, k) 6 (τ, ℓ) ⇐⇒ σ 6 τ & k = ℓ;

we may use the corresponding terminology of ‘above’ and ‘below’, so that∂σxk is
below∂τxℓ if (and only if) (σ, k) 6 (τ, ℓ).

If σ ∈ ωm, let the sum
∑

i<mσ(i) be denoted by|σ|: this is theheight of σ or of ∂σx.
(Kolchin [6, § I.1, p. 59] uses the wordorder.) If n is a positive integer, letωm × n be
(totally) ordered byP, which is taken from the left lexicographic ordering ofωm+1 by
means of the embedding

(ξ, k) 7−→ (|ξ|, k, ξ(0), . . . , ξ(m− 2))

of ωm × n in ωm+1. Then (ωm × n,P) is isomorphic to (ω,6). We may write (σ, k) ⊳ ∞
for all (σ, k) in ωm × n. Suppose (xh : h < n) is a tuple of indeterminates. By ordering
the formal derivatives∂σxk in terms of (σ, k) andP, we have Kolchin’s example of an
orderly rankingof derivatives [6,§ I.8, p. 75]. If (σ, k) ⊳ (τ, ℓ), I shall say that the
derivative∂σxk is less than∂τxℓ or is apredecessor of ∂τxℓ, and∂τxℓ is greater than
∂σxk; likewise for the expressionsaσk andaτ

ℓ
, introduced in (15) below. (So, the terms

just defined refer to the strict total ordering⊳, while ‘below’ and ‘above’ refer to the
partial ordering6.)

Addition and subtraction onω induce corresponding operations onωm. Then

τ 6 σ + τ,

∂σ∂τxk = ∂
σ+τxk,

(σ, k) P (σ + τ, k), (14)

(σ, k) P (τ, ℓ) ⇐⇒ (σ + ρ, k) P (τ + ρ, ℓ).

If i < m, let i denote the characteristic function of{i} in ωm, so that∂i = ∂i , and more
generally∂i∂

σ = ∂σ+i, and∂i∂
σ−i = ∂σ.

Let L be an extension ofK with generators that are indexed by an initial segment of
(ωm × n,P); that is,

L = K(aξh : (ξ,h) ⊳ (τ, ℓ)), (15)

where (τ, ℓ) ∈ ωm×n, or possibly (τ, ℓ) = ∞, in which caseL = K(aξh : (ξ,h) ∈ ωm×n). It

could happen that, in the generating tuple (aξh : (ξ,h) ⊳ (τ, ℓ)) of L/K, the same element

of L may appear twice, with different indices. In this, case, when writingaξh, we may
mean not just a particular element ofL, but that element together with the pair (ξ,h) of
indices. For example, by (14), if (σ + i, k) ⊳ (τ, ℓ), then (σ, k) ⊳ (τ, ℓ); hence we may
say that, ifaσ+ik is one of the generators ofL/K, then so isaσk . Let us say thatL, with the
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tuple of generators given in (15), meets thedifferential condition if there is no obstacle
to extending each derivation∂i to a derivationDi on K(aξh : (ξ + i,h) ⊳ (τ, ℓ)) such that

Dia
σ
k = aσ+ik (16)

whenever (σ + i, k) ⊳ (τ, ℓ). (If the right-hand member of (16) is not defined, then the
left need not be defined.) To be precise, iff is a rational function overK in variables
(xξh : (ξ,h) P (σ, k)) for some (σ, k) in ωm × n, andD is a derivation ofK, then f has a

derivativeD f , which is the linear function overK(xξh : (ξ,h) P (σ, k)) given by

D f =
∑

(ξ,h)P(σ,k)

∂ f

∂xξh
· yξh + f D.

Then the differential condition is that for all suchf , if (σ+ i, k) ⊳ (τ, ℓ) for somei in m,
and if

f (aξh : (ξ,h) P (σ, k)) = 0, (17)

then∂i f (aξh,a
ξ+i

h : (ξ,h) P (σ, k)) = 0, that is,
∑

(η,g)P(σ,k)

∂ f

∂xηg
(aξh : (ξ,h) P (σ, k)) · aη+ig + f ∂i (aξh : (ξ,h) P (σ, k)) = 0. (18)

(Note well the assumption that (σ + i, k) ⊳ (τ, ℓ). In (18), each of theaη+ig must exist,
even though the coefficient (∂ f /∂xηg)(aξh : (ξ,h) P (σ, k)) might be 0.) So the differential
condition isnecessaryfor the extensibility of the∂i as desired (see for example [13,
Fact 1.1 (0)]); sufficiency is part of Lemma 4.1 below.

An extension (M,D0, . . . ,Dm−1) of (K, ∂0, . . . , ∂m−1) is compatible with the extension
L of K given in (15) ifL ⊆ M, and (16) holds whenever (σ + i, k) ⊳ (τ, ℓ).

Borrowing some terminology used for differential polynomials [15,§ IX.1, p. 163],
let us say that a generatoraσk of L/K is a leader if it is algebraically dependent overK
on its predecessors, that is,

aσk ∈ K(aξh : (ξ,h) ⊳ (σ, k))alg.

Thenaσk is a separable leader if it is separably algebraic overK(aξh : (ξ,h) ⊳ (σ, k));
otherwise, it is aninseparable leader. A separable leaderaσk is minimal if there is no
separable leader strictly below it—no separable leaderaρk such thatρ < σ.

lem:above Lemma 4.1. Suppose(K, ∂0, . . . , ∂m−1) |= m-DF, and L is an extension K(aξh : (ξ,h) ⊳
(τ, ℓ)) of K meeting the differential condition. Then the derivations∂i extend to deriva-
tions Di from K(aξh : (ξ+i,h) ⊳ (τ, ℓ)) into L such that(16)holds when(σ+i, k) ⊳ (τ, ℓ).
If aσk is a separable leader, and(σ + i, k) ⊳ (τ, ℓ), then

aσ+ik ∈ K(aξh : (ξ,h) ⊳ (σ + i, k)) (19)

(that is, aσ+ik is a rational function over K of its predecessors); in particular, aσ+ik is
a separable leader. Therefore generators of L/K that are above separable leaders are
themselves separable leaders.

Proof. The claim follows from the basic properties of derivations, such as are gath-
ered in [13,§ 1]. Let B comprise the generators ofL/K that are not leaders. ThenB
is algebraically independent overK, so we are free to extend the∂i to Di on K(B) so
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that (16) holds whenever it applies. Then these extensions are uniquely determined, and
there are further unique extensions of theDi to the separable closureK(B)sep. In partic-
ular, supposeaσk is a separable leader, and (σ + i, k) ⊳ (τ, ℓ). ThenDiaσk is obtained by
differentiating the minimal polynomial ofaσk over K(B). That is,Diaσk is obtained by
differentiating an equation like (17); by the differential condition,Diaσk must beaσ+ik as
given by (18); this shows thataσ+ik is a rational function overK of its predecessors.

Finally, in a positive characteristicp, there may be an inseparable leaderaσk . Then

(aσk )pr
∈ K(aξh : (ξ,h) ⊳ (σ, k))sep for some positiver. If (σ + i, k) ⊳ (τ, ℓ), then we are

free to defineDiaσk asaσ+ik , providedDi((aσk )pr
) = 0. But again this condition is ensured

by the differential condition. Indeed, we may suppose (17) shows the separable depen-
dence of (aσk )pr

over the predecessors ofaσk . That is, we can understandf (aξh : (ξ,h) P

(σ, k)) asg((aσk )pr
) for some separable polynomialg over K(aξh : (ξ,h) ⊳ (σ, k)). Then

Di((aσk )pr
) is obtained from (18), provided we replace the term (∂ f /∂xσk )(aξh : (ξ,h) P

(σ, k)) · aσ+ik with g′((aσk )pr
) · Di((aσk )pr

). But in the present case, the former term
is 0. Since, after the replacement, the resulting equation still holds, we must have
Di((aσk )pr

) = 0. ⊣

4.2. A solubility condition. If (K, ∂0, . . . , ∂m−1) |= m-DF, then this model has an
extension whose underlying field is the separable closure ofK (as by [12, Lem. 3.4,
p. 930] and [13, Lem. 2.4, p. 1334]). We shall need this in a more general form:

lem:comm Lemma 4.2. Suppose a field M has two subfields L0 and L1, which in turn have a
common subfield K. For each i in2, suppose there is a derivation Di mapping K into Li
and L1−i into M. Then the bracket[D0,D1] is a well-defined derivation on K. Suppose
it is the0-derivation. Suppose also that a is an element of M that is separably algebraic
over K. Then each Di extends uniquely to K(a), and Dia ∈ L1−i(a), so D1−iDia is also
well-defined. Moreover,[D0,D1]a = 0.

Proof. The claim follows from standard facts, at least ifL0 = K = L1; but the proof
is the same in the general case. Indeed, though the derivationsD0 andD1 are defined on
K, their bracket [D0,D1] need not be so, since the compositionsD0D1 andD1D0 need
not be so; but if they are, then [D0,D1] is aderivationon K. A derivation onK extends
uniquely toKsep; if the derivation is 0 onK, then it is 0 onKsep [13, Fact 1.1 (2)]. In the
present case, asa ∈ Ksep, soDia ∈ L1−i(a), and thereforeDia ∈ L1−i

sep; henceD1−iDia
is defined. Thus [D0,D1] is defined onK(a), wherea ∈ Ksep; and if the bracket is 0 on
K, then is 0 ata. ⊣

In positive characteristic, the possibility of inseparably algebraic extensions presents
a challenge, which however is handled by the following.

thm:first Theorem 4.3. Suppose(K, ∂0, . . . , ∂m−1) |= m-DF, and K has an extension K(aξh : |ξ| 6
2r & h < n) meeting the differential condition for some positive integers r and n.
Suppose further that, whenever aσ

k is a minimal separable leader, then|σ| 6 r. Then

(K, ∂0, . . . , ∂m−1) has an extension(M,D0, . . . ,Dm−1) compatible with K(aξh : |ξ| < 2r &
h < n).

Proof. The claim can be compared to and perhaps derived from a differential-alge-
braic lemma of Rosenfeld [19,§ I.2], at least in characteristic 0. Here I give an in-
dependent argument, for arbitrary characteristic. We shall obtain M recursively as
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K(aξh : (ξ,h) ∈ ωm× n), at the same time proving inductively that the∂i can be extended
to Di so that (16) holds in all cases.

Let L = K(aξh : |ξ| < 2r & h < n); this is K(aξh : (ξ,h) P ((2r − 1,0, . . . ,0),n − 1)).

Then by (18), the differential condition requires of the tuple (aξh : |ξ| = 2r & h < n)
only that it solve some linear equations overL. The hypothesis of our claim is that
thereis a solution, namely (aξh : |ξ| = 2r & h < n). We may therefore assume that this
tuple is agenericsolution of these equations. In particular, no entry of thistuple is
an inseparable leader. (If, instead of being chosen generically, the entries of (aξh : |ξ| =
2r & h < n) were chosen from the fieldL, then this field would be closed under
the desired extensionsDi of ∂i , and the derivationsDi would commute on the subfield
K(aξh : |ξ| + 1 < 2r & h < n); but they might not commute on all ofL.)

Now, as an inductive hypothesis, suppose we have the extensionK(aξh : (ξ,h) ⊳ (τ, ℓ))
of K meeting the differential condition, so that there are derivationsDi as given by
Lemma 4.1; suppose also that

(i) if aσk is a minimal separable leader, then|σ| 6 r;
(ii) if aσk is an inseparable leader, then|σ| < 2r.

We need to chooseaτ
ℓ

in such a way that these conditions still hold forK(aξh : (ξ,h) P

(τ, ℓ)). The inductive hypothesis is correct when|τ| 6 2r, and then the desired conclu-
sion follows; so we may assume|τ| > 2r. Hence, ifτ(i) > 0, so thatτ − i is defined,
then|τ − i| > 2r, soaτ−i

ℓ
is not an inseparable leader.

If aτ−i
ℓ

is not a leader at all, for anyi in m, then we may letaτ
ℓ

be a new transcendental,
and we may define each derivativeDiaτ−iℓ

as this [13, Fact 1.1 (1)].
In the other case,aτ−i

ℓ
is a separable leader for somei. ThenDiaτ−iℓ

is determined

(Lemma 4.1). We want to letaτ
ℓ

be this derivative. However, possibly alsoaτ−j
ℓ

is a
separable leader, wherei , j. In this case, we must check that

D ja
τ−j

ℓ
= Dia

τ−i
ℓ , (20)

that is, [Di ,D j ]a
τ−i−j

ℓ
= 0.

There are minimal separable leadersaπ
ℓ

andaρ
ℓ

belowaτ−i
ℓ

andaτ−j
ℓ

respectively. Let
ν be π ∨ ρ, the least upper bound of{π, ρ} with respect to6. Thenν 6 τ. But |ν| 6
|π| + |ρ| 6 2r < |τ|; soν < τ. Henceν 6 τ − k for somek in m, which meansaν

ℓ
is below

aτ−k
ℓ

. Consequently,

(i) aπ
ℓ

is below bothaτ−i
ℓ

andaτ−k
ℓ

;

(ii) aρ
ℓ

is below bothaτ−j
ℓ

andaτ−k
ℓ

.

If k = j, thenaπ
ℓ

is belowaτ−i−j
ℓ

, so this is a separable leader. AsDi andD j commute

on K(aξh : (ξ,h) ⊳ (τ − i − j, ℓ)) by the differential condition, they must commute also

at aτ−i−j
ℓ

(Lemma 4.2), so (20) is established. The argument is the sameif k = i. If

k is different fromi and j, then again the same argument yieldsD ja
τ−j

ℓ
= Dkaτ−kℓ

and
Dkaτ−kℓ

= Diaτ−iℓ
, so (20) holds.

In no case did we introduce a new minimal separable leader or an inseparable leader.
This completes the induction and the proof. ⊣

In terms of differential polynomials and ideals, the theorem can be understood as
follows. Given the hypothesis of the theorem, letS be the set of differential polynomials
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f (∂ξxh : |ξ| < 2r & h < n), where f ranges over the ordinary polynomials overK such
that f (aξh : |ξ| < 2r & h < n) = 0. ThenS includes a characteristic set for the differential
ideal that it generates.

We can now characterize the existentially closed models ofm-DF by means of the
following lemma. The lemma follows from unproved statements in [6, § 0.17, p. 49];
let’s just prove it here.

lem:fin Lemma 4.4. For every m inω and positive integer n, every antichain of(ωm× n,6) is
finite.

Proof. The general case follows from the case whenn = 1, since ifS is an antichain
of (ωm × n,6), then

S =
⋃

j<n

{(ξ,h) ∈ S : h = j},

and each component of the union is in bijection with an antichain of (ωm,6). As an
inductive hypothesis, suppose every antichain of (ω

ℓ,6) is finite; but suppose also, if
possible, that there is an infinite antichainS of (ωℓ+1,6). ThenS contains someσ. By
inductive hypothesis, the subset⋃

j6ℓ

⋃

i6σ( j)

{ξ ∈ S : ξ( j) = i}

of S is a finite union of finite sets, so its complement inS has infinitely many elements
τ; but thenσ < τ, soS was not an antichain. ⊣

thm:dcf Theorem 4.5. Suppose(K, ∂0, . . . , ∂m−1) |= m-DF. Then the following are equivalent:

item:ec (i) The model(K, ∂0, . . . , ∂m−1) of m-DF is existentially closed.
item:< (ii) For all positive integers r and n, if K has an extension K(aξh : |ξ| 6 2r & h < n)

meeting the differential condition such that|σ| 6 r whenever aσk is a minimal

separable leader, then the tuple(aξh : |ξ| < 2r & h < n) has a specialization
(∂ξbh : |ξ| < 2r & h < n) for some tuple(bh : h < n) of elements of K.

Proof. Assume (i) and the hypothesis of (ii). LetS be a (finite) generating set of the
ideal of (aξh : |ξ| < 2r & h < n) overK. By Theorem 4.3, the system

∧

f∈S

f (∂ξxh : |ξ| < 2r & h < n) = 0

has a solution in some extension, hence it has a solution inK itself, which means the
conclusion of (ii) holds. So (ii) is necessary for (i).

Every system over (K, ∂0, . . . , ∂m−1) is equivalent to a system of equations. Suppose
such a system has a solution (ah : h < n) in some extension (L,D0, . . . ,Dm−1). Then the
extensionK(∂ξah : (ξ,h) ∈ (ωm × n)) has afinite set of minimal separable leaders, by
Lemma 4.4, since this set is indexed by an antichain of (ω

m×n,6). Hence there isr large
enough that all of these minimal separable leaders are also generators ofK(Dξah : |ξ| 6
r & h < n). We may assume also thatr is large enough that|σ| 6 r for every derivative
∂σxk that appears in the original system. The hypothesis of (ii) is now satisfied when
eachaσk is taken asDσak. If the conclusion of (ii) follows, then (bh : h < n) is a solution
of the original system. Thus, (ii) is sufficient for (i). ⊣

cor:dcf Corollary 4.6. The theory m-DF has a model-companion, m-DCF.
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Proof. Let (K, ∂0, . . . , ∂m−1) be a model ofm-DF, andL an extensionK(aξh : |ξ| 6
2r & h < n) of K meeting the differential condition, and|σ| 6 r wheneveraσk is
a minimal separable leader. As noted in the proof of Theorem 4.3, we may assume
that there are no inseparable leadersaξh such that|ξ| = 2r. For the moment, write

(aξh : |ξ| 6 2r & h < n) simply asa. The ideal ofK[x] comprising the polynomials that
are 0 ata is generated by a set{ f (p,x) : f ∈ S}, whereS is a finite subset ofZ[y,x],
andp is a (finite) list of parameters fromK. In order to develop an axiomatization of
m-DCF, suppose there is a formulaϕ(y) such that, for all differentially perfect models
(K′, ∂0, . . . , ∂m−1) of m-DF and all listsq of parameters fromK′, the sentenceϕ(q) holds
in that model if and only if

(i) the set{ f (q,x) : f ∈ S} generates a prime ideal ofK′[x], and
(ii) for a generic zerob of the set, the extensionK′(b), that is,K′(bξh : |ξ| 6 2r & h <

n), of K′ meets the differential condition, and|σ| 6 r wheneverbσk is a minimal
separable leader.

Then the sentence

ϕ(y)⇒ ∃x
(∧

f∈S

f (y,x) = 0 &
∧

i<m

∧

h<n

∧

|ξ+i|62r

xξ+ih = ∂i x
ξ

h

)
(21)

is true in every existentially closed model ofm-DF. So now all we have to do is find
such a formulaϕ(y). In fact, what we find will not be thisϕ(y) exactly, but it will be
close enough.

Every existentially closed model ofm-DF is differentially perfect [13, Lem. 2.4,
p. 1334]. The differentially perfect models compose an elementary class, with a theory
m-DPF. We shall show thatm-DCF is axiomatized by the axioms ofm-DPF, along with
sentences that are formed roughly as in (21) and that are obtained as (K, ∂0, . . . , ∂m−1)
ranges over the differentially perfect models ofm-DF (or simply the countable differen-
tiably perfect models).

The point of considering only differentially perfect models (K, ∂0, . . . , ∂m−1) is that
now, since the derivations onK can be extended toL as above, the extensionL/K is
separable [13, Lem. 1.5, p. 1328]. Hence there is a setA of indices (ξ,h) such that
(aξh : (ξ,h) ∈ A) is a separating transcendence basis ofL/K. Changing its earlier mean-

ing, let us now usea to denote the basis (aξh : (ξ,h) ∈ A). Let B consist of the indices

(ξ,h) that are not inA, although still|ξ| 6 2r andh < n; also, writeb for (aξh : (ξ,h) ∈ B).
Now we can write

(aξh : |ξ| 6 2r & h < n) = (aξh : (ξ,h) ∈ A∪ B) = (a, b).

For each (η,g) in B, there is an irreducible polynomial overK that expresses the sepa-
rable algebraic dependence ofaηg ona. More precisely, there is a listp of parameters
from K, and for each (η,g) in A, there is an elementf ηg of Z[y, xξh : (ξ,h) ∈ A∪ {(η,g)}]
such thatf ηg (p,a, xηg) is irreducible and separable, andf ηg (p,a,aηg) = 0.

Let V be the variety overK with generic point (a, b). The tangent spaceT(V)(a,b)

consists of all points (a′, b′) such that the zero-derivationD on K extends toK(a, b),
that is, toL, so thatD(a, b) = (a′, b′). In particular, the tangent space is defined by
the linear functionsD f ηg (p,aξh,0, z

ξ

h : (ξ,h) ∈ A ∪ {(η,g)}), which we may write as
D f ηg (p,a,aηg,0,z, z

η
g). For eachi in m, this tangent space has the translationTi(V)(a,b)

(part of the twisted tangent bundle mentioned in 2.2) comprising those (a′, b′) such that
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∂i extends toDi so thatDi(a, b) = (a′, b′). In particular, the affine spaceTi(V)(a,b) is de-
fined by the functions∂i f

η
g (p,a,aηg, ∂ip,z, z

η
g). Therefore, wheneverf ∈ K(xξh : (ξ,h) ∈

A ∪ B) and f (a, b) = 0, then∂i f (a, b,z,w) is a linear combination overL of the
functions∂i f

η
g (p,a,aηg, ∂ip,z, z

η
g). This will allow the formulaϕ(y) to ensure that the

differential condition is met.
A complication is that, for some (ξ,h) in A, we may have|ξ| = 2r. But by The-

orem 4.3, or more precisely its proof, since we have assumed there is no separable
leaderaξh such that|ξ| = 2r, we may assume further that there areaξh chosen generi-
cally when|ξ| = 2r + 1 such that (K, ∂0, . . . , ∂m−1) has an extension compatible with
K(aξh : |ξ| 6 2r + 1 & h < n). By lengtheningp as necessary, we may assume that there

is a finite subsetS of Z[y, xξh : |ξ| 6 2r + 1 & h < n] that contains all of the polynomials

f ηg and is such that{ f (p, xξh : |ξ| 6 2r + 1 & h < n) : f ∈ S} generates the ideal of

polynomials overK that are 0 at (aξh : |ξ| 6 2r + 1 & h < n). By the existence of an

extension of (K, ∂0, . . . , ∂m−1) compatible withK(aξh : |ξ| 6 2r + 1 & h < n), each poly-

nomial∂i f
η
g (p, xξh, ∂ip, x

ξ+i

h : (ξ,h) ∈ A∪ {(η,g)}) is a certain linear combination of the

polynomials f (p, xξh : |ξ| 6 2r + 1 & h < n), where f ∈ S. Conversely, this conclusion

is enough to ensure thatK(aξh : |ξ| 6 2r + 1 & h < n) meets the differential condition.
We can lengthenp and enlargeS further, if necessary, to ensure thatS contains

polynomials showing that each leaderaξh is algebraically dependent on its predecessors.
We can now write a formulaϕ(y) that is satisfied in (K, ∂0, . . . , ∂m−1) by p and is such
that, if q satisfiesϕ(y) in an arbitrary differentially perfect model (K′, ∂0, . . . , ∂m−1) of
m-DF, and (cξh : |ξ| 6 2r + 1 & h < n) is a generic point of a component of the zero-set

of { f (q, xξh : |ξ| 6 2r + 1 & h < n) : f ∈ S}, then:

(i) each polynomialf ηg (q, c, zηg) is irreducible and separable, wherec = (cξh : (ξ,h) ∈
A);

(ii) if aξh is a leader, then so iscξh, and these are alike separable or not;

item:mt (iii) the transcendence-degrees ofK(aξh : |ξ| 6 2r + 1 & h < n)/K and K′(cξh : |ξ| 6

2r + 1 & h < n)/K′ are the same, so thatcξh is a leader only ifaξh is;

(iv) the extensionK′(cξh : (ξ,h) ∈ A∪ B) satisfies the differential condition.

Here the possibility of ensuring the field-theoretic condition (iii) is an instance of the
general model-theoretic result that Morley rank is definable in strongly minimal theories
[10, Lem. 6.2.20, p. 225]. It is not necessary to ensure that the set{ f (q, xξh : |ξ| 6 2r+1 &
h < n) : f ∈ S} generates a prime ideal; it is enough that this is so whenq is p. The
sentence in (21) is now true in all existentially closed models of m-DF, and the set of all
such sentences, together withm-DPF, axiomatizesm-DCF as described. ⊣

By Theorem 3.1, DFm now also has a model-companion.

4.3. Differential forms again. The condition in Theorem 4.3 can be adjusted to
yield the following:

thm:second Theorem 4.7. Suppose(K, ∂0, . . . , ∂m−1) |= m-DF, and K has an extension K(aξh : |ξ| 6
|µ| & h < n) meeting the differential condition for someµ in ωm and some positive in-
teger n. Suppose further that, if aσ

k is a minimal separable leader, thenσ 6 µ. Then

(K, ∂0, . . . , ∂m−1) has an extension compatible with K(aξh : |ξ| < |µ| & h < n).
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Proof. The proof is as for Theorem 4.3,mutatis mutandis.What needs adjusting is
the choosing ofaτ

ℓ
in case bothaτ−i

ℓ
andaτ−j

ℓ
are separable leaders. Again we have

minimal separable leadersaπ
ℓ

andaρ
ℓ

below aτ−i
ℓ

andaτ−j
ℓ

respectively. Since we may
assume|µ| < |τ|, there is somek in m such thatµ(k) < τ(k). If k = j, thenπ( j) 6 µ( j) <
τ( j), soπ( j) 6 (τ − j)( j) = (τ − i − j)( j). Thenπ 6 τ − i − j, soaπ

ℓ
is belowaτ−i−j

ℓ
.

Now we can proceed as before. ⊣

As Theorem 4.3 yields Theorem 4.5, so Theorem 4.7 yields a characterization of the
existentially closed models ofm-DF. Moreover, Theorems 4.3 and 4.7 can be combined
in the following way:

thm:third Theorem 4.8. Suppose(K, ∂0, . . . , ∂m−1) |= m-DF, and K has an extension K(aξh : |ξ| 6
2r & h < n) meeting the differential condition for some positive integers n and r. Sup-
pose further that, for each k in m, either|σ| 6 r whenever aσk is a minimal separable
leader, or else there is someτ in ωm such that|τ| = 2r, and |σ| 6 |τ| whenever aσk is
a minimal separable leader. Then(K, ∂0, . . . , ∂m−1) has an extension compatible with
K(aξh : |ξ| < 2r & h < n).

Proof. Combine the proofs of Theorems 4.3 and 4.7. ⊣

There is a corresponding first-order characterization of the models ofm-DCF, parallel
to Theorem 4.5 and Corollary 4.6.

4.4. Another sufficient condition. If (K, ∂0, . . . , ∂m−1) |= m-DF, andK(aξh : |ξ| 6
|π| & h < n) is an extensionL of K meeting the differential condition, this by itself is not
enough to ensure that (K, ∂0, . . . , ∂m−1) has an extension compatible withL. However, if
such an extension does exist, then its existence can be shownby means of Theorem 4.3,
provided|π| can be made large enough: this is Theorem 4.10 below, which relies on the
existence of bounds as in the following.

Lemma 4.9. For all positive integers m and n, for all sequences(ai : i ∈ ω) of positive
integers, there is a bound on the length of strictly increasing chains

S0 ⊂ S1 ⊂ S2 ⊂ · · · (22)

of antichains Sk of (ωm × n,6), where also Sk ⊆ {(ξ,h) : |ξ| 6 ak}.

Proof. Divide and conquer. First reduce to the case whenn = 1. Indeed, suppose the
claim does hold in this case. Suppose also, as an inductive hypothesis, that the claim
holds whenn = ℓ. Now fix m and the sequence (ai : i ∈ ω) or rather (a(i) : i ∈ ω), and
consider arbitrary chains as in (22), wheren = ℓ+1. Analyze eachSk asS′k∪S′′k , where

S′k = {(ξ,h) ∈ Sk : h < ℓ}, S′′k = {(ξ,h) ∈ Sk : h = ℓ}.

For eachk such thatSk+1 exists, at least one of the inclusionsS′k ⊆ S′k+1 andS′′k ⊆ S′′k+1
is strict; also, by our assumption, there is an upper boundf (k) on thoser such that

S′′k ⊂ S′′k+1 ⊂ · · · ⊂ S′′r−1. (23)

The functionf depends only onm and (ai : i ∈ ω)), not on the choice of chain in (22).
Let k(0) = 0, and ifk(i) has been chosen, letk(i + 1) be the leastr, if it exists, such

thatS′k(i) ⊂ S′r . Herek(i) does depend on the chain. But ifr is maximal in (23), andS′r
exists, thenS′k ⊂ S′r . Hencek(i + 1) 6 f (k(i)). Since the functionf is not necessarily
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increasing, we derive from it the increasing functiong, whereg(k) = maxi6k f (i). Then
x 6 y=⇒ g(x) 6 g(y), so

k(r) 6 f (k(r − 1)) 6 g(k(r − 1)) 6 g ◦ g(k(r − 2)) 6 · · · 6
r︷     ︸︸     ︷

g ◦ · · · ◦ g(0) = gr (0). (24)

In particular,Sk(r) ⊆ {(ξ,h) : |ξ| 6 a(gr (0))}. The sequence (a(gi(0)) : i ∈ ω) does not
depend on the original chain. Hence the inductive hypothesis applies to the chain

S′k(0) ⊂ S′k(1) ⊂ · · · , (25)

showing that there iss (independent of the original chain) such thatk(s) is defined, and
r 6 s for all entriesS′k(r) in (25). Hence also, by (24), ifS′r is an entry in (25), then
r 6 k(s) 6 gs(0).

Now supposeS′r is the final entry in (25). ThenS′′r ⊂ S′′r+1 ⊂ · · · ; but if S′′t is an
entry of this chain, thent < f (r) 6 g(r) 6 g(gs(0)) = gs+1(0).

Therefore the original chain in (22) has a final entrySt, wheret < gs+1(0). Thus the
claim holds whenn = ℓ + 1. By induction, the claim holds for all positiven, provided it
holds whenn = 1.

It remains to show that, for all positivem, for all sequences (ai : i ∈ ω), there is a
bound on the length of chains

S0 ⊂ S1 ⊂ S2 ⊂ · · · (26)

of antichainsSk of (ωm,6), whereSk ⊆ {ξ : |ξ| 6 ak}. The claim is trivially true when
m= 1. Suppose it is true whenm= ℓ. Now letm= ℓ + 1, and suppose we have a chain
as in (26). We may assume thatS0 contains someσ. If i < m and j ∈ ω, let

Si, j
k = {ξ ∈ Sk : ξ(i) = j}.

Then the inductive hypothesis applies to chains of the form

Si, j
k(0) ⊂ Si, j

k(1) ⊂ Si, j
k(2) ⊂ · · · .

Moreover, ifτ ∈ Sk, thenτ(i) 6 σ(i) for somei in m (sinceσ is also inSk, and this is
an antichain). Hence

Sk =
⋃

i<m

⋃

j6σ(i)

Si, j
k ,

a union of no more than|σ| +m-many sets, hence no more thana0 +m-many sets. So
the proof can proceed as in the reduction ton = 1: for eachk such thatSk+1 exists, one
of the inclusionsSi, j

k ⊆ Si, j
k+1 is strict, and so forth. ⊣

thm:s Theorem 4.10. Suppose m, r, and n are positive integers. Then there is a positive
integer s, where r6 s, such that, if(K, ∂0, . . . , ∂m−1) |= m-DF, and K(aξh : |ξ| 6 s &
h < n) meets the differential condition, then(K, ∂0, . . . , ∂m−1) has an extension that is
compatible with K(aξh : |ξ| 6 r & h < n).

Proof. SupposeK(aξh : |ξ| 6 2tr & h < n) meets the differential condition for somet.

Whenu 6 t, let Ku = K(aξh : |ξ| 6 2ur & h < n), and letSu be the set of minimal
separable leaders ofKu. Then we have an increasing chainS0 ⊆ S1 ⊆ . . . ⊆ St. By
the preceding lemma, there is a value oft, depending only onm, r, andn, large enough
that this chain cannot be strictly increasing. ThenSu = Su+1 for someu less than thist.
ThenKu+1 satisfies the hypothesis of Theorem 4.3. So (K, ∂0, . . . , ∂m−1) has an extension



FIELDS WITH SEVERAL COMMUTING DERIVATIONS 17

compatible withK(aξh : |ξ| < 2u+1r & h < n), anda fortiori with K(aξh : |ξ| 6 r & h < n).
In short, the desireds is 2tr. ⊣

This theorem yields yet another first-order characterization of the models ofm-DCF.
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