FIELDS WITH SEVERAL COMMUTING DERIVATIONS
DAVID PIERCE

Abstract. The existentially closed models of the theory of fields (of arbitrary charactensiib)an as-
signed finite number of commuting derivations can be given a first-order georolearacterization in several
ways. In each case, the existentially closed models are those models that coirt&sropcertain dierential
varieties, which are determined by certain ordinary varieties.

How can we tell whether a given system of partidfeliential equations has a solu-
tion? An answer given in this paper is that, if wefdientiate the equations enough
times, and no contradiction arises, then it never will, aratystem is soluble. Here,
the meaning of ‘enough times’ can be expresseifiormly; this is one way of showing
that the theorym-DF, of fields with a finite numbem of commuting derivations has a
model-companionm-DCF. In fact, this theorem is worked out here (as Corollag; 4
of Theorem 4.5), not in terms of polynomials, but in termstud varieties that they
define, and the function-fields of these: in a word, the treatrisgeometric.

The model-companion af+DFy (in characteristic 0) has been axiomatized before,
explicitly in terms of diferential polynomials: se¢ 3. The existence of a model-
companion ofm-DF (with no specified characteristic) appears to be a neultredien
m > 1 (despite a remark by Saharon Shelah [23, p. 315]: ‘| am quite that for char-
acteristicp as well, [makingm greater than 1] does not make any essenti&ince’).

The theory of model-companions and model-completions warked out decades
ago; perhaps for that very reason, it may be worthwhile téerethe theory here, as
| doin § 1. | try to give the original references, when | have been ableonsult
them. In§ 2, | review the various known characterizations of existdiytclosed fields
with single derivations. In fact, little of this work is of @sn the passage to several
derivations; but this near-irrelevance is itself inteirggt In § 3, | analyze the error
of my earlier attempt, in [12], to axiomatize-DCF, in terms of diferential forms.
Something of value from this earlier work does remain: whende haven-DCF, or
more generallyn-DCF, then we can obtain from it a model-companion of the thed
fields withm derivations whose linear span over the field is closed utdelie bracket.
In § 4, | obtainm-DCF itself.

§1. Model-theoretic background. Let 9t be an arbitrary (first-order) structure; its
theory is Th{lt). Let T be an arbitrary consistent (first-order) theory; its moaels-
pose the class Modl). Every classK of structures in some signature has a theory,
Th(K). Then K < Mod(Th(K)); in case of equalityK is elementary. Always,
Th(Mod(T)) =T.
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The structurét has the univers&l. The structure denoted Bty is the expansion
of M that has a name for every element\df Thent embeds it if and only if Nty
embeds in an expansion%f However, although the class of structures in whitlem-
beds need not be elementary, the class of structures in Whjcbmbedss elementary.
The theory of the latter class is theagram of M, or diag): it is axiomatized by the
quantifier-free sentences in Ph{;) [17, Thm 2.1.3, p. 24]. The class of structures in
which 9ty, embedslementarilyis also elementary, and its theory is just Thf). The
class of substructures of modelsTofs elementary, and its theory is denotedTlyy this
is axiomatized by the universal sentence3 ¢17, Thm 3.3.2, p. 71].

By a system over M, | mean a finite conjunction of atomic and negated atomic for-
mulas in the signature ofty; likewise, a systenover T is in the signature of. A
structuredt solves a systemp(x) if M £ Jx ¢(x). Note well here thak, in boldface,
is atupleof variables, perhapsq, ..., x*1). By anextension of a model ofT, | mean
another model o of which the first is a substructure. Two systems over a mtef
T areequivalent if they are soluble in the same extensions.

An existentially closed model of T is a model ofT that solves every system over
itself that is soluble in some extension. So a modtedf T is existentially closed if and
only if T U diagt) v ThMim)v, that is, every extension &ft is a substructure of an
elementary extension ([§,7] or [24, § 2]).

A theory ismodel-complete if its every model is existentially closed. An equivalent
formulation explains the namer is model-complete if and only iT U diagf®) is
complete whenevedt = T [18, Ch. 2].

Suppose every model df has an existentially closed extension. Such is the case
whenT is inductive, that is, Mod() is closed under unions of chains [5, Thm 7.12]:
equivalently,T = Ty5 [8, 3]. Suppose further that we have a uniform first-order teay
tell when systems over models Bfare soluble in extensions: more precisely, suppose
there is a function

o(z.y) — ¢l y), 1)

wherey(x, y) ranges over the systems oviefwith variables analyzed as shown), such
that, for every modeft of T and every tuplex of parameters fronM, the system
¢(x, a) is soluble in some extension &k just in casep(x, a) is soluble ink. Then
the existentially closed models ®f compose an elementary class, whose thdoris
axiomatized byl together with the sentences

Yy Az ¢z, y) = Iz o(z, v)). 2

Immediately,T* is model-complete, s©* U diag@t) is complete wheft = T*. What
is more, T* U diag®t) is complete whenevét = T [17, Thm 5.5.1].
In general, T* is a model-completion of T if Ty € T € T* andT* U diag(n)
is complete whenevebt = T. Model-completions are unique [16, (2.8)]. We have
sketched the proof of part of the following (the rest is [1%5]]):

Lemma 1.1 (Robinson’s Criterion)Let T be inductive. Then T has a model-comple-
tion if and only if a functionp(xz,y) — @(x,y) exists as in(1). In this case, the
model-completion is axiomatizedoduloT by the sentences ().

If T, = T*y andT* is model-complete, theii* is a model-companion of T ([1,
§ 5]; cf. [5, § 2]). Model-completions are model-companions, and modatganions
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are unique [1, Thm 5.3]. IT has a model-companion, then its models are just the
existentially closed models df [5, Prop. 7.10]. Conversely, f is inductive, and the
class of existentially closed models Bfis elementary, then the theory of this class is
the model-companion df [5, Cor. 7.13].

§2. Fieldswith onederivation. Let DF be the theory of fields with a derivatid@h

and let DPF be the theory of models of DF that, for each prénsatisfy also
¥YXAy(l+---+1=0&Dx=0=>y---y=X).
¢ ¢

So models of DPF ardifferentially perfect. A subscript on the name of one of these
theories will indicate a required characteristic for thédfién particular, we have DR
which is the same as QF

Abraham Seidenberg [22] shows the existence of the funatitemma 1.1 in case
T is DPF,, wherep is prime or 0. Consequently:

Tueorem 2.1 (Robinson). Df-has a model-completion, calldaCF,.

Tueorem 2.2 (Wood [28]). If p is prime, therDF, has a model-companio@CF,,
which is the model-completion DIPF,.

The existence of a model-companion or -completion of a thdoes not necessarily
tell us much about the existentially closed models of themheSince it involvesall
systems over a given theory, Robinson’s criterion yiel@sdiudest possible axioma-
tization for a model-completion. In the case of DChere are two ways of refining
the axiomatization—refining in the sense of finding weakerdt@ns on models of
DF,, that are still sfficient for being existentially closed. It ffices to consider either
systems in only one variable or systems involving only fiesicatives. In the general-
ization to several derivations, the former refinement setenhe of little use; the latter
refinement is of use indirectly, through its introductiorgebmetric ideas.

2.1. Single variables. Though the theory ACF of algebraically closed fields is the
model-completion of the theory of fields, its axionmddulothe latter theory) can in-
volve only systems in one variable (indeed, single equatinrone variable). A gener-
alization of this observation is the following, which canddracted from the proof of
[20, Thm 17.2, pp. 89-91] (see also [2]):

Lemma 2.3 (Blum’s Criterion).Say Ty C T C T*.
(i) The theory T is the model-completion of T if and only if the commutatiagcim

M
9 —> B
of structures and embeddings can be completed as indicated Wand B are

models of T anét is a|B|*-saturated model of T
(i) If T =Ty, itis enough to assume th@tis generated ovell by a single element.

This allows a refinement of Lemma 1.1 in a special case:

Lemma 2.4. Suppose T= Ty. Then Lemma 1.1 still holds wheifx, y) is replaced
with ¢(x, y) (where x is a single variable).
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From Lemma 2.3, Lenore Blum obtains Theorem 2.5 below inattaristic 0, in
which case the first two numbered conditions amour te= ACF ([20, pp. 298ff.]
or [2]). If p > O, then DPF is not universal, so part (ii) of Blum’s criterion does
not apply; Carol Wood instead uses a primitive-element theareBeidenberg [21] to
obtain new axioms for DCf[29]. These can be combined with Blum’s axioms for
DCF to yield the following. (Here SCF is the theory of separabibsed fields.)

Tueorem 2.5 (Blum, Wood). A model(K, D) of DF is existentially closed if and only
if
(i) KE SCFE
(i) (K,D) [ DPF,
(i) (K,D) E 3Ix (f(x,DX,...,D™x) = 0 & g(x,Dx,...,D"x) # 0) whenever f
and g are ordinary polynomials over K in tuple€, ..., x™%) and (x°, ..., x") of
variables respectively such thatgg0 anddf/ox™?! 0.

HenceDF has a model-companioDCF.

There is a similar characterization of the existentiallgseld ordered differential
fields [25].

2.2. First derivatives. Alternative simplified axioms for DCF are parallel to those
found for the model-companion ACFA of the theory of fieldstwin automorphism
[9, 4]. Supposel,D)  DPF andK [ SCF. Given a system oveK(D), we can
ensure thab is applied only to variables or derivatives of variablegrthve can replace
each derivative with a new variable, obtaining a system

/\f:O&g;&O&Dw:y, (3)
f

wheref, g € K[z, y]. We can write alsq\ ¢ f(x, Dx) = 0 & g(x, Dx) # 0. Suppose (3)
has the solutiond, b). ThenK(a, b)/K is separable [13, Lem. 1.5, p. 1328]. M\étand
W be the varieties oveK with generic pointsz and @, b) respectively, lefTp(V) be
the twisted tangent bundle &f, and letU be the open subset & defined by the
inequationg # 0. In characteristic 0, the modd&f(D) of DF is existentially closed if
and only if, in every such geometric situatidd,contains aK-rational point ¢, Dc);
this yields the so-called geometric axioms for Q@&und with Anand Pillay [14]. In
positive characteristic, it is still true that, i&(b) is a generic point o¥/, thenD extends
to K(a) so thatDa = b. However, an additional condition is needed to ensureEhat
extends to all oK (a, b); it is enough to require that the projectionTaf(W) ontoTp (V)
contain a generic point dV; this yields Piotr Kowalski's geometric axioms for DgF
[7].

By the usual trick of replacing # 0 with z- g = 1, we may assume that there is no
inequation in (3). In an alternative geometric approach@-Dwe can then consider (3)

as a special case of
/\f=0& ADX =g, @)
f i<k
wheref e K[X0, ..., x™ ] andg € K(X°, ..., x"1). Suppose this has solutiay which
is a generic point of a variety. Itis enough to assume thaf(. .., a“ 1) is a separating
transcendence-basisk{a)/K. Then we have a dominant, separable rational map
00, ..., XY or ¢ from V onto AX, and another rational map — (¢°%=), ..., g *(x))
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or y from V to AK. So (K, D) is existentially closed if and only ¥/ always has a
K-rational pointP such thaD(¢(P)) = ¢(P) [13, Thm 1.6, p. 1328].

§3. Fieldswith several derivations. Let m-DF be the theory of fields witm com-
muting derivations. Tracey McGrail [11] axiomatizes thedabcompletionm-DChy,
of mDF,. Alternative axiomatizations arise as special cases ik wbYoav Yafte [30]
and Marcus Tressl [27]. There is a common theme: fPedéntial ideal has a generating
set of a special form; in the terminology of Joseph Ritt §b5, p. 5] (wherm = 1) and
Ellis Kolchin [6, § 1.10, pp. 81ff.], this is acharacteristic setThere is a first-order way
to tell, uniformly in the parameters, whether a given setifedential polynomials is a
characteristic set of someftéirential ideal, and then to tell, if is a characteristic set,
whether it has a root. In short, the functigm- @ in Robinson’s criterion (Lemma 1.1)
is defined for sfficiently many systems. (Applying Blum’s criterion, McGrail and
Yaffe consider only systems in one variable, so they must indhugguations in these
systems; Tressl uses only equations, in arbitrarily mamniakkes.)

I do not give the definition of a characteristic set, as noirgjtedients of the defini-
tion are needed for the arguments presente§i4n However, some of the ingredients
are needed; these are in 4.1.

3.1. Spaces of derivations. In [12] | attempted to apply the geometric approach
described in 2.2 to+DFo. | worked more generally with OJ; where DI is the theory
of structures K, Do, ..., Dmn-1) such that K, D;) = DF for eachi, and each bracket
[Dj,Dy] is a K-linear combination of thé;. (This is roughly what Y#e did too.)
In [13, § 2] | made some minor corrections and otherwise adapted therant to
arbitrary characteristic. Nonetheless, in May, 2006, ERudshovski showed me a
counterexample to [12, Thm A, p. 926], a theorem that was taadnctory formulation
of [12, Thm 5.7, p. 942]. Then | found an error at the end of theopof the latter
theorem. That theorem is simply wrong; the present papes doeso much correct the
theorem as replace it.

The developments leading up to the wrong theorem are stlbofe use. The general
situation is as follows. Let{, Do, ..., Dmn-1) E DF™, and letE be theK-linear span of
theD;. ThenE is a Lie-ring, as well as a vector-space okerAs a vector-spacd; has
a dual,E*; and there is a derivation d frok into E* given byD(d x) = Dx. ThenE*
has a basis (t: i < ¢) for somet' in K and some’ no greater tham [12, Lem. 4.4,
p. 932], and this basis is dual to a badis ( < ¢) of E, where p;, 9] = 0 in each case,
and d can be given by

dx:Zdti-aix ©))

i<t

[12, Lem. 4.7, p. 934]. We can use these ideas to prove thenfilg.
Tueorem 3.1. If m-DF has a model-companion, then so d@¢#s".

Proor. In characteristic 0, the result is implicit in [12, Thm 5.8daproof], explicit
in [26, § 3]; but the proof works generally. The main point is to find;, &émy model
(K, Dy,...,Dm1) of DF™, an extension in which the named derivations are linearly
independent over the larger field. As above, the space sgaveeK by theD; has a
basis ¢, : i < £) of commuting derivations ok. If £ < m, then letL = K(a/,...,a™™?),
where ¢, ...,a™?) is algebraically independent ov&r Extend thed; to L so that they
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are O atther'; then, if¢ < k < m, defined, to be 0 orK and to bed, ate!. Then ¢;: i <
m) is a linearly independent-tuple of commuting derivations oh; from this, we
obtain linearly independent extensiddsof the D; to L such that the bracket®j, Dy]
are the same linear combinations of the that the D;, D«] are of theD; (by [12,
Lem. 5.2, p. 937]—or [26, Lem. 2.1, p. 1930], by dfdrent method—in characteristic
0; generally, [13, Lem. 2.4, p. 1334]). TheK,Di,...,Dmn1) C (L, Do, ..., Dm1),
and the latter is a model of DF Moreover, [, Do, ..., Dm 1) is an existentially closed
model if and only if (,do,...,0m 1) iS an existentially closed model of BFso a
model-companion of DFcan be derived from a model-companiomeDF. 4

That much stands, andftérential forms are convenient for establishing it. The the-
orem, combined with the results 4, will yield a model-companion, DCF, of DF™.

3.2. False steps with differential forms. In [12] | tried also to obtain DCf* inde-
pendently as follows. Suppose now we have a separably cledd, along with
a Lie-ring and finite-dimensional spaée of derivations ofK; as a spacek has a
basis ¢;: i < m), whose dual is (d: i < m), so that the); commute. We may as-
sume thatk, do, . .., dm-1) is differentiably perfect [13, Lem. 2.4]. Every system over
(K, do, ...,0m-1) is equivalent to a system of the form of (4), generalized to

/\f:O&/\/\aixj:gf. (6)

f j<k i<m
By means of (5), we can also write this as

A\ f=0& Adx=>"dt. gl @)
f j<k i<m

If a is a solution (from some extension), itis enough to assumie@h, . . . , a’) is a sep-
arating transcendence-basiskqfa) /K for somef such thak < ¢ < n. That we cannot
generally assumk = ¢ is an important dierence from the case of one derivation; it is

what causes the filiculties in the case of several derivations. The solutido (7) can
be understood as follows. First we have the fi€l@), and then (7) can be be written

as
/\dal = > dt' - g/(a). ®)
j<k i<m

A solution of this can be understood as a modeb, . . A1) Of m-DF extending

(K, do,...,0m-1) such thak(a) c L and (8) holds whend =}, ., dt' - 9,al, that s,

A \did = gl(a). )
j<k i<m
Since thed; commute, it is necessary that

A\ /\ dn(@l(@) = di(gh(a) (10)

j<k h<i<m
[12, § 1, p. 926]. Any derivative with respect th of an element oK(a) is a constant
plus a linear combination of the derivativég , Wherej < ¢ (by [13, Fact 1.1 (0, 2)],
for example); we know what these derivativ@sl are whenj < k, by (9); so (10)
becomes a linear system ou(a) in the unknowns);al wherek < j < ¢.
If k = ¢, then this linear system has no variables, so it is true gefats truth is a
suficient condition for (8) to have a solution. kf< ¢, then the linear system is soluble



FIELDS WITH SEVERAL COMMUTING DERIVATIONS 7

or not. If it is soluble, then it is possible to extend theto derivationsd; as required
by (9) that commute oK (a0, .. ., a“1); but these derivations need not commute on all
of K(a). In [12] | claimed that they could commute, and that the bibity of (10) was
suficient for solubility of (8) in the sense above. | was wrong.

If we take a solution to the linear system, we now have an siderofK(a), and we
have to check extensibility of the commuting derivationshis. That is, we are back
in the same kind situation we started with. However, it tuwosthat there is a bound
on the number of times that we need to repeat this processlér ty ensure solubility
of the original diterential system. This is what is shown§r; differential forms are
apparently not useful for this after all.

3.3. A counterexample. Over a model of DE, let (a, b, ¢) be an algebraically inde-
pendent triple. The counterexample supplied by Hrushagskie system

da=dt’.-c+dt!-c db=dt’ - 2a+dt!-c (11)

(wherec? is the square of; the constantsk(¢) of § 3.1 are now (23)). Equivalently,
by (5), the system comprises the equations

doa = 2, d1a=c, dob = 2a, db=c
From these, we compute
01002 = 2C- 01C, Op01a = OoC, 0100b = 2-0,a=2c, 0p01b = dgcC.
Equatingdgd1 andd1dg yields the linear system
dopC—2c-01c=0, doC = 2c, (12)

which has the solutiordgc, d:¢) = (2c, 1). But then we must hav@ doC = 2 - §:C = 2,
while dgd1€ = dp1 = 0, which means (11) has no solution, contrary to my claim #j.[1

For the record, the mistake is at the end of the proof of [12nBh7, p. 942] and can
be seen as follows. Write the system (11) as=da, db = 8; then

dg=daAdt®-2+dcadt!

da =dca (dt®- 2c+dth), o L
=(dc-dt"-2c) Adt".

(13)

Since also ¢ = d°b = 0, we now have a condition oncda dt!, hence onyc; in
particular,doc = 2c, which is what we found above. But there is no apparent cimmdit
ondsc, so | try introducing a new transcendentlfor this derivative. By (12) then,

dc=dt° 2c+dtt-d,

which by (13) yields d = dt° A dt! - 2¢(1 - d). But we must have d = 0, sod = 1,
contrary to assumption. In short, the next to last sentehtieeqoroof of [12, Thm 5.7]
(beginning ‘This ideal is linearly disjoint from’) is simplwrong. (I had not attempted
to argue that it was correct.)

§4. Resolution. For a correct understanding of the existentially closetedéntial
fields, it is better not to introduce ftierential forms from the beginning, but to allow
equations to involve any number of applications of the ddions. In contrast to 2.1,
there does not seem to be an advantage now in restrictingiati¢o equations in one
variable.
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4.1. Terminology. | shall now avoid working with dferential polynomials as such,
but shall work instead with the algebraic dependenciesthiggtdetermine.

Let (K, do,...,0m1) E mDF. Higher-order derivatives with respect to thecan
be indexed by elements of™: so, fordg”@ - - - 9,17™Dx, we may writed” x. Let <
be the product ordering @™. Then the derivativé” x is below d™x (and the latter is
above the former) ifo- < 7. (In particular, a derivative is both below and above it3elf
If n € w, then two elements af" x n will be related by< only if they agree in the last
coordinate, so that

(K< (1) = o<Tt&k=¢

we may use the corresponding terminology of ‘above’ andowgl so thatd” x is
belowd™ x, if (and only if) (o, k) < (7, ).

If o € ™, let the sumy;., o (i) be denoted by this is theheight of o or of 37 x.
(Kolchin [6, § 1.1, p. 59] uses the wordrder.) If nis a positive integer, lab™ x n be
(totally) ordered by, which is taken from the left lexicographic orderingwf! by
means of the embedding

of o™ x nin ™. Then @™ x n, <) is isomorphic to ¢, <). We may write ¢, k) < co
for all (o, k) in ™ x n. Supposexy: h < n) is a tuple of indeterminates. By ordering
the formal derivative$” x, in terms of ¢, k) and <, we have Kolchin’s example of an
orderly rankingof derivatives [6,§ 1.8, p. 75]. If (o, K) < (7,¢), | shall say that the
derivatived” x is less thand™x, or is apredecessor of 9"x,, andd™x, is greater than
07%; likewise for the expressiorg anday, introduced in (15) below. (So, the terms
just defined refer to the strict total orderirg while ‘below’ and ‘above’ refer to the
partial ordering<.)

Addition and subtraction om induce corresponding operations©fi. Then

TS O +T,
070" % = 07" X,
(,K) < (o +1,K), (14)
(0K < (1,0) = (c+p,K) < (t+p,0).

If i < m, leti denote the characteristic function {©f in ™, so that3* = d;, and more
generallyd;0” = 6°*%, andg;0" % = 9.

Let L be an extension df with generators that are indexed by an initial segment of
(0™ x n, Q); that is,

L =K@ : (&h) < (5,0), (15)

where ¢, £) € ®™xn, or possibly €, £) = oo, in which casd. = K(aﬁ: (&,h) € ®™xn). It
could happen that, in the generating tupiﬁ: ((¢,h) < (1, 0)) of L/K, the same element
of L may appear twice, with éfierent indices. In this, case, when writiaf;, we may
mean not just a particular elementlafbut that element together with the pajrif) of
indices. For example, by (14), i&(+ ¢,k) < (1, ¢), then ¢, K) < (t,£); hence we may
say that, ifa;j” is one of the generators bf K, then so isy . Let us say thalt, with the
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tuple of generators given in (15), meets thifferential condition if there is no obstacle
to extending each derivatiah to a derivatiorD; on K(af:: (& +,h) < (7, ¢)) such that

Diay = & " (16)
whenever ¢ + i,k) < (z,£). (If the right-hand member of (16) is not defined, then the
left need not be defined.) To be precisef ifs a rational function oveK in variables
(><‘fh: (&, h) € (0, k) for some ¢, k) in ™ x n, andD is a derivation oK, thenf has a
derivativeD f, which is the linear function ovd((xf]: (&, h) < (0, K) given by

of
Df = > — .yi+fP
e Ttow 0%
Then the diferential condition is that for all such if (o + ¢, k) < (r, £) for somei in m,
and if

f(&: € h) < (k) =0, (17)
thend; f(&, & : (£,h) < (0, k) = 0, that is,

S 2 e ek P @) @k =0 (18
(1.9)<(oK) Xg

N+t

(Note well the assumption that(+ 7,k) < (7,£). In (18), each of theg " must exist,
even though the cdigcient @f/@)(é)(af]: (&, h) < (o, K)) might be 0.) So the dierential
condition isnecessanyor the extensibility of the); as desired (see for example [13,
Fact 1.1 (0)]); stficiency is part of Lemma 4.1 below.

An extension |, Dy, ..., Dn1) of (K, d, . .., 0m-1) is compatiblewith the extension
L of K given in (15) ifL € M, and (16) holds wheneves-(+ ¢, k) < (1, £).

Borrowing some terminology used forftéirential polynomials [15§ 1X.1, p. 163],
let us say that a generataf of L/K is aleader if it is algebraically dependent ovét
on its predecessors, that is,

af € K& : (¢,h) < (o, k).

Thena] is aseparable leader if it is separably algebraic ovlﬂ(af;: & h) < (0, k));
otherwise, it is annseparable leader. A separable leadaf is minimal if there is no
separable leader strictly below it—no separable Ieaﬁjeuch thap < o

Lemma 4.1. Suppos€K, do, ...,m-1) E m-DF, and L is an extensiondé;”:: (& h) <
(7, £)) of K meeting the dierential condition. Then the derivatio@sextend to deriva-
tions D from K(aﬁ: (&+1,h) < (1, 0)) into L such tha(16) holds wher(o+1, K) < (r, £).
If a7 is a separable leader, an@ + i, k) < (7, ), then

al*t e K(a: (£,h) < (o +4,K) (19)

(that is, q;'”' is a rational function over K of its predecessors); in pautr, af('”' is
a separable leader. Therefore generators gKlthat are above separable leaders are
themselves separable leaders.

Proor. The claim follows from the basic properties of derivatiosisch as are gath-
ered in [13,§ 1]. Let B comprise the generators bjK that are not leaders. Thdh
is algebraically independent ovr, so we are free to extend tldeto D; on K(B) so
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that (16) holds whenever it applies. Then these extensiensraquely determined, and
there are further unique extensions of yeo the separable closukgB)*¢P. In partic-
ular, supposey is a separable leader, and £ ,k) < (7, £). ThenD;a] is obtained by
differentiating the minimal polynomial @&, over K(B). That is,D;a; is obtained by
differentiating an equation like (17); by thefférential conditionP;a; must beaf ** as
given by (18); this shows thaf ** is a rational function oveK of its predecessors.

Finally, in a positive characteristig, there may be an inseparable leadgr Then
(a;(’)pr € K(ai: (&,h) < (o0, k))ePfor some positive. If (o + 1,k) < (,¢), then we are
free to defineD;a asa;{”', providedDi((a;j)pr) = 0. But again this condition is ensured
by the diterential condition. Indeed, we may suppose (17) shows tharable depen-
dence of e;{)p' over the predecessors &f. That is, we can understarfcﬂaf]: (&, h) <
(0, Kk)) asg((ay )P') for some separable polynomiglover K(aﬁ: (&, h) < (0, k). Then
Di((a;(’)"r) is obtained from (18), provided we replace the teﬁm/@)q(’)(ai: (& h <
(0. K)) - aZ*® with g’((a7)") - Di((aZ)"). But in the present case, the former term
is 0. Since, after the replacement, the resulting equatitinhslds, we must have
Di((&)") = 0. 4

4.2. A solubility condition. If (K,do,...,dn-1) E mDF, then this model has an
extension whose underlying field is the separable closui¢ ¢ds by [12, Lem. 3.4,
p. 930] and [13, Lem. 2.4, p. 1334]). We shall need this in aeng@neral form:

Lemma 4.2. Suppose a field M has two subfields dnd Ly, which in turn have a
common subfield K. For each i B) suppose there is a derivation Bapping K into L
and Ly_j into M. Then the brackdDy, D] is a well-defined derivation on K. Suppose
it is theO-derivation. Suppose also that a is an element of M that iarsdyy algebraic
over K. Then each Dextends uniquely to (&), and Da € L,_j(a), so D,_jD;a is also
well-defined. MoreovefDg, D1]a = 0.

Proor. The claim follows from standard facts, at leastif= K = L,; but the proof
is the same in the general case. Indeed, though the derigs@iijpandD; are defined on
K, their bracket P, D1] need not be so, since the compositi@yD; andD;Dg need
not be so; but if they are, the®j, D4] is aderivationon K. A derivation onK extends
uniquely toKs¢P, if the derivation is 0 orK, then it is 0 onK®¢P[13, Fact 1.1 (2)]. In the
present case, ase K5¢P, soD;a € Ly j(a), and thereford;a € L,_;°F, henceD;_;D;ja
is defined. Thus[Dg, D] is defined orK(a), wherea € K¢, and if the bracket is 0 on
K, thenis 0 at. 4

In positive characteristic, the possibility of insepayasiligebraic extensions presents
a challenge, which however is handled by the following.

Tueorem 4.3. SupposéK, o, . .., dm-1) E m-DF, and K has an extension(ti,‘:: €] <
2r & h < n) meeting the dferential condition for some positive integers r and n.
Suppose further that, whenevef & a minimal separable leader, them| < r. Then
(K, do, . ..,0m-1) has an extensio(iM, Dy, ..., Dy_1) compatible with I(af]: €] < 2r &
h < n).

Proor. The claim can be compared to and perhaps derived fronffexelitial-alge-
braic lemma of Rosenfeld [1S, 1.2], at least in characteristic 0. Here | give an in-
dependent argument, for arbitrary characteristic. Wel ghthin M recursively as



FIELDS WITH SEVERAL COMMUTING DERIVATIONS 11

K(ai: (£,h) € ®™ x n), at the same time proving inductively that ifiecan be extended
to Dj so that (16) holds in all cases.

LetL = K(a: ¢l < 2r & h < n); thisisK(& : (£, h) < ((2r - 1,0,...,0),n - 1)).
Then by (18), the dierential condition requires of the tuplaﬁ( £l = 2r & h < n)
only that it solve some linear equations oter The hypothesis of our claim is that
thereis a solution, namelyaé: |l = 2r & h < n). We may therefore assume that this
tuple is agenericsolution of these equations. In particular, no entry of thisle is
an inseparable leader. (If, instead of being chosen geallgrithe entries ofdf]: €l =
2r & h < n) were chosen from the field, then this field would be closed under
the desired extensiori3; of g;, and the derivation®; would commute on the subfield
K(a,: ¢l + 1 < 2r & h < n); but they might not commute on all &f)

Now, as an inductive hypothesis, suppose we have the e&telneai: (&, h) < (1, 0)
of K meeting the dferential condition, so that there are derivatidisas given by
Lemma 4.1; suppose also that

(i) if a7 is a minimal separable leader, them< r;

(ii) if a is an inseparable leader, thien < 2r.
We need to choosg in such a way that these conditions still hold fotai: & h «
(r,©)). The inductive hypothesis is correct whigh< 2r, and then the desired conclu-
sion follows; so we may assunig > 2r. Hence, ifr(i) > 0, so thatr — 7 is defined,
then|r — 1| > 2r, soa;*" is not an inseparable leader.

If a}‘i is not a leader at all, for ariyin m, then we may leé; be a new transcendental,
and we may define each derivatiDea;‘i as this [13, Fact 1.1 (1)].

In the other casei;"' is a separable leader for someThen Dia}"i is determined
(Lemma 4.1). We want to led] be this derivative. However, possibly alap’j is a
separable leader, wheire j. In this case, we must check that

D,-a;_j = Dia;_i, (20)

thatis, Di, Djla; * = 0.
There are minimal separable leadefsanda; belowa;‘i anda;’j respectively. Let
v ber Vv p, the least upper bound ¢f, p} with respect to<. Thenv < 7. But|y| <
7| + ol < 2r < |]; sov < 7. Hencev < 7 — k for somek in m, which meansy is below
a;~*. Consequently,
(i) af is below bothal* anda}*;
(i) & is below botha 7 anda*.
If k = j, thena] is belowag"i‘j, so this is a separable leader. BsandD; commute
on K(a‘;i: (& h) < (r -1 - 7,0) by the diferential condition, they must commute also
ata; “7 (Lemma 4.2), so (20) is established. The argument is the Hfakne: i. If
k is different fromi and j, then again the same argument yielm;a;’j = Dya;* and
Dyaj~* = Dial*, so (20) holds.
In no case did we introduce a new minimal separable leader msgparable leader.
This completes the induction and the proof. 4

In terms of diferential polynomials and ideals, the theorem can be urmtatsas
follows. Given the hypothesis of the theorem,3dte the set of dierential polynomials
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f(6xn: €] < 2r & h < n), wheref ranges over the ordinary polynomials oeisuch
thatf(a‘;i: |€] < 2r & h < n) = 0. ThenS includes a characteristic set for théfdrential
ideal that it generates.

We can now characterize the existentially closed models-8fF by means of the
following lemma. The lemma follows from unproved statensent[6, § 0.17, p. 49];
let’s just prove it here.

Lemma 4.4. For every m inw and positive integer n, every antichain(@f™ x n, <) is
finite.

Proor. The general case follows from the case when1, since ifS is an antichain
of (w™ x n, <), then

s=|Juehmes:h=j,
j<n

and each component of the union is in bijection with an aaiiciof (@™, <). As an
inductive hypothesis, suppose every antichainegf €) is finite; but suppose also, if
possible, that there is an infinite antich&rof (w’*?, <). ThenS contains some-. By
inductive hypothesis, the subset

U U es ey =i

i<t igo(j)
of S is a finite union of finite sets, so its complemenStas infinitely many elements
7; but theno < 1, s0S was not an antichain. 4

Tueorem 4.5. Supposé€K, dg, . . .,dm-1) E m-DF. Then the following are equivalent:

(i) The mode(K, dy, ...,Idm-1) of MDF is existentially closed.

(i) For all positive integers r and n, if K has an extensio(aflc £l < 2r & h<n)
meeting the dferential condition such thafr| < r whenever @ is a minimal
separable leader, then the tup(af]: |£] < 2r & h < n) has a specialization
(0°by: €] < 2r & h < n) for some tupldby: h < n) of elements of K.

Proor. Assume (i) and the hypothesis of (ii). L&tbe a (finite) generating set of the
ideal of (a‘f1 |£] < 2r & h < n) overK. By Theorem 4.3, the system

/\f(ath: lél<2r& h<n)=0

fes
has a solution in some extension, hence it has a solutighitself, which means the
conclusion of (ii) holds. So (ii) is necessary for (i).

Every system over{, do, ..., dm-1) iS equivalent to a system of equations. Suppose
such a system has a solutiap ( h < n) in some extensiorl{ Dy,...,Dmn-1). Then the
extensionK (°an: (£,h) € (o™ x n)) has afinite set of minimal separable leaders, by
Lemma 4.4, since this set is indexed by an antichaim8f(n, <). Hence there islarge
enough that all of these minimal separable leaders are alsergtors oK (Dfay: ¢ <
r & h < n). We may assume also thats large enough thatr| < r for every derivative
07 % that appears in the original system. The hypothesis ofqifdw satisfied when
eacha is taken aPay. If the conclusion of (i) follows, thenlkg, : h < n) is a solution
of the original system. Thus, (ii) is ficient for (i). 4

CoroLrLarY 4.6. The theory nDF has a model-companion, BCF.



FIELDS WITH SEVERAL COMMUTING DERIVATIONS 13

Proor. Let (K,do, ..., dm-1) be a model oim-DF, andL an extensiorK(a; : ¢] <
2r & h < n) of K meeting the dterential condition, and| < r wheneveray is
a minimal separable leader. As noted in the proof of Theorénwe may assume
that there are no inseparable Ieade“issuch thatl¢| = 2r. For the moment, write
(aﬁ: |£] < 2r & h < n) simply asa. The ideal ofK[x] comprising the polynomials that
are 0 ata is generated by a sé€f(p, x): f € S}, whereS is a finite subset of[y, x],
andp is a (finite) list of parameters frod. In order to develop an axiomatization of
m-DCF, suppose there is a formuhéy) such that, for all dierentially perfect models
(K’, o, . . .,0m-1) of m-DF and all listsg of parameters frori’, the sentence(q) holds
in that model if and only if

(i) the set{f(q,x): f € S} generates a prime ideal Bf[x], and

(ii) for a generic zerd of the set, the extensidr’(b), that is,K’(bﬁ: £l <2r& h<
n), of K" meets the dferential condition, angb-| < r whenevery is a minimal
separable leader.

Then the sentence

o) =Tz (N fw.2)=0& A N\ A % =0x) (21)

fes i<m h<n |é+3|<2r

is true in every existentially closed model wfDF. So now all we have to do is find
such a formulap(y). In fact, what we find will not be thig(y) exactly, but it will be
close enough.

Every existentially closed model oftDF is differentially perfect [13, Lem. 2.4,
p. 1334]. The dierentially perfect models compose an elementary clask,antheory
m-DPF. We shall show tha-DCF is axiomatized by the axioms ofDPF, along with
sentences that are formed roughly as in (21) and that aréneftas K, do, . . ., dm-1)
ranges over the fierentially perfect models afi-DF (or simply the countable fieren-
tiably perfect models).

The point of considering only fierentially perfect modelsK(, do, ..., dm-1) is that
now, since the derivations dd can be extended th as above, the extensidrK is
separable [13, Lem. 1.5, p. 1328]. Hence there is aAset indices €, h) such that
(af:: (&,h) € A) is a separating transcendence basik/#f. Changing its earlier mean-
ing, let us now use to denote the basisaf(: (&,h) € A). Let B consist of the indices

(¢, h) that are not irA, although still¢] < 2r andh < n; also, writeb for (aﬁ: (&,h) € B).
Now we can write

@:ll<2r & h<n)=(a: (£h) e AUB) = (a,b).

For each 4, g) in B, there is an irreducible polynomial ovirthat expresses the sepa-
rable algebraic dependenceajfon a. More precisely, there is a ligi of parameters
from K, and for eachif, g) in A, there is an elemerft] of Z[y, x;:: &heAuim ol
such thatf(p, a, x{) is irreducible and separable, afif{p, a, al) = 0.

Let V be the variety oveK with generic point &, b). The tangent spacg(V)a.v)
consists of all pointsd’, b’) such that the zero-derivatidd on K extends toK(a, b),
that is, toL, so thatD(a, b) = (a’,b’). In particular, the tangent space is defined by
the linear functionsD fg(p, aﬁ 0,2‘;:: (& h) € AU {(n,9)}), which we may write as
Dfg(p,a, 8,0, z,7). For each in m, this tangent space has the translaffofV) q v
(part of the twisted tangent bundle mentioned in 2.2) cosipgithose ¢’, b’) such that
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0; extends td; so thatDj(a, b) = (a’, b’). In particular, the fiine spacd;(V)q.») is de-
fined by the functions f§ (p, a. &}, dip, z, Z}). Therefore, whenevelr € K(x: (¢,h) e
AU B) and f(a,b) = 0, thendg;f(a,b, z, w) is a linear combination ovel of the
functionsd; f{ (p. a, &}, dip, z, Z). This will allow the formulay(y) to ensure that the
differential condition is met.

A complication is that, for some(h) in A, we may havdé| = 2r. But by The-
orem 4.3, or more precisely its proof, since we have assuilmer tis no separable
Ieaderaﬁ such thaté] = 2r, we may assume further that there aﬁechosen generi-
cally when|¢] = 2r + 1 such thatK, dp, . ..,0m-1) has an extension compatible with
K(af:: |£] < 2r +1 & h < n). By lengtheningp as necessary, we may assume that there
is a finite subse® of Z[y, xﬁ: |€] < 2r + 1 & h < n] that contains all of the polynomials
fg and is such thatf(p,@: £l < 2r+1 & h < n): f e S} generates the ideal of
polynomials oveK that are 0 ate(f]: €] < 2r + 1 & h < n). By the existence of an
extension of K, dp, . ..,0m-1) compatible withK(a’f]: €] < 2r + 1 & h < n), each poly-
nomiald; f(p, X, dip, X, ™" (£,h) € AU {(1,9)}) is a certain linear combination of the
polynomialsf(p,x : |&] < 2r + 1 & h < n), wheref € S. Conversely, this conclusion
is enough to ensure tth(af;: |£] < 2r + 1 & h < n) meets the dferential condition.

We can lengthemp and enlargeS further, if necessary, to ensure tHatcontains
polynomials showing that each Ieaﬁris algebraically dependent on its predecessors.
We can now write a formula(y) that is satisfied ink, do, .. .,dm-1) by p and is such
that, if g satisfiesp(y) in an arbitrary diferentially perfect modelq’, do, . .., Om-1) Of
m-DF, and (;f]: |£] < 2r + 1 & h < n) is a generic point of a component of the zero-set

of {f(g, X : ¢l <2r +1& h<n): f €S}, then:

(i) each polynomialfg(q, c, 7)) is irreducible and separable, where- (Cﬁ: &h) e
A);
(i if aﬁ is a leader, then so r% and these are alike separable or not;
(iii) the transcendence-degreeslofa : ¢ < 2r + 1 & h < n)/K andK’(c5: ¢] <
2r +1 & h < n)/K’ are the same, so theﬁ is a leader only ifa,f is;
(iv) the extensiorK’(ci: (&, h) e Au B) satisfies the dierential condition.

Here the possibility of ensuring the field-theoretic coiudit(iii) is an instance of the
general model-theoretic result that Morley rank is defiaaktrongly minimal theories
[10, Lem. 6.2.20, p. 225]. Itis not necessary to ensure tieeget f (g, Xﬁ: El<2r+1 &
h < n): f € S} generates a prime ideal; it is enough that this is so whep. The
sentence in (21) is now true in all existentially closed medém-DF, and the set of all
such sentences, together withDPF, axiomatizes+DCF as described. 4

By Theorem 3.1, DP now also has a model-companion.

4.3. Differential forms again. The condition in Theorem 4.3 can be adjusted to
yield the following:

TueoreM 4.7. Supposé€K, 9o, . .., 0m-1) E m-DF, and K has an extension(bf;: €] <
lul & h < n) meeting the dferential condition for somg in ™ and some positive in-
teger n. Suppose further that, if as a minimal separable leader, then < u. Then

(K, do, . ..,0m-1) has an extension compatible witr(ag: €] < lul & h<n).
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Proor. The proof is as for Theorem 4.B)utatis mutandisWhat needs adjusting is
the choosing of] in case botm;‘i and a}'" are separable leaders. Again we have

minimal separable leadee§ anda, belowa;*i anda;’j respectively. Since we may
assumeéu| < |7], there is somé& in msuch thau(k) < 7(k). If k = j, thenz(j) < u(j) <
(j), son(j) < (r = 4)(J) = (r =i - 5)(j). Thenz < 7 -1 - j, soa’ is belowa] * .
Now we can proceed as before. 4

As Theorem 4.3 yields Theorem 4.5, so Theorem 4.7 yields mactaization of the
existentially closed models of-DF. Moreover, Theorems 4.3 and 4.7 can be combined
in the following way:

TueoreM 4.8. SupposéK, do, . .., dm-1) E m-DF, and K has an extension(Kf]: €] <
2r & h < n) meeting the dferential condition for some positive integers n and r. Sup-
pose further that, for each k in m, eithier| < r whenever @ is a minimal separable
leader, or else there is somein o™ such thatiz| = 2r, and|o| < |7| whenever @ is
a minimal separable leader. TheéK, do,...,dn-1) has an extension compatible with
K(a: ¢l < 2r & h<n).

Proor. Combine the proofs of Theorems 4.3 and 4.7. 4

There is a corresponding first-order characterizationeftibdels om-DCF, parallel
to Theorem 4.5 and Corollary 4.6.

4.4. Another sufficient condition. If (K,do,...,dm1) F MDF, andK(&: | <
Ir] & h < n)is an extensioh of K meeting the dterential condition, this by itself is not
enough to ensure tha(do, . . . , dm-1) has an extension compatible with However, if
such an extension does exist, then its existence can be $hyomreans of Theorem 4.3,
provided|n| can be made large enough: this is Theorem 4.10 below, whiigls i@ the
existence of bounds as in the following.

Lemma 4.9. For all positive integers m and n, for all sequengas i € w) of positive
integers, there is a bound on the length of strictly incragsthains

SocSicS,c--- (22)
of antichains g of (w™ x n, <), where also § C {(£,h): €] < a}.

Proor. Divide and conquer. First reduce to the case wienl. Indeed, suppose the
claim does hold in this case. Suppose also, as an inductpethgsis, that the claim
holds whem = ¢. Now fix mand the sequence;i( i € w) or rather &(i): i € w), and
consider arbitrary chains as in (22), where £+1. Analyze eacl$, asS,US}/, where

k={(&h) eSc:h< ¢y, v ={(¢h)eSk:h=10).

For eactk such thaSy,; exists, at least one of the inclusioBsc S} ,; andS; ¢ S}/,
is strict; also, by our assumption, there is an upper bdykylon those such that

S/ cSl, ccSl,. (23)

The functionf depends only omand & : i € w)), hot on the choice of chain in (22).
Letk(0) = 0, and ifk(i) has been chosen, Ikfi + 1) be the least, if it exists, such

thatS’k(i) c S;. Herek(i) does depend on the chain. But ifs maximal in (23), and;

exists, ther5, c S{. Hencek(i + 1) < f(k(i)). Since the functiorf is not necessarily
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increasing, we derive from it the increasing functmmwhereg(k) = max« f(i). Then
X<y=9(x) <g(y), so
r

k() < fk(r = 1)) <gk(r - 1)) <gog(k(r -2)) <---<go---09g(0) = g(0). (24)

In particular,Sxy) C {(& h): €] < a(g'(0))}. The sequencea(g'(0)): i € w) does not
depend on the original chain. Hence the inductive hyposhesplies to the chain

Sko) € Skay € (25)

showing that there is (independent of the original chain) such tkéd) is defined, and
r < sfor all entriesS’k(r) in (25). Hence also, by (24), I, is an entry in (25), then
r < k(s) < g%0).

Now supposes; is the final entry in (25). The®; c S/, c ---; butif S{’ is an
entry of this chain, theh< f(r) < g(r) < 9(g%(0)) = g***(0).

Therefore the original chain in (22) has a final ergywheret < g5*%(0). Thus the
claim holds whem = ¢ + 1. By induction, the claim holds for all positive provided it
holds whem = 1.

It remains to show that, for all positive, for all sequencesa(: i € w), there is a
bound on the length of chains

S()CSlCSQC-" (26)
of antichainsSi of (0™, <), whereSy C {¢: |£] < a&}. The claim is trivially true when

m= 1. Suppose itis true whan = ¢. Now letm = £ + 1, and suppose we have a chain
as in (26). We may assume tt& contains some-. If i < mandj € o, let

Syl = 1€ €S () = ).
Then the inductive hypothesis applies to chains of the form
SL‘({)) c S:(‘(‘l) c SL’(JZ) c---
Moreover, ift € Sy, thent(i) < o(i) for somei in m (sinceo is also inSy, and this is

an antichain). Hence
s=U st
i<m j<o(i)
a union of no more thajar| + mmany sets, hence no more they+ m-many sets. So
the proof can proceed as in the reductiomte 1: for eachk such thatSy,; exists, one
of the inclusionsS, ! ¢ S/, is strict, and so forth. 4

Tueorem 4.10. Suppose m, r, and n are positive integers. Then there is diymsi
integer s, where 1< s, such that, i{K, do, . ..,dm-1) E m-DF, and K(ai: €] < s &
h < n) meets the gferential condition, therfK, do, .. .,dm-1) has an extension that is
compatible with K& : |¢] <1 & h<n).

ProoF. SupposeK(a‘;i: |€] < 2'r & h < n) meets the dferential condition for some
Whenu < t, letK, = K(af]: £l < 2% & h < n), and letS, be the set of minimal
separable leaders &f,. Then we have an increasing ch&@p € S; € ... € S;. By
the preceding lemma, there is a valug,alepending only om, r, andn, large enough
that this chain cannot be strictly increasing. Ti&n= S.1 for someu less than this.
ThenKy,; satisfies the hypothesis of Theorem 4.3. BaX,, . . ., dm-1) has an extension
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compatible WithK(ai: €] < 2¥*1r & h < n), anda fortiori with K(aﬁ: £l <r & h<n).
In short, the desiredis 2r. 4

This theorem yields yet another first-order characteoratif the models ofm-DCF.

REFERENCES

[1] Jo~ Barwise and AeranaMm Rosinson, Completing theories by forcingnn. Math. Logic, vol. 2 (1970),
no. 2, pp. 119-142.

[2] Lenore Brum, Differentially closed fields: a model-theoretic to@ontributionsto algebra (collection
of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 37-61.

[3] Cuen Crung Cuang, On unions of chains of modeRroc. Amer. Math. Soc., vol. 10 (1959), pp. 120-
127.

[4] ZoE Cuarzipakis and Eiup Hrusnovski, Model theory of dference fieldsTrans. Amer. Math. Soc.,
vol. 351 (1999), no. 8, pp. 2997-3071.

[5] PauL Exror and GisrieL SaeeagH, Model-completions and module&nn. Math. Logic, vol. 2
(19701971), no. 3, pp. 251-295.

[6] E. R. Korcuin, Differential algebra and algebraic groups, Academic Press, New York, 1973, Pure
and Applied Mathematics, Vol. 54.

[7] Protr KowaLski, Derivations of the Frobenius mag. Symbolic Logic, vol. 70 (2005), no. 1, pp. 99—
110.

[8] Jerzy L os and Rman Suszko, On the extending of models (1V): Infinite sums of madelsd. Math.,
vol. 44 (1957), pp. 52-60.

[9] AnGcus MacintyrE, Generic automorphisms of field&nn. Pure Appl. Logic, vol. 88 (1997), no. 2-3,
pp. 165-180, Joint AILA-KGS Model Theory Meeting (Florend695).

[10] Davio MarkER, Model theory: an introduction, Graduate Texts in Mathematics, vol. 217, Springer-
Verlag, New York, 2002.

[11] Tracey McGram, The model theory of glerential fields with finitely many commuting derivatipns
J. Symboalic Logic, vol. 65 (2000), no. 2, pp. 885-913.

[12] Davip Pierce, Differential forms in the model theory offféirential fields J. Symbolic Logic, vol. 68
(2003), no. 3, pp. 923-945.

[13] , Geometric characterizations of existentially closed Beldth operatorslllinois J. Math.,
vol. 48 (2004), no. 4, pp. 1321-1343.

[14] Davio Pierce and Avanp Priay, A note on the axioms for giérentially closed fields of characteristic
zerq J. Algebra, vol. 204 (1998), no. 1, pp. 108-115.

[15] Josepu FeLs Rirt, Differential algebra, Dover Publications Inc., New York, 1966, originally pub-
lished in 1950.

[16] A. Rosmnson, Some problems of definability in the lower predicate calsufund. Math., vol. 44
(1957), pp. 309-329.

[17] Aeranam Rosinson, Introduction to model theory and to the metamathematics of algebra, North-
Holland Publishing Co., Amsterdam, 1963.

[18] , Complete theories, second ed., North-Holland Publishing Co., Amsterdam, 19Vith a
preface by H. J. Keisler, Studies in Logic and the Foundatmfriviathematics, first published 1956.

[19] AzrieL RoseneeLp, Specializations in dferential algebra Trans. Amer. Math. Soc., vol. 90 (1959),
pp. 394-407.

[20] GeraLp E. Sxcks, Saturated model theory, W. A. Benjamin, Inc., Reading, Mass., 1972, Mathematics
Lecture Note Series.

[21] A. SemenserG, Some basic theorems inffdirential algebra (characteristic p, arbitrary)Trans.
Amer. Math. Soc., vol. 73 (1952), pp. 174-190.

[22] , An elimination theory for gferential algebra Univ. California Publ. Math. (N.S.), vol. 3
(1956), pp. 31-65.

[23] SanaroN SHeLaH, Differentially closed fieldd srael J. Math., vol. 16 (1973), pp. 314-328.

[24] H. Smmons, Existentially closed structures. Symbolic Logic, vol. 37 (1972), pp. 293-310.

[25] MicHaEL F. SnGer, The model theory of orderedfirential fieldsJ. Symbolic Logic, vol. 43 (1978),
no. 1, pp. 82-91.




18 DAVID PIERCE

[26] , Model theory of partial dferential fields: from commuting to noncommuting derivagjon
Proc. Amer. Math. Soc., vol. 135 (2007), no. 6, pp. 1929-1934 (electronic).

[27] Marcus Tresst, The uniform companion for largegrential fields of characteristic,drans. Amer.
Math. Soc., vol. 357 (2005), no. 10, pp. 3933-3951 (electronic).

[28] Caror Woob, The model theory of glerential fields of characteristic p 0, Proc. Amer. Math. Soc.,
vol. 40 (1973), pp. 577-584.

[29] , Prime model extensions forft#irential fields of characteristic g 0, J. Symbolic Logic,
vol. 39 (1974), pp. 469-477.

[30] Yoav Yarre, Model completion of Lie dirential fields Ann. Pure Appl. Logic, vol. 107 (2001),
no. 1-3, pp. 49-86.

MATHEMATICS DEPARTMENT
MIDDLE EAST TECHNICAL UNIVERSITY
ANKARA 06531, TURKEY
E-mail: dpierce@metu.edu.tr
URL: httpy/metu.edu.fdpierce



