CHAINS OF THEORIES AND COMPANIONABILITY

ÖZCAN KASAL AND DAVID PIERCE

ABSTRACT. The theory of fields that are equipped with a countably infinite family of commuting derivations is not companionable; but if the axiom is added whereby the characteristic of the fields is zero, then the resulting theory is companionable. Each of these two theories is the union of a chain of companionable theories. In the case of characteristic zero, the model-companions of the theories in the chain form another chain, whose union is therefore the model-companion of the union of the original chain. However, in a signature with predicates, in all finite numbers of arguments, for linear dependence of vectors, the two-sorted theory of vector-spaces with their scalar-fields is companionable, and it is the union of a chain of companionable theories, but the model-companions of the theories in the chain are mutually inconsistent. Finally, the union of a chain of non-companionable theories may be companionable.

A **theory** in a given signature is a set of sentences, in the first-order logic of that signature, that is closed under logical implication. We shall consider chains $(T_m : m \in \omega)$ of theories: this means

$$T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots$$
 (*)

The signature of T_m will be \mathscr{S}_m , so automatically $\mathscr{S}_0 \subseteq \mathscr{S}_1 \subseteq \mathscr{S}_2 \subseteq \cdots$

In one motivating example, \mathscr{S}_m is $\{0,1,-,+,\cdot,\partial_0,\ldots,\partial_{m-1}\}$, the signature of fields with m additional singulary operation-symbols; and T_m is m-DF, the theory of fields (of any characteristic) with m commuting derivations. In this example, each T_{m+1} is a **conservative extension** of T_m , that is, $T_{m+1} \supseteq T_m$ and every sentence in T_{m+1} of signature \mathscr{S}_m is already in T_m . We establish this by showing that every model of T_m expands to a model of T_{m+1} . (This condition is sufficient, but not necessary $[3, \S 2.6, \text{ exer. } 8, \text{ p. } 66]$.) If $(K, \partial_0, \ldots, \partial_{m-1}) \models m$ -DF, then $(K, \partial_0, \ldots, \partial_m) \models (m+1)$ -DF, where ∂_m is the 0-derivation.

Date: March 12, 2013.

²⁰¹⁰ Mathematics Subject Classification. 03C10, 03C60, 12H05, 13N15.

The union of the theories m-DF can be denoted by ω -DF: it is the theory of fields with ω -many commuting derivations. Each of the theories m-DF has a model-companion, called m-DCF [11]; but we shall show (as Theorem 3 below) that ω -DF has no model-companion. Let us recall that a model-companion of a theory T is a theory T^* in the same signature such that (1) $T_{\forall} = T^*_{\forall}$, that is, every model of one of the theories embeds in a model of the other, and (2) T^* is model-complete, that is, $T^* \cup diag(\mathfrak{M})$ axiomatizes a complete theory for all models \mathfrak{M} of T^* . Here $diag(\mathfrak{M})$ is the quantifier-free theory of \mathfrak{M} with parameters: equivalently, $diag(\mathfrak{M})$ is the theory of all structures in which \mathfrak{M}_M embeds. (These notions, with historical references, are reviewed further in [11].) A theory has at most one model-companion, by an argument with interwoven elementary chains.

Let $m\text{-}\mathrm{DF}_0$ be $m\text{-}\mathrm{DF}$ with the additional requirement that the field have characteristic 0. Then $m\text{-}\mathrm{DF}_0$ has a model-companion, called $m\text{-}\mathrm{DCF}_0$ [6]. We shall show (as Theorem 6 below) that $m\text{-}\mathrm{DCF}_0 \subseteq (m+1)\text{-}\mathrm{DCF}_0$. It will follow then that the union $\omega\text{-}\mathrm{DF}_0$ of the $m\text{-}\mathrm{DF}_0$ has a model-companion, which is the union of the $m\text{-}\mathrm{DCF}_0$. This is by the following general result, which has been observed also by Alice Medvedev [7, 8]. Again, the theories T_k are as in (*) above.

Theorem 1. Suppose each theory T_k has a model-companion T_k^* , and

$$T_0^* \subseteq T_1^* \subseteq T_2^* \subseteq \cdots \tag{\dagger}$$

Then the theory $\bigcup_{k \in \omega} T_k$ has a model-companion, namely $\bigcup_{k \in \omega} T_k^*$.

Proof. Write U for $\bigcup_{k\in\omega} T_k$, and U^* for $\bigcup_{k\in\omega} T_k^*$. Suppose $\mathfrak{A}\models U$, and Γ is a finite subset of $U^*\cup \operatorname{diag}(\mathfrak{A})$. Then Γ is a subset of $T_k^*\cup \operatorname{diag}(\mathfrak{A}\upharpoonright \mathscr{S}_k)$ for some k in ω , and also $\mathfrak{A}\upharpoonright \mathscr{S}_k\models T_k$. Since $(T_k^*)_\forall\subseteq T_k$, the structure $\mathfrak{A}\upharpoonright \mathscr{S}_k$ must embed in a model of T_k^* ; and this model will be a model of Γ . We conclude that Γ is consistent. Therefore $U^*\cup\operatorname{diag}(\mathfrak{A})$ is consistent. Thus $U^*_\forall\subseteq U$. By symmetry $U_\forall\subseteq U^*$.

Similarly, if $\mathfrak{B} \models U^*$, then $T_k^* \cup \operatorname{diag}(\mathfrak{B} \upharpoonright \mathscr{S}_k)$ axiomatizes a complete theory in each case, and therefore $U^* \cup \operatorname{diag}(\mathfrak{B})$ is complete.

The foregoing proof does not require that the signatures \mathscr{S}_k form a chain, but needs only that every finite subset of $\bigcup_{k\in\omega}\mathscr{S}_k$ be included in some \mathscr{S}_k . This is the setting for Medvedev's [8, Prop. 2.4, p. 6], which then has the same proof as the foregoing. Also in Medvedev's setting, each T_{k+1}^* is a conservative extension of T_k^* ; but only the weaker assumption $T_k^* \subseteq T_{k+1}^*$ is needed in the proof.

Medvedev notes that many properties that the theories T_k might have are 'local' and are therefore preserved in $\bigcup_{k\in\omega} T_k$: examples are completeness, elimination of quantifiers, stability, and simplicity. In her main application, \mathscr{S}_n is the signature of fields with singulary operation-symbols $\sigma_{m/n!}$, where $m\in\mathbb{Z}$; and T_n is the theory of fields on which the $\sigma_{m/n!}$ are automorphisms such that

$$\sigma_{k/n!} \circ \sigma_{m/n!} = \sigma_{(k+m)/n!}$$
.

Then T_n includes the theory S_n of fields with the single automorphism $\sigma_{1/n!}$. Using [12, §1] (which is based on [3, ch. 5]), we may observe at this point that reduction of models of T_n to models of S_n is actually an equivalence of the categories $\operatorname{Mod}^{\subseteq}(T_n)$ and $\operatorname{Mod}^{\subseteq}(S_n)$, whose objects are models of the indicated theories, and whose morphisms are embeddings. We thus have at hand a (rather simple) instance of the hypothesis of the following theorem.

Theorem 2. Suppose (I, J) is a bi-interpretation of theories S and T such that I is an equivalence of the categories $\operatorname{Mod}^{\subseteq}(S)$ and $\operatorname{Mod}^{\subseteq}(T)$. If S has the model-companion S^* , and $S \subseteq S^*$, then T also has a model-companion, which is the theory of those models \mathfrak{B} of T such that $J(\mathfrak{B}) \models S^*$.

Proof. The class of models \mathfrak{B} of T such that $J(\mathfrak{B}) \models S^*$ is elementary. Let T^* be its theory. Then $T \subseteq T^*$. Suppose $\mathfrak{B} \models T$. Then $J(\mathfrak{B}) \models S$, so $J(\mathfrak{B})$ embeds in a model \mathfrak{A} of S^* . Consequently $I(J(\mathfrak{B}))$ embeds in $I(\mathfrak{A})$. Also $I(\mathfrak{A}) \models T^*$, since $\mathfrak{A} \cong J(I(\mathfrak{A}))$. Since also $\mathfrak{B} \cong I(J(\mathfrak{B}))$, we conclude that \mathfrak{B} embeds in a model of T^* . Finally, T^* is model-complete. Indeed, suppose now \mathfrak{B} and \mathfrak{C} are models of T^* such that $\mathfrak{B} \subseteq \mathfrak{C}$. An embedding of $J(\mathfrak{B})$ in $J(\mathfrak{C})$ is induced, and these structures are models of S^* , so the embedding is elementary. Therefore the induced embedding of $I(J(\mathfrak{B}))$ in $I(J(\mathfrak{C}))$ is also elementary. By the equivalence of the categories, $\mathfrak{B} \preceq \mathfrak{C}$.

In the present situation, the theory S_n has a model-companion [5, 1]; let us denote this by $ACFA_n$. By the theorem then, T_n has a model-companion T_n^* , which is axiomatized by $T_n \cup ACFA_n$. We have $ACFA_n \subseteq T_{n+1}^*$ by [1, 1.12, Cor. 1, p. 3013]. By Theorem 1 then, $\bigcup_{n \in \omega} T_n$ has a model-companion, which is the union of the T_n^* . Medvedev calls this union $\mathbb{Q}ACFA$; she shows for example that it preserves the simplicity of the $ACFA_n$, as noted above, though it does not preserve their supersimplicity.

The following is similar to the result that the theory of fields with a derivation and an automorphism (of the field-structure only) has no model-companion [10]. The obstruction lies in positive characteristics p, where all derivatives of elements with p-th roots must be 0.

Theorem 3. The theory ω -DF has no model-companion.

Proof. We use that an $\forall \exists$ theory T has a model-companion if and only if the class of its existentially closed models is elementary, and in this case the model-companion is the theory of this class [2]. (A model $\mathfrak A$ of T is an **existentially closed** model, provided that if $\mathfrak B \models T$ and $\mathfrak A \subseteq \mathfrak B$, then $\mathfrak A = \mathfrak A$, that is, all quantifier-free formulas over A that are soluble in $\mathfrak B$ are soluble in $\mathfrak A$.) For each n in ω , the theory ω -DF has an existentially closed model $\mathfrak A_n$, whose underlying field includes $\mathbb F_p(\alpha)$, where α is transcendental; and in this model,

$$\partial_k \alpha = \begin{cases} 1, & \text{if } k = n, \\ 0, & \text{otherwise.} \end{cases}$$

Then α has no p-th root in \mathfrak{A}_n . Therefore, in a non-principal ultraproduct of the \mathfrak{A}_n , α has no p-th root, although $\partial_n \alpha = 0$ for all n in ω , so that α does have a p-th root in some extension. Thus the ultraproduct is not an existentially closed model of ω -DF. Therefore the class of existentially closed models of ω -DF is not elementary.

It follows then by Theorem 1 that m-DCF $\nsubseteq (m+1)$ -DCF for at least one m. In fact this is so for all m, since

$$m\text{-DCF} \vdash p = 0 \to \forall x \left(\bigwedge_{i < m} \partial_i x = 0 \to \exists y \ y^p = x \right),$$

but (m+1)-DCF does not entail this sentence, since

$$(m+1)$$
-DCF $\vdash \exists x \left(\bigwedge_{i < m} \partial_i x = 0 \land \partial_m x \neq 0 \right).$

However, this observation by itself is not enough to establish the last theorem. For, by the results of [12], it is possible for each T_k to have a model-companion T_k^* , while $\bigcup_{k \in \omega} T_k$ has a model-companion that is not $\bigcup_{k \in \omega} T_k^*$. We may even require T_{k+1} to be a conservative extension of T_k .

Indeed, if k>0, then in the notation of [12], VS_k is the theory of vector-spaces with their scalar-fields in the signature $\{+,-,\mathbf{0},\circ,0,1,*,P^k\}$, where \circ is multiplication of scalars, and * is the action of the scalar-field on the vector-space, and P^k is k-ary linear dependence. In particular, P^2 may written also as \parallel . Then VS_k has a model-companion, VS_k*, which is the theory of k-dimensional vector-spaces over algebraically closed fields [12, Thm 2.3]. Let VS_{\omega} = $\bigcup_{1 \leqslant k < \omega}$ VS_k. (This was called VS_{\impsi} in [12].) This theory has the model-companion VS_{\impsi}*, which is the theory of infinite-dimensional vector-spaces over algebraically closed fields [12, Thm 2.4]. In particular

 VS_{ω}^* is not the union of the VS_k^* , because these are mutually inconsistent. We now turn this into a result about chains:

Theorem 4. If $1 \le n < \omega$, let T_n be the theory axiomatized by $VS_1 \cup \cdots \cup VS_n$. Then T_n has a model-companion T_n^* , which is axiomatized by $T_n \cup VS_n^*$. Also T_{n+1} is a conservative extension of T_n . However, the model-companion VS_{ω}^* of the union VS_{ω} of the chain $(T_n: 1 \le n < \omega)$ is not the union of the T_n^* .

Proof. Every vector-space can be considered as a model of every VS_k and hence of every T_k . In particular, T_{n+1} is a conservative extension of T_n . If the theories T_n^* are as claimed, then they are mutually inconsistent, and so VS_{ω}^* is not their union. It remains to show that there are theories T_n^* as claimed. We already know this when n=1. For the other cases, if $1 \leq k < n$, we define the relations P^k in models of VS_n of dimension at least n.

Let $\operatorname{VS}_n^{\operatorname{m}}$ the theory of such models: that is, $\operatorname{VS}_n^{\operatorname{m}}$ is axiomatized by VS_n and the requirement that the space have dimension at least n. The relation P^1 is defined in models of $\operatorname{VS}_n^{\operatorname{m}}$ (and indeed in models of VS_n) by the quantifier-free formula $\boldsymbol{x}=\mathbf{0}$. If n>2, then there are existential formulas that, in each model of $\operatorname{VS}_n^{\operatorname{m}}$, define the relation \parallel and its complement [12, §2, p. 431]. More generally, if $1\leqslant k< n-1$, then, using existential formulas, we can define P^{k+1} and its complement in models of $T_k \cup \operatorname{VS}_n^{\operatorname{m}}$ or just $\operatorname{VS}_k \cup \operatorname{VS}_n^{\operatorname{m}}$. Indeed, $\neg P^{k+1} \boldsymbol{x}_0 \cdots \boldsymbol{x}_k$ is equivalent to $\exists (\boldsymbol{x}_{k+1}, \dots, \boldsymbol{x}_{n-1}) \ \neg P^n \boldsymbol{x}_0 \cdots \boldsymbol{x}_{n-1}$, and $P^{k+1} \boldsymbol{x}_0 \cdots \boldsymbol{x}_k$ is equivalent to

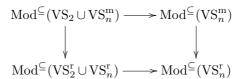
$$\exists (\boldsymbol{x}_{k+1},\ldots,\boldsymbol{x}_n) \ \bigg(P^k \boldsymbol{x}_1 \cdots \boldsymbol{x}_k \vee \Big(\neg P^n \boldsymbol{x}_1 \cdots \boldsymbol{x}_n \wedge \bigwedge_{j=k+1}^n P^n \boldsymbol{x}_0 \cdots \boldsymbol{x}_{j-1} \boldsymbol{x}_{j+1} \cdots \boldsymbol{x}_n \Big) \bigg).$$

For, in a space of dimension at least n, if (a_0, \ldots, a_k) is linearly dependent, but (a_1, \ldots, a_k) is not, this means precisely that (a_1, \ldots, a_n) is independent for some (a_{k+1}, \ldots, a_n) , but a_0 is a unique linear combination of (a_1, \ldots, a_n) , and in fact of $(a_1, \ldots, a_{j-1}, a_{j+1}, \ldots a_n)$ whenever $k+1 \leq j \leq n$, and (therefore) of (a_1, \ldots, a_k) .

By [12, Lem 1.1, 1.2], if $1 \leq k < n-1$, we now have that reduction from models of $T_{k+1} \cup \mathrm{VS}_n^{\mathrm{m}}$ to models of $T_k \cup \mathrm{VS}_n^{\mathrm{m}}$ is an equivalence of the categories $\mathrm{Mod}^\subseteq(T_{k+1} \cup \mathrm{VS}_n^{\mathrm{m}})$ and $\mathrm{Mod}^\subseteq(T_k \cup \mathrm{VS}_n^{\mathrm{m}})$. Combining these results for all k, we have that reduction from models of $T_{n-1} \cup \mathrm{VS}_n^{\mathrm{m}}$ to models of $\mathrm{VS}_n^{\mathrm{m}}$ is an equivalence of the categories $\mathrm{Mod}^\subseteq(T_{n-1} \cup \mathrm{VS}_n^{\mathrm{m}})$ and $\mathrm{Mod}^\subseteq(\mathrm{VS}_n^{\mathrm{m}})$. Since $\mathrm{VS}_n \subseteq \mathrm{VS}_n^{\mathrm{m}}$ and every model of VS_n embeds in a model

of VS_n^m , the two theories have the same model-companion, namely VS_n^* . Similarly, T_n and $T_{n-1} \cup VS_n^m$ have the same model-companion; and by Theorem 2, this is axiomatized by $T_n \cup VS_n^*$.

A one-sorted version of the last theorem can be developed as follows. Let VS_n^r comprise the sentences of VS_n^m having one-sorted signature $\{0, -, +, P^n\}$ of the sort of vectors alone. It is not obvious that all models of VS_n^m can be furnished with scalar-fields to make them models of VS_n^r again; but this will be the case. By [12, Thm 1.1], it is the case when n=2: reduction of models of VS_2^m to models of VS_2^r is an equivalence of the categories $Mod^{\subseteq}(VS_2^m)$ and $\mathrm{Mod}^{\subseteq}(\mathrm{VS}_2^r)$. This reduction is therefore **conservative**, by the definition of [12, p. 426]. It is said further at [12, p. 431] that reduction from VS_n^m to VS_n^r is conservative when n > 2; but the details are not spelled out. However, the claim can be established as follows. Immediately, reduction from $VS_2 \cup VS_n^m$ to $VS_2^r \cup VS_n^r$ is conservative. In particular, models of the latter set of sentences really are vector-spaces without their scalar-fields. It is noted in effect in the proof of Theorem 4 that reduction from $VS_2 \cup VS_n^m$ to VS_n^m is conservative. Furthermore, in models of the latter theory, the defining of parallelism and its complement is done with existential formulas in the signature of vectors alone. Therefore reduction from $VS_2^r \cup VS_n^r$ to VS_n^r is conservative. We now have the following commutative diagram of reduction-functors, three of them being conservative, that is, being equivalences of categories.



Therefore the remaining reduction, from $\operatorname{VS}_n^{\operatorname{m}}$ to $\operatorname{VS}_n^{\operatorname{r}}$, must be conservative. Now there is a version of Theorem 4 where T_n is axiomatized by $\operatorname{VS}_2^{\operatorname{r}} \cup \cdots \cup \operatorname{VS}_n^{\operatorname{r}}$. Indeed, by Theorem 2, T_n has a model-companion, which is the theory (in the same signature) of n-dimensional vector-spaces over algebraically closed fields; and the union of the T_n has a model-companion, which is the theory of infinite-dimensional vector-spaces over algebraically closed fields; but this theory is not the union of the model-companions of the T_n .

The implication $A \Rightarrow B$ in the following is used implicitly at [1, 1.12, p. 3013] to establish the result used above, that if (K, σ) is a model of ACFA, then so is (K, σ^m) , assuming $m \ge 1$.

Theorem 5. Assuming as usual $T_0 \subseteq T_1$, where each T_k has signature \mathscr{S}_k , we consider the following conditions.

A. For every model \mathfrak{A} of T_1 and model \mathfrak{B} of T_0 such that

$$\mathfrak{A} \upharpoonright \mathscr{S}_0 \subseteq \mathfrak{B},\tag{\ddagger}$$

there is a model \mathfrak{C} of T_1 such that

$$\mathfrak{A} \subseteq \mathfrak{C}, \qquad \mathfrak{B} \subseteq \mathfrak{C} \upharpoonright \mathscr{S}_0.$$
 (§)

- B. The reduct to \mathcal{S}_0 of every existentially closed model of T_1 is an existentially closed model of T_0 .
- C. T₀ has the Amalgamation Property: if one model embeds in two others, then those two in turn embed in a fourth model, compatibly with the original embeddings.
- D. T_1 is $\forall \exists$ (so that every model embeds in an existentially closed model).

We have the two implications

$$A \Longrightarrow B$$
, $B \& C \& D \Longrightarrow A$,

but there is no implication among the four conditions that does not follow from these. This is true, even if T_1 is required to be a conservative extension of T_0 .

Proof. Suppose A holds. Let \mathfrak{A} be an existentially closed model of T_1 , and let \mathfrak{B} be an arbitrary model of T_0 such that (\ddagger) holds. By hypothesis, there is a model \mathfrak{C} of T_1 such that (\S) holds. Then $\mathfrak{A} \preccurlyeq_1 \mathfrak{C}$, and therefore $\mathfrak{A} \upharpoonright \mathscr{S}_0 \preccurlyeq_1 \mathfrak{C} \upharpoonright \mathscr{S}_0$, and a fortiori $\mathfrak{A} \upharpoonright \mathscr{S}_0 \preccurlyeq_1 \mathfrak{B}$. Therefore $\mathfrak{A} \upharpoonright \mathscr{S}_0$ must be an existentially closed model of T_0 . Thus B holds.

Suppose conversely B holds, along with C and D. Let $\mathfrak{A} \models T_1$ and $\mathfrak{B} \models T_0$ such that (\ddagger) holds. We establish the consistency of $T_1 \cup \operatorname{diag}(\mathfrak{A}) \cup \operatorname{diag}(\mathfrak{B})$. It is enough to show the consistency of

$$T_1 \cup \operatorname{diag}(\mathfrak{A}) \cup \{\exists \boldsymbol{x} \ \varphi(\boldsymbol{x})\},$$
 (¶)

where φ is an arbitrary quantifier-free formula of $\mathscr{S}_0(A)$ that is soluble in \mathfrak{B} . By D, there is an existentially closed model \mathfrak{C} of T_1 that extends \mathfrak{A} . By B then, $\mathfrak{C} \upharpoonright \mathscr{S}_0$ is an existentially closed model of T_0 that extends $\mathfrak{A} \upharpoonright \mathscr{S}_0$. By C, both \mathfrak{B} and $\mathfrak{C} \upharpoonright \mathscr{S}_0$ embed over $\mathfrak{A} \upharpoonright \mathscr{S}_0$ in a model of T_0 . In particular, φ will be soluble in this model. Therefore φ is already soluble in $\mathfrak{C} \upharpoonright \mathscr{S}_0$ itself. Thus \mathfrak{C} is a model of (\P) . Therefore A holds.

The foregoing arguments eliminate the five possibilities marked X on the table below, where 0 means false, and 1, true. We give examples of each

	1	X	2	3	4	X	5	6	7	X	8	9	10	X	X	11
\overline{A}	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
B	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
C	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
D	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

of the remaining cases, numbered according to the table. In each example, T_0 will be the reduct of T_1 to \mathscr{S}_0 . We shall denote by \mathscr{S}_f the signature $\{+,\cdot,-,0,1\}$ of fields; and by \mathscr{S}_{vs} , the signature $\{+,-,\mathbf{0},\circ,0,1,*\}$ of vector-spaces as two-sorted structures.

1. We first give an example in which none of the four lettered conditions hold. Let $\mathscr{S}_0 = \mathscr{S}_f \cup \{a,b\}$ and $\mathscr{S}_1 = \mathscr{S}_0 \cup \{c\}$. Let T_1 be the theory of fields of characteristic p with distinguished elements a, b, and c such that $\{a,c\}$ or $\{b,c\}$ is p-independent, and if $\{b,c\}$ is p-independent, then so is $\{b,c,d\}$ for some d. Then T_0 is the theory of fields of characteristic p in which, for some c, $\{a,c\}$ or $\{b,c\}$ is p-independent, and if $\{b,c\}$ is p-independent, then so is $\{b,c,d\}$ for some d. The negations of the four lettered conditions are established as follows. Throughout, a, b, c, and d will be algebraically independent over \mathbb{F}_p .

$\neg A$. We have

$$(\mathbb{F}_p(a, b^{1/p}, c), a, b, c) \models T_1, \qquad (\mathbb{F}_p(a, b^{1/p}, c^{1/p}), a, b) \models T_0,$$

but if $(\mathbb{F}_p(a, b^{1/p}, c), a, b, c)$ is a substructure of a model (K, a, b, c) of T_1 , then K cannot contain $c^{1/p}$.

- $\neg B$. T_0 has no existentially closed models, since an element of a model that is p-independent from a or b will always have a p-th root in some extension. Similarly, no model of T_1 in which $\{a, c\}$ is not p-independent is existentially closed. But T_1 does have existentially closed models, which are just the separably closed fields of characteristic p with p-basis $\{a, c\}$ and with an additional element b.
- $\neg C$. T_0 does not have the Amalgamation Property, since $(\mathbb{F}_p(a, b^{1/p}, c), a, b)$ and $(\mathbb{F}_p(a^{1/p}, b, c, d), a, b)$ are models that do not embed in the same model over the common substructure $(\mathbb{F}_p(a, b, c), a, b)$, which is a model of T_0 .
- $\neg D$. T_1 is not $\forall \exists$, since, as we have already noted, models in which $\{a,c\}$ is not p-independent do not embed in existentially closed models.

- 2. For an example of the column headed by 2 in the table, we let \mathcal{S}_0 and \mathcal{S}_1 be as in 1; but now T_1 is the theory of fields of characteristic p with distinguished elements a, b, and c such that $\{a, c, d\}$ or $\{b, c, d\}$ is p-independent for some d. This ensures that T_1 has no existentially closed models, so B holds vacuously; but the other three conditions still fail.
- 3. T_0 and T_1 are the same theory, so A and B hold trivially; and this theory is the theory of vector-spaces of dimension at least 2, in the signature \mathscr{S}_{vs} , so the theory neither has the Amalgamation Property, nor is $\forall \exists$.
- 4. T_1 is DF_p with the additional requirement that the field have p-dimension at least 2; and $\mathscr{S}_0 = \mathscr{S}_f$, so T_0 is the theory of fields of characteristic p with p-dimension at least 2. The latter theory has the Amalgamation Property; but the other conditions fail. Indeed, let $(\mathbb{F}_p(a,b), D)$ be the model of T_1 in which Da = 1 and Db = 0: then the field $\mathbb{F}_p(a,b)$ embeds in $\mathbb{F}_p(a^{1/p},b)$, which is a model of T_0 , but D does not extend to this field. Also, T_0 has no existentially closed models; but T_1 does, and indeed it has a model-companion, namely DCF_p. Also T_1 is not $\forall \exists$, since T_0 is not: there is a chain of models of the latter, whose union is not a model, and we can make the structures in the chain into models of T_1 by adding the zero derivation.
- 5. $\mathscr{S}_0 = \mathscr{S}_f$, and $\mathscr{S}_1 = \mathscr{S}_0 \cup \{a\}$. T_1 is the theory of fields of characteristic p with distinguished element a, which is p-independent from another element; so T_0 is (as in 4) the theory of fields of characteristic p with p-dimension at least 2. Then we already have that C holds. But A fails: just let \mathfrak{A} be $(\mathbb{F}_p(a,b),a)$, and let \mathfrak{B} be $\mathbb{F}_p(a^{1/p},b)$. Also T_1 has no existentially closed models, so B holds trivially, but T_1 is not $\forall \exists$.
- 6. T_0 and T_1 are the same, namely the theory of fields of characteristic p of positive p-dimension, in the signature of fields, so this theory has the Amalgamation Property, but is not $\forall \exists$.
- 7. $\mathscr{S}_0 = \mathscr{S}_{vs}$, $\mathscr{S}_1 = \mathscr{S}_0 \cup \{ ||, \boldsymbol{a}, \boldsymbol{b} \}$, and T_1 is axiomatized by $VS_2 \cup \{ \boldsymbol{a} \not\mid \boldsymbol{b} \}$, so it is $\forall \exists$. Then T_0 is the theory of vector-spaces of dimension at least 2. As in Theorem 4 above, T_1 has a model-companion, namely the theory of vector-spaces over algebraically closed fields with basis $\{\boldsymbol{a}, \boldsymbol{b}\}$. But T_0 has no existentially closed models, since for all independent vectors \boldsymbol{a} and \boldsymbol{b} in some model, the equation

$$x * \mathbf{a} + y * \mathbf{b} = \mathbf{0} \tag{\parallel}$$

is always soluble in some extension. Thus B fails. Then T_0 also does not have the Amalgamation Property, since the solutions of (\parallel) may satisfy $2x^2=y^2$ in one extension, but $3x^2=y^2$ in another. Similarly, A fails, since

the reduct to \mathscr{S}_0 of a model of T_1 may embed in a model of T_0 in which \boldsymbol{a} and \boldsymbol{b} are parallel.

8. $\mathscr{S}_0 = \mathscr{S}_{vs} \cup \{\|\}, \ \mathscr{S}_1 = \mathscr{S}_0 \cup \{a, b\}, \ \text{and} \ T_1 \ \text{is axiomatized by VS}_2$ together with

$$\forall x \ \forall y \ (x * \boldsymbol{a} + y * \boldsymbol{b} = \boldsymbol{0} \to 2x^2 = y^2). \tag{**}$$

П

Then T_0 is the theory of vector-spaces such that either the dimension is at least 2, or the scalar field contains $\sqrt{2}$. As in 7, T_0 does not have the Amalgamation Property. The theory T_1 is $\forall \exists$. It also has the model $(\mathbb{Q} * \mathbf{a} \oplus \mathbb{Q} * \mathbf{b}, \mathbf{a}, \mathbf{b})$, and $\mathbb{Q} * \mathbf{a} \oplus \mathbb{Q} * \mathbf{b}$ embeds in the model $\mathbb{Q}(\sqrt{2}, \sqrt{3}) * \mathbf{a}$ of T_0 when we let $\mathbf{b} = \sqrt{3} * \mathbf{a}$; but then the latter space embeds in no space in which \mathbf{a} and \mathbf{b} are as required by (**). So A fails. Finally, T_1 has a model-companion, axiomatized by VS₂* together with

$$\exists x \ \exists y \ (x * \boldsymbol{a} + y * \boldsymbol{b} = \boldsymbol{0} \land 2x^2 = y^2 \land x \neq 0);$$

and T_0 has a model-companion, which is just VS_2^* ; so B holds.

- 9. T_0 and T_1 are both VS_1 .
- 10. $T_1 = \mathrm{DF}_p$, and T_0 is the reduct to \mathscr{S}_{f} , namely field-theory in characteristic p.

11.
$$T_0$$
 and T_1 are both field-theory.

Now let ω -DCF₀ = $\bigcup_{m \in \omega} m$ -DCF₀. We obtain a positive application of Theorem 1.

Theorem 6. For all m in ω ,

$$m$$
-DCF₀ $\subseteq (m+1)$ -DCF₀.

Therefore ω -DF₀ has a model-companion, which is ω -DCF₀. This theory admits full elimination of quantifiers, is complete, and is properly stable.

Proof. Suppose $(L, \partial_0, \ldots, \partial_{m-1})$ is a model of m-DF₀, and L has a subfield K that is closed under the ∂_i (where i < m), and there is also a derivation ∂_m on K such that $(K, \partial_0 \upharpoonright K, \ldots, \partial_{m-1} \upharpoonright K, \partial_m)$ is a model of (m+1)-DF₀. We shall include $(L, \partial_0, \ldots, \partial_{m-1})$ in another model of m-DF₀, namely a model that expands to a model of (m+1)-DF₀ that includes $(K, \partial_0, \ldots, \partial_m)$. Thus condition A of Theorem 5 will hold, and therefore condition B will hold: this means m-DCF₀ $\subseteq (m+1)$ -DCF₀. Since m is arbitrary, it will follow by Theorem 1 that ω -DCF₀ is the model-companion of ω -DF₀.

If K = L, we are done. Suppose $a \in L \setminus K$. We shall define a differential field $(K\langle a \rangle, \tilde{\partial}_0, \dots, \tilde{\partial}_m)$, where $a \in K\langle a \rangle$, and for each i in m,

$$\tilde{\partial}_i \upharpoonright K\langle a \rangle \cap L = \partial_i \upharpoonright K\langle a \rangle \cap L, \tag{\dagger\dagger}$$

and $\tilde{\partial}_m \upharpoonright K = \partial_m$. Then we shall be able to repeat the process, in case $L \nsubseteq K\langle a \rangle$: we can work with an element of $L \smallsetminus K\langle a \rangle$ as we did with a. Ultimately we shall obtain the desired model of (m+1)-DF₀ with reduct that includes $(L, \partial_0, \ldots, \partial_{m-1})$.

Considering ω^{m+1} as the set of (m+1)-tuples of natural numbers, we shall have

$$K\langle a\rangle = K(a^{\sigma} : \sigma \in \omega^{m+1}),$$

where

$$a^{\sigma} = \tilde{\partial}_0^{\sigma(0)} \cdots \tilde{\partial}_m^{\sigma(m)} a.$$
 (‡‡)

In particular then, by (††), we must have

$$\sigma(m) = 0 \implies a^{\sigma} = \partial_0^{\sigma(0)} \cdots \partial_{m-1}^{\sigma(m-1)} a.$$

Using this rule, we make the definition

$$K_1 = K(a^{\sigma} : \sigma(m) = 0).$$

We may assume that the derivations $\tilde{\partial}_i$ have been defined so far that

$$i < m \implies \tilde{\partial}_i \upharpoonright K_1 = \partial_i \upharpoonright K_1, \qquad \qquad \tilde{\partial}_m \upharpoonright K = \partial_m \upharpoonright K.$$
 (§§)

Then $(\ddagger\ddagger)$ holds when $\sigma(m) < 1$.

Now suppose that, for some positive j in ω , we have been able to define the field $K(a^{\sigma}:\sigma(m)< j)$, and for each i in m, we have been able to define $\tilde{\partial}_i$ as a derivation on this field, and we have been able to define $\tilde{\partial}_m$ as a derivation from $K(a^{\sigma}:\sigma(m)< j-1)$ to $K(a^{\sigma}:\sigma(m)< j)$, so that (§§) holds, and $(\ddagger\ddagger)$ holds when $\sigma(m)< j$. We want to define the a^{σ} such that $\sigma(m)=j$, and we want to be able to extend the derivations $\tilde{\partial}_i$ appropriately.

If i < m+1, then, as in [11, §4.1], we let \boldsymbol{i} denote the characteristic function of $\{i\}$ on m+1: that is, \boldsymbol{i} will be the element of ω^{m+1} that takes the value 1 at i and 0 elsewhere. Considered as a product structure, ω^{m+1} inherits from ω the binary operations - and +. For each i in m+1, we have a derivation $\tilde{\partial}_i$ from $K(a^{\sigma}:(\sigma+\boldsymbol{i})(m)< j)$ to $K(a^{\sigma}:\sigma(m)< j)$ such that (§§) holds, and also, if $\sigma(m)< j$, then

$$\sigma(i) > 0 \implies \tilde{\partial}_i a^{\sigma - i} = a^{\sigma}.$$
 (¶¶)

We now define the a^{σ} , where $\sigma(m) = j$, so that, first of all, we can extend $\tilde{\partial}_m$ so that $(\P\P)$ holds when $\sigma(m) = j$ and i = m; but we must also ensure that $(\P\P)$ can hold also when $\sigma(m) = j$ and i < m. To do this, we shall have to make an inductive hypothesis, which is vacuously satisfied when j = 1. We shall also proceed recursively again. More precisely, we shall refine the recursion that we are already engaged in.

We well-order the elements σ of ω^{m+1} by the linear ordering \triangleleft determined by the left-lexicographic ordering of the (m+1)-tuples

$$(\sigma(m), \sigma(0) + \dots + \sigma(m-1), \sigma(0), \sigma(1), \dots, \sigma(m-2)).$$

Then $(\omega^{m+1}, \triangleleft)$ has the order-type of the ordinal ω^2 . This is a difference from the linear ordering defined in [11, §4.1] and elsewhere. However, for all σ and τ in ω^{m+1} , and all i in m+1, we still have

$$\sigma \lhd \tau \implies \sigma + \mathbf{i} \lhd \tau + \mathbf{i}.$$

We have assumed that, when $\tau = (0, \dots, 0, j)$, we have the field $K(a^{\sigma} : \sigma \lhd \tau)$, together with, for each i in m+1, a derivation $\tilde{\partial}_i$ from $K(a^{\xi} : \xi + i \lhd \tau)$ to $K(a^{\xi} : \xi \lhd \tau)$ such that (§§) holds, and also, if $\sigma \lhd \tau$, then ($\P\P$) holds. We have noted that we can have all of this when $\tau = (0, \dots, 0, 1)$. Suppose we have all of this for some τ in ω^{m+1} such that $(0, \dots, 0, 1) \unlhd \tau$, that is, $\tau(m) > 0$. We want to define the extension $K(a^{\sigma} : \sigma \lhd \tau)$ of $K(a^{\sigma} : \sigma \lhd \tau)$ so that we can extend the $\tilde{\partial}_i$ appropriately. For defining a^{τ} , there are two cases to consider. We use the rules for derivations gathered, for example, in [10, Fact 1.1].

- 1. If $a^{\tau-m}$ is algebraic over $K(a^{\xi}: \xi \lhd \tau m)$, then the derivative $\tilde{\partial}_m a^{\tau-m}$ is determined as an element of $K(a^{\xi}: \xi \lhd \tau)$; we let a^{τ} be this element.
- 2. If $a^{\tau-\boldsymbol{m}}$ is not algebraic over $K(a^{\xi}\colon \xi \lhd \tau \boldsymbol{m})$, then we let a^{τ} be transcendental over $L(a^{\xi}\colon \xi \lhd \tau)$. We are then free to define $\tilde{\partial}_m a^{\tau-\boldsymbol{m}}$ as a^{τ} . (We require a^{τ} to be transcendental over $L(a^{\xi}\colon \xi \lhd \tau)$, and not just over $K(a^{\xi}\colon \xi \lhd \tau)$, so that we can establish (††) later.)

We now check that, when i < m and $\tau(i) > 0$, we can define $\tilde{\partial}_i a^{\tau - i}$ as a^{τ} . Here we make the inductive hypothesis mentioned above, namely that the foregoing two-part definition of a^{τ} was already used to define $a^{\tau - i}$. Again we consider two cases.

1. Suppose $a^{\tau-i}$ is algebraic over $K(a^{\xi}: \xi \lhd \tau - i)$. Then $\tilde{\partial}_i a^{\tau-i}$ is determined as an element of $K(a^{\xi}: \xi \lhd \tau)$. Thus the value of the bracket $[\tilde{\partial}_i, \tilde{\partial}_m]$ at $a^{\tau-i-m}$ is determined: indeed, we have

$$[\tilde{\partial}_i, \tilde{\partial}_m] a^{\tau - i - m} = \tilde{\partial}_i \tilde{\partial}_m a^{\tau - i - m} - \tilde{\partial}_m \tilde{\partial}_i a^{\tau - i - m} = \tilde{\partial}_i a^{\tau - i} - a^{\tau}.$$

By inductive hypothesis, since $a^{\tau-i}$ is algebraic over $K(a^{\xi}: \xi \lhd \tau - i)$, also $a^{\tau-i-m}$ must be algebraic over $K(a^{\xi}: \xi \lhd \tau - i - m)$. Since the bracket is 0 on this field, it must be 0 at $a^{\tau-i-m}$ as well [11, Lem. 4.2].

2. If $a^{\tau-i}$ is transcendental over $K(a^{\xi}: \xi \lhd \tau - i)$, then, since we are given $\tilde{\partial}_i$ as a derivation whose domain is this field, we are free to define $\tilde{\partial}_i a^{\tau-i}$ as a^{τ} .

Thus we have obtained $K(a^{\xi}: \xi \leq \tau)$ as desired. By induction, we obtain the differential field $(K(a^{\sigma}: \sigma \in \omega^{m+1}), \tilde{\partial}_0, \dots, \tilde{\partial}_m)$ such that $(\ddagger \ddagger)$ and $(\S\S)$ hold.

It remains to check that (††) holds. It is enough to show

$$K\langle a\rangle \cap L \subseteq K_1.$$
 (***)

(We have the reverse inclusion.) Suppose $\tau \in \omega^{m+1}$ and $\tau(m) > 0$. By the definition of a^{τ} ,

$$a^{\tau} \in K(a^{\sigma} : \sigma \lhd \tau)^{\text{alg}} \implies a^{\tau} \in K(a^{\sigma} : \sigma \lhd \tau),$$
 (†††)

$$a^{\tau} \notin K(a^{\sigma} : \sigma \lhd \tau)^{\text{alg}} \implies a^{\tau} \notin L(a^{\sigma} : \sigma \lhd \tau)^{\text{alg}}.$$
 (‡‡‡)

Suppose $b \in K\langle a \rangle \cap L$. Since $b \in K\langle a \rangle$, we have, for some τ in ω^{m+1} , that b is a rational function over K_1 of those a^{σ} such that $m \leqslant \sigma \leqslant \tau$. But then, by (†††), we do not need any a^{σ} that is algebraic over $K(a^{\xi}: \xi \lhd \sigma)$, since it actually belongs to this field. When we throw out all such a^{σ} , then, by (‡‡‡), those that remain are algebraically independent over L. Thus we have

$$b \in K_1(a^{\sigma_0}, \dots, a^{\sigma_{n-1}}) \cap L$$

for some σ_j in ω^{m+1} such that $(a^{\sigma_0}, \ldots, a^{\sigma_{n-1}})$ is algebraically independent over L. Therefore we may assume n=0, and $b\in K_1$. Thus (***) holds, and we have the differential field $(K\langle a\rangle, \tilde{\partial}_0, \ldots, \tilde{\partial}_m)$ fully as desired.

We have to be able to repeat this contruction, in case $L \nsubseteq K\langle a \rangle$. If $b \in L \smallsetminus K\langle a \rangle$, we have to be able to construct $K\langle a,b \rangle$, and so on. Let $L\langle a \rangle$ be the compositum of $K\langle a \rangle$ and L. Since $m\text{-DF}_0$ has the Amalgamation Property, we can extend the $\tilde{\partial}_i$, where i < m, to commutating derivations on the field $L\langle a \rangle$ that extend the original ∂_i on L. Thus we have a model $(L\langle a \rangle, \tilde{\partial}_0, \ldots, \tilde{\partial}_{m-1})$ of $m\text{-DF}_0$ and a model $(K\langle a \rangle, \tilde{\partial}_0 \upharpoonright K\langle a \rangle, \ldots, \tilde{\partial}_{m-1} \upharpoonright K\langle a \rangle, \tilde{\partial}_m)$ of $(m+1)\text{-DF}_0$ that include, respectively, the models that we started with. Now we can continue as before, ultimately extending the domain of $\tilde{\partial}_m$ to include all of L. At limit stages of this process, we take unions, which is no problem, since $m\text{-DF}_0$ and $(m+1)\text{-DF}_0$ are $\forall \exists$.

Therefore ω -DF₀ has the model-companion ω -DCF₀. Since the m-DCF₀ have the properties of quantifier-elimination, completeness, and stability [6], the observations of Medvedev noted earlier allow us to conclude that

 ω -DCF₀ also has these properties. Although each m-DCF₀ is actually ω -stable, ω -DCF₀ is not even superstable, since if A is a set of constants (in the sense that all of their derivatives are 0), then as σ ranges over A^{ω} , the sets $\{\partial_m x = \sigma(m) \colon m \in \omega\}$ belong to distinct complete types.

In the foregoing proof, we cannot use Condition A of Theorem 5 in the stronger form in which the structure \mathfrak{C} is required to be a mere expansion to \mathscr{S}_1 of \mathfrak{B} :

Theorem 7. If m > 0, there is a model \mathfrak{K} of (m+1)-DF₀ with a reduct that is included in a model \mathfrak{L} of m-DF₀, while \mathfrak{L} does not expand to a model of (m+1)-DF₀ that includes \mathfrak{K} .

Proof. We generalize the example of [4] repeated in [9, Ex. 1.2, p. 927]. Suppose K is a pure transcendental extension $\mathbb{Q}(a^{\sigma}: \sigma \in \omega^{m+1})$ of \mathbb{Q} . We make this into a model of (m+1)-DF₀ by requiring $\partial_i a^{\sigma} = a^{\sigma+i}$ in each case. Let L be the pure transcendental extension $K(b^{\tau}: \tau \in \omega^{m-1})$ of K. We make this into a model of m-DF₀ by extending the ∂_i so that, if i < m-1, we have $\partial_i b^{\tau} = b^{\tau+i}$, while $\partial_{m-1} b^{\tau}$ is the element $a^{(\tau,0,0)}$ of K. Note that indeed if i < m-1, then

$$[\partial_i, \partial_{m-1}]b^{\tau} = \partial_i a^{(\tau,0,0)} - \partial_{m-1} b^{\tau+i} = 0.$$

Suppose, if possible, ∂_m extends to L as well so as to commute with the other ∂_i . Then for any τ in ω^{m-1} we have $\partial_m b^{\tau} = f(b^{\xi} : \xi \in \omega^{m-1})$ for some polynomial f over K. But then, writing $\partial_{\eta} f$ for the derivative of f with respect to the variable indexed by η , we have, as by [10, Fact 1.1(0)],

$$\begin{split} a^{(\tau,0,1)} &= \partial_m \partial_{m-1} b^\tau \\ &= \partial_{m-1} \partial_m b^\tau \\ &= \partial_{m-1} (f(b^\xi \colon \xi \in \omega^{m-1})) \\ &= \sum_{n \in \omega^{m-1}} \partial_n f(b^\xi \colon \xi \in \omega^{m-1}) \cdot a^{(\eta,0,0)} + f^{\partial_{m-1}} (b^\xi \colon \xi \in \omega^{m-1}), \end{split}$$

where the sum has only finitely many nonzero terms. The polynomial expression $f^{\partial_{m-1}}(b^{\xi}: \xi \in \omega^{m-1})$ cannot have $a^{(\tau,0,1)}$ as a constant term, since this is not $\partial_{m-1}x$ for any x in K. Thus we have obtained an algebraic relation among the b^{σ} and a^{τ} ; but there can be no such relation.

Finally, the union of a chain of non-companionable theories may be companionable:

Theorem 8. In the signature $\{f\} \cup \{c_k : k \in \omega\}$, where f is a singulary operation-symbol and the c_k are constant-symbols, let T_0 be axiomatized by the sentences

$$\forall x \ \forall y \ (fx = fy \to x = y)$$

and, for each k in ω ,

$$\forall x \ (f^{k+1}x \neq x), \quad \forall x \ (fx = c_k \to x = c_{k+1}), \quad fc_{k+2} = c_{k+1} \to fc_{k+1} = c_k.$$

For each n in ω , let T_{n+1} be axiomatized by

$$T_n \cup \{fc_{n+1} = c_n\}.$$

Then

- (1) each T_n is universally axiomatized, and a fortior $\forall \exists$, so it does have existentially closed models;
- (2) each T_n has the Amalgamation Property;
- (3) every existentially closed model of T_{n+1} is an existentially closed model of T_n ;
- (4) no T_n is companionable;
- (5) $\bigcup_{n \in \Omega} T_n$ is companionable.

Proof. Let \mathfrak{A}_m be the model of T_0 with universe $\omega \times \omega$ such that

$$f^{\mathfrak{A}_m}(k,\ell) = (k,\ell+1),$$
 $c_k^{\mathfrak{A}_m} = \begin{cases} (k-m,0), & \text{if } k > m, \\ (0,m-k), & \text{if } k \leqslant m. \end{cases}$

Let \mathfrak{A}_{ω} be the model of T_0 with universe \mathbb{Z} such that

$$f^{\mathfrak{A}_{\omega}}k = k+1, \qquad c_k^{\mathfrak{A}_{\omega}} = -k.$$

Then \mathfrak{A}_m is a model of each T_k such that $k \leq m$; and \mathfrak{A}_{ω} is a model of each T_k . Moreover, each model of T_k consists of a copy of some \mathfrak{A}_{β} such that $k \leq \beta \leq \omega$, along with some (or no) disjoint copies of ω and \mathbb{Z} in which f is interpreted as $x \mapsto x+1$. Conversely, every structure of this form is a model of T_k . The β such that \mathfrak{A}_{β} embeds in a given model of T_k is uniquely determined by that model. Consequently T_k has the Amalgamation Property. Also, a model of T_k is an existentially closed model if and only if includes no copies of ω (outside the embedded \mathfrak{A}_{β}): This establishes that every existentially closed model of T_{k+1} is an existentially closed model of T_k .

The existentially closed models of T_k are those models that omit the type $\{\forall y \ fy \neq x\} \cup \{x \neq c_j \colon j \in \omega\}$. In particular, \mathfrak{A}_m is an existentially closed model of T_k , if $k \leqslant m$; but \mathfrak{A}_m is elementarily equivalent to a structure that realizes the given type. Thus T_k is not companionable.

Finally, the model-companion of $\bigcup_{k \in \omega} T_k$ is axiomatized by this theory, together with $\forall x \exists y \ fy = x$.

References

- Zoé Chatzidakis and Ehud Hrushovski, Model theory of difference fields, Trans. Amer. Math. Soc. 351 (1999), no. 8, 2997–3071. MR 2000f:03109
- [2] Paul Eklof and Gabriel Sabbagh, Model-completions and modules, Ann. Math. Logic
 2 (1970/1971), no. 3, 251–295. MR MR0277372 (43 #3105)
- [3] Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 94e:03002
- [4] Joseph Johnson, Georg M. Reinhart, and Lee A. Rubel, Some counterexamples to separation of variables, J. Differential Equations 121 (1995), no. 1, 42–66. MR 96g:35006
- [5] Angus Macintyre, Generic automorphisms of fields, Ann. Pure Appl. Logic 88 (1997), no. 2-3, 165–180, Joint AILA-KGS Model Theory Meeting (Florence, 1995). MR 99c:03046
- [6] Tracey McGrail, The model theory of differential fields with finitely many commuting derivations, J. Symbolic Logic 65 (2000), no. 2, 885–913. MR 2001h:03066
- [7] Alice Medvedev, QACFA, Talk given at Recent Developments in Model Theory, Oléron, France, http://modeltheory2011.univ-lyon1.fr/abstracts.html, June 2011.
- [8] ______, QACFA, preprint, http://math.berkeley.edu/~alice/grouplessqacfa. pdf, November 2012.
- [9] David Pierce, Differential forms in the model theory of differential fields, J. Symbolic Logic 68 (2003), no. 3, 923-945. MR 2 000 487
- [10] ______, Geometric characterizations of existentially closed fields with operators, Illinois J. Math. 48 (2004), no. 4, 1321–1343. MR MR2114160
- [11] _____, Fields with several commuting derivations, ArXiv e-prints (2007).
- [12] _____, Model-theory of vector-spaces over unspecified fields, Arch. Math. Logic 48 (2009), no. 5, 421–436. MR MR2505433

MIDDLE EAST TECHNICAL UNIVERSITY, NORTHERN CYPRUS CAMPUS

MIMAR SINAN FINE ARTS UNIVERSITY, ISTANBUL

E-mail address: dpierce@msgsu.edu.tr