CHAINS OF THEORIES AND COMPANIONABILITY

ÖZCAN KASAL AND DAVID PIERCE

ABSTRACT. The theory of fields with a countably infinite family of commuting derivations is not companionable; but if the axiom is added whereby the characteristic of the fields is zero, then the resulting theory is companionable. Each of these two theories is the union of a chain of companionable theories. In a signature with predicates, in all finite numbers of arguments, for linear dependence of vectors, the two-sorted theory of vector-spaces with their scalar-fields is companionable, and it is the union of a chain of companionable theories, but its model-companion is not the union of the model-companions of the theories in the chain. Finally, the union of a chain of non-companionable theories may be companionable.

A theory in a given signature is a set of sentences, in the first-order logic of that signature, that is closed under logical implication. We shall consider chains $(T_m: m \in \omega)$ of theories: this means

$$T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \tag{(*)}$$

The signature of T_m will be \mathscr{S}_m , so automatically $\mathscr{S}_0 \subseteq \mathscr{S}_1 \subseteq \mathscr{S}_2 \subseteq \cdots$

In one motivating example, \mathscr{S}_m is $\{0, 1, -, +, \cdot, \partial_0, \ldots, \partial_{m-1}\}$, the signature of fields with m additional singulary function-symbols; and T_m is m-DF, the theory of fields (of any characteristic) with m commuting derivations. In this example, each T_{m+1} is a **conservative extension** of T_m , that is, $T_{m+1} \supseteq T_m$ and every sentence in T_{m+1} of signature \mathscr{S}_m is already in T_m . We establish this by showing that every model of T_m expands to a model of T_{m+1} . (This condition is sufficient, but not necessary [3, §2.6, exer. 8, p. 66].) If $(K, \partial_0, \ldots, \partial_{m-1}) \models m$ -DF, then $(K, \partial_0, \ldots, \partial_m) \models (m+1)$ -DF, where ∂_m is the 0-derivation.

The union of the theories *m*-DF can be denoted by ω -DF: it is the theory of fields with ω -many commuting derivations. Each of the theories *m*-DF has a *model-companion*, called *m*-DCF [11]; but we shall show (as Theorem 3 below) that ω -DF has no model-companion. Let us recall that a **model-companion** of a theory *T* is a theory *T*^{*} in the same signature such that (1) $T_{\forall} = T^*_{\forall}$, that is, every model of one of the theories embeds in a model of the other, and (2) *T*^{*} is **model-complete**, that is, $T^* \cup \text{diag}(\mathfrak{M})$ axiomatizes a complete theory for all models \mathfrak{M} of T^* . Here $\text{diag}(\mathfrak{M})$ is the quantifier-free theory of \mathfrak{M} with parameters: equivalently, $\text{diag}(\mathfrak{M})$ is the theory of all structures in which \mathfrak{M}_M embeds. (These notions, with historical references, are reviewed further in [11].) A theory has at most one model-companion, by an argument with interwoven elementary chains.

Let m-DF₀ be m-DF with the additional requirement that the field have characteristic 0. Then m-DF₀ has a model-companion, called m-DCF₀ [6]. We shall show (as Theorem 6 below) that m-DCF₀ $\subseteq (m + 1)$ -DCF₀. It will follow then that the union ω -DF₀ of the m-DF₀ has a model-companion, which is the union of the m-DCF₀. This is by the following general result, which has been observed also by Alice Medvedev [7, 8]. Again, the theories T_k are as in (*) above.

Theorem 1. Suppose each theory T_k has a model-companion T_k^* , and

$$T_0^* \subseteq T_1^* \subseteq T_2^* \subseteq \cdots \tag{(\dagger)}$$

Date: January 8, 2013.

Then the theory $\bigcup_{k \in \omega} T_k$ has a model-companion, namely $\bigcup_{k \in \omega} T_k^*$.

Proof. Write U for $\bigcup_{k \in \omega} T_k$, and U^* for $\bigcup_{k \in \omega} T_k^*$. Suppose $\mathfrak{A} \models U$, and Γ is a finite subset of $U^* \cup \operatorname{diag}(\mathfrak{A})$. Then Γ is a subset of $T_k^* \cup \operatorname{diag}(\mathfrak{A} \upharpoonright \mathscr{S}_k)$ for some k in ω , and also $\mathfrak{A} \upharpoonright \mathscr{S}_k \models T_k$. Since $(T_k^*)_{\forall} \subseteq T_k$, we conclude that Γ is consistent. Therefore $U^* \cup \operatorname{diag}(\mathfrak{A})$ is consistent. Thus $U^*_{\forall} \subseteq U$. By symmetry $U_{\forall} \subseteq U^*$.

Similarly, if $\mathfrak{B} \models U^*$, then $T_k^* \cup \operatorname{diag}(\mathfrak{B} \upharpoonright \mathscr{S}_k)$ axiomatizes a complete theory in each case, and therefore $U^* \cup \operatorname{diag}(\mathfrak{B})$ is complete. \Box

The foregoing proof does not require that the signatures \mathscr{S}_k form a chain, but needs only that every finite subset of $\bigcup_{k \in \omega} \mathscr{S}_k$ be included in some \mathscr{S}_k . This is the setting for Medvedev's [8, Prop. 2.4, p. 6], which then has the same proof as the foregoing. Also in Medvedev's setting, each T_{k+1}^* is a conservative extension of T_k^* ; but only the weaker assumption $T_k^* \subseteq T_{k+1}^*$ is needed in the proof.

Medvedev notes that many properties that the theories T_k might have are 'local' and are therefore preserved in $\bigcup_{k \in \omega} T_k$: examples are completeness, elimination of quantifiers, stability, and simplicity. In her main application, \mathscr{S}_n is the signature of fields with singulary operation-symbols $\sigma_{m/n!}$, where $m \in \mathbb{Z}$; and T_n is the theory of fields on which the $\sigma_{m/n!}$ are automorphisms such that

$$\sigma_{k/n!} \circ \sigma_{m/n!} = \sigma_{(k+m)/n!}.$$

Then T_n includes the theory S_n of fields with the single automorphism $\sigma_{1/n!}$. Using [12, §1] (which is based on [3, ch. 5]), we may observe at this point that reduction of models of T_n to models of S_n is actually an equivalence of the categories $\operatorname{Mod}^{\subseteq}(T_n)$ and $\operatorname{Mod}^{\subseteq}(S_n)$, whose objects are models of the indicated theories, and whose morphisms are embeddings. We thus have at hand a (rather simple) instance of the hypothesis of the following theorem.

Theorem 2. Suppose (I, J) is a bi-interpretation of theories S and T such that I is an equivalence of the categories $Mod^{\subseteq}(S)$ and $Mod^{\subseteq}(T)$. If S has the model-companion S^* , and $S \subseteq S^*$, then T also has a model-companion, which is the theory of those models \mathfrak{B} of T such that $J(\mathfrak{B}) \models S^*$.

Proof. The class of models \mathfrak{B} of T such that $J(\mathfrak{B}) \models S^*$ is elementary. Let T^* be its theory. Then $T \subseteq T^*$. Suppose $\mathfrak{B} \models T$. Then $J(\mathfrak{B}) \models S$, so $J(\mathfrak{B})$ embeds in a model \mathfrak{A} of S^* . Consequently $I(J(\mathfrak{B}))$ embeds in $I(\mathfrak{A})$. Also $I(\mathfrak{A}) \models T^*$, since $\mathfrak{A} \cong J(I(\mathfrak{A}))$. Since also $\mathfrak{B} \cong I(J(\mathfrak{B}))$, we conclude that \mathfrak{B} embeds in a model of T^* . Finally, T^* is model-complete. Indeed, suppose now \mathfrak{B} and \mathfrak{C} are models of T^* such that $\mathfrak{B} \subseteq \mathfrak{C}$. Then $J(\mathfrak{B})$ embeds in $J(\mathfrak{C})$, and these structures are models of S^* , so the embedding is elementary. Therefore an elementary embedding of $I(J(\mathfrak{B}))$ in $I(J(\mathfrak{C}))$ is induced. By the equivalence of the categories, $\mathfrak{B} \preccurlyeq \mathfrak{C}$. \Box

In the present situation, the theory S_n has a model-companion [5, 1]; let us denote this by ACFA_n. By the theorem then, T_n has a model-companion T_n^* , which is axiomatized by $T_n \cup \text{ACFA}_n$. We have $\text{ACFA}_n \subseteq T_{n+1}^*$ by [1, 1.12, Cor. 1, p. 3013]. By Theorem 1 then, $\bigcup_{n \in \omega} T_n$ has a model-companion, which is the union of the T_n^* . Medvedev calls this union QACFA; she shows for example that it preserves the simplicity of the ACFA_n, as noted above, though it does not preserve their supersimplicity.

The following is similar to the result that the theory of fields with a derivation and an automorphism (of the field-structure only) has no model-companion [10]. The obstruction lies in positive characteristics p, where all derivatives of elements with p-th roots must be 0.

Theorem 3. The theory ω -DF has no model-companion.

Proof. We use that an $\forall \exists$ theory T has a model-companion if and only if the class of its *existentially closed* models is elementary, and in this case the model-companion is the theory of this class [2]. (A model \mathfrak{A} of T is an **existentially closed** model, provided that if $\mathfrak{B} \models T$ and $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \preccurlyeq_1 \mathfrak{B}$, that is, all quantifier-free formulas over A that are soluble in \mathfrak{B} are soluble in \mathfrak{A} .) For each n in ω , the theory ω -DF has an existentially closed model \mathfrak{A}_n , whose underlying field includes $\mathbb{F}_p(\alpha)$, where α is transcendental; and in this model,

$$\partial_k \alpha = \begin{cases} 1, & \text{if } k = n, \\ 0, & \text{otherwise.} \end{cases}$$

Then α has no *p*-th root in \mathfrak{A}_n . Therefore, in a non-principal ultraproduct of the \mathfrak{A}_n , α has no *p*-th root, although $\partial_n \alpha = 0$ for all *n* in ω , so that α does have a *p*-th root in some extension. Thus the ultraproduct is not an existentially closed model of ω -DF. Therefore the class of existentially closed models of ω -DF is not elementary.

It follows then by Theorem 1 that m-DCF $\notin (m+1)$ -DCF for at least one m. We could contrive examples to show this independently; but this by itself would not be enough to establish the last theorem. For, by the results of [12], it is possible for each T_k to have a model-companion T_k^* , while $\bigcup_{k \in \omega} T_k$ has a model-companion that is not $\bigcup_{k \in \omega} T_k^*$. We may even require T_{k+1} to be a conservative extension of T_k .

Indeed, if k > 0, then in the notation of [12], VS_k is the theory of vectorspaces with their scalar-fields in the signature $\{+, -, \mathbf{0}, \circ, 0, 1, *, P^k\}$, where \circ is multiplication of scalars, and * is the action of the scalar-field on the vector-space, and P^k is k-ary linear dependence. In particular, P^2 may written also as \parallel . Then VS_k has a model-companion, VS_k^{*}, which is the theory of k-dimensional vectorspaces over algebraically closed fields [12, Thm 2.3]. Let VS_{ω} = $\bigcup_{1 \leq k < \omega}$ VS_k. (This was called VS_{∞} in [12].) This theory has the model-companion VS_{ω}^{*}, which is the theory of infinite-dimensional vector-spaces over algebraically closed fields [12, Thm 2.4].

Theorem 4. If $1 \leq n < \omega$, let

$$T_n = \bigcup_{1 \leqslant k \leqslant n} \mathrm{VS}_k \,.$$

Then T_n has a model-companion T_n^* , which is axiomatized by $VS_n^* \cup T_n$. Also T_{n+1} is a conservative extension of T_n . However, the model-companion VS_{ω}^* of the union VS_{ω} of the chain $(T_n: 1 \leq n < \omega)$ is not the union of the T_n^* .

Proof. Every vector-space can be considered as a model of any VS_k and hence of any T_k . In particular, T_{n+1} is a conservative extension of T_n . The relation P^1 is defined by $\boldsymbol{x} = \boldsymbol{0}$. Let VS_n^m be axiomatized by VS_n and the requirement that the space have dimension at least n. If n > 2, then there are existential formulas that, in each model of VS_n^m , define the relation \parallel and its complement [12, §2, p. 431]. Similarly, if $2 \leq k < n - 1$, then, using existential formulas, we can define P^{k+1} and its complement in models of $VS_k \cup VS_n^m$: indeed, $\neg P^{k+1}\boldsymbol{x}_0 \cdots \boldsymbol{x}_k$ is equivalent to $\exists (\boldsymbol{x}_{k+1}, \ldots, \boldsymbol{x}_{n-1}) P^n \boldsymbol{x}_0 \cdots \boldsymbol{x}_{n-1}$, and $P^{k+1} \boldsymbol{x}_0 \cdots \boldsymbol{x}_k$ is equivalent to

$$\exists (\boldsymbol{x}_{k+1},\ldots,\boldsymbol{x}_n) \left(P^k \boldsymbol{x}_1 \cdots \boldsymbol{x}_k \lor \left(\neg P^n \boldsymbol{x}_1 \cdots \boldsymbol{x}_n \land \bigwedge_{j=k}^n P^n \boldsymbol{x}_0 \cdots \boldsymbol{x}_{j-1} \boldsymbol{x}_{j+1} \cdots \boldsymbol{x}_n \right) \right).$$

Therefore reduction from models of T_n to models of $\mathrm{VS}_n^{\mathrm{m}}$ is an equivalence of the categories $\mathrm{Mod}^{\subseteq}(T_n)$ and $\mathrm{Mod}^{\subseteq}(\mathrm{VS}_n^{\mathrm{m}})$ [12, Lem 1.1]. Since $\mathrm{VS}_n \subseteq \mathrm{VS}_n^{\mathrm{m}}$ and every

model of VS_n embeds in a model of VS_n^m , the two theories have the same modelcompanion, namely VS_n^* . Therefore $VS_n^* \cup T_n$ axiomatizes T_n^* , by Theorem 2. The rest has already been noted.

Let VS_n^r comprise the sentences of VS_n having one-sorted signature $\{\mathbf{0}, -, +, P^n\}$. If n > 1, then reduction of VS_n to VS_n^r is an equivalence of categories $Mod^{\subseteq}(VS_n)$ and $Mod^{\subseteq}(VS_n^r)$, and therefore VS_n^r is companionable. (This was mentioned at [12, p. 431], but the details, and in particular Theorem 2, were not spelled out.) So there is an alternative, one-sorted version of the last theorem, where T_n is $\bigcup_{1 \le k \le n} VS_k^r$.

The implication $A \Rightarrow B$ in the following is used implicitly at [1, 1.12, p. 3013] to establish the result used above, that if (K, σ) is a model of ACFA, then so is (K, σ^m) , assuming $m \ge 1$.

Theorem 5. Assuming as usual $T_0 \subseteq T_1$, where each T_k has signature \mathscr{S}_k , we consider the following conditions.

A. For every model \mathfrak{A} of T_1 and model \mathfrak{B} of T_0 such that

$$\mathfrak{A} \upharpoonright \mathscr{S}_0 \subseteq \mathfrak{B}, \tag{\ddagger}$$

there is a model \mathfrak{C} of T_1 such that $\mathfrak{A} \subset \mathfrak{C}$.

$$\mathfrak{B} \subseteq \mathfrak{C} \upharpoonright \mathscr{S}_0. \tag{§}$$

- B. The reduct to \mathscr{S}_0 of every existentially closed model of T_1 is an existentially closed model of T_0 .
- C. T_0 has the Amalgamation Property: if one model embeds in two others, then those two in turn embed in a fourth model, compatibly with the original embeddings.

D. T_1 is $\forall \exists$ (so that every model embeds in an existentially closed model). We have the two implications

$$A \Longrightarrow B, \qquad \qquad B \& C \& D \Longrightarrow A.$$

but there is no implication among the four conditions that does not follow from these. This is true, even if T_1 is required to be a conservative extension of T_0 .

Proof. Suppose A holds. Let \mathfrak{A} be an existentially closed model of T_1 , and let \mathfrak{B} be an arbitrary model of T_0 such that (\ddagger) holds. By hypothesis, there is a model \mathfrak{C} of T_1 such that (\S) holds. Then $\mathfrak{A} \preccurlyeq_1 \mathfrak{C}$, and therefore $\mathfrak{A} \upharpoonright \mathscr{S}_0 \preccurlyeq_1 \mathfrak{C} \upharpoonright \mathscr{S}_0$, and a fortiori $\mathfrak{A} \upharpoonright \mathscr{S}_0 \preccurlyeq_1 \mathfrak{B}$. Therefore $\mathfrak{A} \upharpoonright \mathscr{S}_0$ must be an existentially closed model of T_0 . Thus B holds.

Suppose conversely *B* holds, along with *C* and *D*. Let $\mathfrak{A} \models T_1$ and $\mathfrak{B} \models T_0$ such that (‡) holds. We establish the consistency of $T_1 \cup \text{diag}(\mathfrak{A}) \cup \text{diag}(\mathfrak{B})$. It is enough to show the consistency of

$$T_1 \cup \operatorname{diag}(\mathfrak{A}) \cup \{ \exists \boldsymbol{x} \; \varphi(\boldsymbol{x}) \}, \tag{(\P)}$$

where φ is an arbitrary quantifier-free formula of $\mathscr{S}_0(A)$ that is soluble in \mathfrak{B} . By D, there is an existentially closed model \mathfrak{C} of T_1 that extends \mathfrak{A} . By B then, $\mathfrak{C} \upharpoonright \mathscr{S}_0$ is an existentially closed model of T_0 that extends $\mathfrak{A} \upharpoonright \mathscr{S}_0$. By C, both \mathfrak{B} and $\mathfrak{C} \upharpoonright \mathscr{S}_0$ embed over $\mathfrak{A} \upharpoonright \mathscr{S}_0$ in a model of T_0 . In particular, φ will be soluble in this model. Therefore φ is already soluble in $\mathfrak{C} \upharpoonright \mathscr{S}_0$ itself. Thus \mathfrak{C} is a model of (\P) . Therefore A holds.

The foregoing arguments eliminate the five possibilities marked X on the table below, where 0 means false, and 1, true. We give examples of each of the remaining cases, numbered according to the table. In each example, T_0 will be the reduct of T_1 to \mathscr{S}_0 . We shall denote by \mathscr{S}_f the signature $\{+, \cdot, -, 0, 1\}$ of fields; and by \mathscr{S}_{vs} , the signature $\{+, -, 0, \circ, 0, 1, *\}$ of vector-spaces as two-sorted structures.

	1	X	2	3	4	X	5	6	$\overline{7}$	X	8	9	10	X	X	11
A	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
B	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
C	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
D	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

1. We first give an example in which none of the four lettered conditions hold. Let $\mathscr{S}_0 = \mathscr{S}_{\mathrm{f}} \cup \{a, b\}$ and $\mathscr{S}_1 = \mathscr{S}_0 \cup \{c\}$. Let T_1 be the theory of fields of characteristic p with distinguished elements a, b, and c such that $\{a, c\}$ or $\{b, c\}$ is p-independent, and if $\{b, c\}$ is p-independent, then so is $\{b, c, d\}$ for some d. Then T_0 is the theory of fields of characteristic p in which, for some c, $\{a, c\}$ or $\{b, c\}$ is p-independent, and if $\{b, c\}$ is p-independent, then so is $\{b, c, d\}$ for some d. Then negations of the four lettered conditions are established as follows. Throughout, a, b, c, and d will be algebraically independent over \mathbb{F}_p . $\neg A$. We have

 $(\mathbb{F}_{p}(a, b^{1/p}, c), a, b, c) \models T_{1}, \qquad (\mathbb{F}_{p}(a, b^{1/p}, c^{1/p}), a, b) \models T_{0},$

but if $(\mathbb{F}_p(a, b^{1/p}, c), a, b, c)$ is a substructure of a model (K, a, b, c) of T_1 , then K cannot contain $c^{1/p}$.

- $\neg B$. T_0 has no existentially closed models, since an element of a model that is *p*-independent from *a* or *b* will always have a *p*-th root in some extension. Similarly, no model of T_1 in which $\{a, c\}$ is not *p*-independent is existentially closed. But T_1 does have existentially closed models, which are just the separably closed fields of characteristic *p* with *p*-basis $\{a, c\}$ and with an additional element *b*.
- $\neg C$. T_0 does not have the Amalgamation Property, since $(\mathbb{F}_p(a, b^{1/p}, c), a, b)$ and $(\mathbb{F}_p(a^{1/p}, b, c, d), a, b)$ are models that do not embed in the same model over the common substructure $(\mathbb{F}_p(a, b, c), a, b)$, which is a model of T_0 .
- $\neg D$. T_1 is not $\forall \exists$, since, as we have already noted, models in which $\{a, c\}$ is not *p*-independent do not embed in existentially closed models.

2. For an example of the column headed by 2 in the table, we let \mathscr{S}_0 and \mathscr{S}_1 be as in 1; but now T_1 is the theory of fields of characteristic p with distinguished elements a, b, and c such that $\{a, c, d\}$ or $\{b, c, d\}$ is p-independent $\{b, c, d\}$ for some d. This ensures that T_1 has no existentially closed models, so B holds vacuously; but the other three conditions still fail.

3. T_0 and T_1 are the same theory, so A and B hold trivially; and this theory is the theory of vector-spaces of dimension at least 2, in the signature of vector-spaces, so it neither has the Amalgamation Property, nor is $\forall \exists$.

4. T_1 is DF_p with the additional requirement that the field have p-dimension at least 2; and $\mathscr{S}_0 = \mathscr{S}_f$, so T_0 is the theory of fields of characteristic p with pdimension at least 2. The latter theory has the Amalgamation Property; but the other conditions fail. Indeed, let $(\mathbb{F}_p(a, b), D)$ be the model of T_1 in which Da = 1and Db = 0: then the field $\mathbb{F}_p(a, b)$ embeds in $\mathbb{F}_p(a^{1/p}, b)$, which is a model of T_0 , but D does not extend to this field. Also, T_0 has no existentially closed models; but T_1 does, and indeed it has a model-companion, namely DCF_p . Also T_1 is not $\forall \exists$, since T_0 is not: there is a chain of models of the latter, whose union is not a model, and we can make the structures in the chain into models of T_1 by adding the zero derivation.

5. $\mathscr{S}_0 = \mathscr{S}_f$, and $\mathscr{S}_1 = \mathscr{S}_0 \cup \{a\}$. T_1 is the theory of fields of characteristic p with distinguished element a, which is p-independent from another element; so T_0

Ö. KASAL AND D. PIERCE

is (as in 4) the theory of fields of characteristic p with p-dimension at least 2. Here T_1 has no existentially closed models, so B holds trivially.

6. T_0 and T_1 are the same, namely the theory of fields of characteristic p of positive p-dimension, in the signature of fields, so this theory has the Amalgamation Property, but is not $\forall \exists$.

7. $\mathscr{S}_0 = \mathscr{S}_{vs}, \ \mathscr{S}_1 = \mathscr{S}_0 \cup \{ \|, \boldsymbol{a}, \boldsymbol{b} \}, \text{ and } T_1 \text{ is axiomatized by } VS_2 \cup \{ \boldsymbol{a} \not\models \boldsymbol{b} \},$ so it is $\forall \exists$. Then T_0 is the theory of vector-spaces of dimension at least 2. As in Theorem 4 above, T_1 has a model-companion, namely the theory of vector-spaces over algebraically closed fields with basis $\{ \boldsymbol{a}, \boldsymbol{b} \}$. But T_0 has no existentially closed models, since for all independent vectors \boldsymbol{a} and \boldsymbol{b} in some model, the equation $x * \boldsymbol{a} + y * \boldsymbol{b} = \boldsymbol{0}$ is always soluble in some extension. Thus B fails. Then T_0 also does not have the Amalgamation Property, since the solutions of the given equation may satisfy $2x^2 = y^2$ in one extension, but $3x^2 = y^2$ in another. Similarly, A fails, since the reduct to \mathscr{S}_0 of a model of T_1 may embed in a model of T_0 in which \boldsymbol{a} and \boldsymbol{b} are parallel.

8. $\mathscr{S}_0 = \mathscr{S}_{vs} \cup \{\|\}, \ \mathscr{S}_1 = \mathscr{S}_0 \cup \{a, b\}, \text{ and } T_1 \text{ is axiomatized by VS}_2 \text{ together with}$

$$\forall x \ \forall y \ (x * \boldsymbol{a} + y * \boldsymbol{b} = \boldsymbol{0} \to 2x^2 = y^2). \tag{(||)}$$

Then T_0 is the theory of vector-spaces such that either the dimension is at least 2, or the scalar field contains $\sqrt{2}$. As in 7, T_0 does not have the Amalgamation Property. The theory T_1 is $\forall \exists$. It also has the model ($\mathbb{Q} * \boldsymbol{a} \oplus \mathbb{Q} * \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{b}$), and $\mathbb{Q} * \boldsymbol{a} \oplus \mathbb{Q} * \boldsymbol{b}$ embeds in the model $\mathbb{Q}(\sqrt{2}, \sqrt{3}) * \boldsymbol{a}$ of T_0 when we let $\boldsymbol{b} = \sqrt{3} * \boldsymbol{a}$; but then the latter space embeds in no space in which \boldsymbol{a} and \boldsymbol{b} are as required by (\parallel). So A fails. Finally, T_1 has a model-companion, axiomatized by VS₂^{*} together with

$$\exists x \exists y \ (x * \boldsymbol{a} + y * \boldsymbol{b} = \boldsymbol{0} \land 2x^2 = y^2 \land x \neq 0);$$

and T_0 has a model-companion, which is just VS_2^* ; so B holds.

9. T_0 and T_1 are both VS₁.

10. $T_1 = DF_p$, and T_0 is the reduct to \mathscr{S}_f , namely field-theory in characteristic p. 11. T_0 and T_1 are both field-theory.

Now let ω -DCF₀ = $\bigcup_{m \in \omega} m$ -DCF₀.

Theorem 6. For all m in ω ,

$$m$$
-DCF₀ $\subseteq (m+1)$ -DCF₀.

Therefore ω -DF₀ has a model-companion, which is ω -DCF₀. This theory admits full elimination of quantifiers, is complete, and is properly stable.

Proof. Suppose $(L, \partial_0, \ldots, \partial_{m-1})$ is a model of m-DF₀, and L has a subfield K that is closed under the ∂_i (where i < m), and there is also a derivation ∂_m on K such that $(K, \partial_0 \upharpoonright K, \ldots, \partial_{m-1} \upharpoonright K, \partial_m)$ is a model of (m+1)-DF₀. We shall include $(L, \partial_0, \ldots, \partial_{m-1})$ in another model of m-DF₀, namely a model that expands to a model of (m+1)-DF₀ that extends $(K, \partial_0, \ldots, \partial_m)$. By the last theorem, it will follow that m-DCF₀ $\subseteq (m+1)$ -DCF₀. Since m is arbitrary, it will follow by Theorem 1 that ω -DCF₀ is the model-companion of ω -DF₀.

If K = L, we are done. So suppose $a \in L \setminus K$. We shall define an extension $K(a^{\xi}: \xi \in \omega^{m+1})$ of K, and for each i in m+1, we shall define a derivation $\tilde{\partial}_i$ on this extension so that

$$\partial_i \upharpoonright K = \partial_i \upharpoonright K. \tag{**}$$

For each σ in ω^{m+1} , we shall require

$$\sigma(m) = 0 \implies a^{\sigma} = \partial_0^{\sigma(0)} \cdots \partial_{m-1}^{\sigma(m-1)} a. \tag{(\dagger\dagger)}$$

If i < m + 1, let *i* denote the element of ω^{m+1} that takes the value 1 at *i* and 0 elsewhere. Then for each σ in ω^{m+1} , we shall require

$$\sigma(i) > 0 \implies \tilde{\partial}_i a^{\sigma - i} = a^{\sigma}, \tag{\ddagger}$$

$$\sigma(m) > 0 \wedge a^{\sigma - \boldsymbol{m}} \notin K(a^{\xi} \colon \xi < \sigma - \boldsymbol{m})^{\operatorname{alg}} \implies a^{\sigma} \notin L(a^{\xi} \colon \xi < \sigma)^{\operatorname{alg}}.$$
(§§)

These conditions ensure that the derivations $\tilde{\partial}_i$, if they do exist, are unique.

This uniqueness of the $\hat{\partial}_i$ would be ensured, if the field L in the conclusion of (§§) were replaced with K. But the condition (§§), as it is, along with (**), (††), and (‡‡), will ensure that, if i < m, then $\tilde{\partial}_i$ will agree with ∂_i wherever they are both defined, that is, on $K(a^{\xi} : \xi \in \omega^{m+1}) \cap L$. Indeed, the conditions (**), (††), and (‡‡) ensure this agreement on $K(a^{\xi} : \xi(m) = 0)$. Moreover, we have

$$K(a^{\xi}:\xi(m)=0)=K(a^{\xi}:\xi\in\omega^{m+1})\cap L.$$

For, suppose $\sigma(m) > 0$ and $a^{\sigma} \in L$. Then by (§§) we have $a^{\sigma-m} \in K(a^{\xi} : \xi < \sigma - m)^{\text{alg}}$, and therefore, by (**) and (‡‡), applying $\tilde{\partial}_m$ to $a^{\sigma-m}$ yields $a^{\sigma} \in K(a^{\xi} : \xi < \sigma)$. Repeating this result, we obtain that a^{σ} is a rational function over $K(a^{\xi} : \xi(m) = 0)$ of certain a^{η} , where $\eta < \sigma$; and these a^{η} are algebraically independent over L. Since $a^{\sigma} \in L$, we conclude $a^{\sigma} \in K(a^{\xi} : \xi(m) = 0)$.

The last observation means that, once we have constructed $K(a^{\xi}: \xi \in \omega^{m+1})$ as desired, then, if $L \setminus K(a^{\xi}: \xi \in \omega^{m+1})$ is nonempty, we can repeat the process, using an element of this difference in place of a. Thus, ultimately, we shall obtain the desired model of (m + 1)-DF₀ whose universe includes L.

We shall build up $K(a^{\xi}: \xi \in \omega^{m+1})$ recursively, and we shall (simultaneously) establish by induction that the desired conditions are satisfied. We shall use the ordering of the σ in ω^{m+1} determined by the left-lexicographic ordering of

$$(\sigma(m), \sigma(0) + \cdots + \sigma(m-1), \sigma(0), \sigma(1), \ldots, \sigma(m-2)).$$

Then ω^{m+1} has the order-type of ω itself, and we shall have

$$K(a^{\xi} \colon \xi \in \omega^{m+1}) = \bigcup_{\tau \in \omega^{m+1}} K(a^{\xi} \colon \xi < \tau).$$

When $\tau = (0, \ldots, 0, 1)$, then, using ($\dagger \dagger$) as a definition, we have the field $K(a^{\xi} : \xi < \tau)$ as desired. Suppose we have this field as desired for some τ in ω^{m+1} such that $\tau(m) > 0$. In particular, for all i in m + 1, we have $\tilde{\partial}_i$ as a derivation from $K(a^{\xi} : \xi + i < \tau)$ to $K(a^{\xi} : \xi < \tau)$, and the conditions ($\ddagger \ddagger$) and (§§) hold for all σ such that $\sigma < \tau$. For defining a^{τ} , there are two cases to consider:

- 1. If $a^{\tau-\boldsymbol{m}}$ is not algebraic over $K(a^{\xi}: \xi < \tau \boldsymbol{m})$, then we let a^{τ} be transcendental over $L(a^{\xi}: \xi < \tau)$, as required by (§§). We are then free to define $\tilde{\partial}_m a^{\tau-\boldsymbol{m}}$ as a^{τ} .
- 2. If $a^{\tau-\boldsymbol{m}}$ is algebraic over $K(a^{\xi}: \xi < \tau \boldsymbol{m})$, then $\tilde{\partial}_m a^{\tau-\boldsymbol{m}}$ is determined as an element of $K(a^{\xi}: \xi < \tau)$, and we let a^{τ} be this element.

We now must check that, when i < m and $\tau(i) > 0$, we can define $\tilde{\partial}_i a^{\tau-i}$ as a^{τ} . Again we consider two cases.

- 1. Suppose $a^{\tau-i}$ is algebraic over $K(a^{\xi}: \xi < \tau i)$. Then $\tilde{\partial}_i a^{\tau-i}$ is determined as an element of $K(a^{\xi}: \xi < \tau)$. Thus the value of the bracket $[\tilde{\partial}_i, \tilde{\partial}_m]$ at $a^{\tau-i-m}$ is determined. But also, by (§§), $a^{\tau-i-m}$ must be algebraic over $K(a^{\xi}: \xi < \tau - i - m)$. Since the bracket is 0 on this field, it is 0 at $a^{\tau-i-m}$ as well [11, Lem. 4.2].
- 2. If $a^{\tau-i}$ is transcendental over $K(a^{\xi}: \xi < \tau i)$, then since we are given $\tilde{\partial}_i$ as a derivation whose domain is this field, we are free to define $\tilde{\partial}_i a^{\tau-i}$ as a^{τ} .

Thus we have obtained $K(a^{\xi}: \xi \leq \tau)$ as desired. Therefore ω -DF₀ has the model-companion ω -DCF₀.

As noted, ω -DCF₀ inherits quantifier-elimination, completeness, and stability from the *m*-DCF₀, which have these properties [6]. Although each *m*-DCF₀ is actually ω -stable, ω -DCF₀ is not even superstable, since if *A* is a set of constants (in the sense that all of their derivatives are 0), then as σ ranges over A^{ω} , the sets $\{\partial_m x = \sigma(m) : m \in \omega\}$ belong to distinct complete types.

We may note that, in the foregoing proof, we cannot use Condition A of Theorem 5 in the stronger form in which the structure \mathfrak{C} is required to be a mere expansion to \mathscr{S}_1 of \mathfrak{B} :

Theorem 7. If m > 0, there is a model of m-DF₀ that does not expand to a model of (m + 1)-DF₀.

Proof. We generalize the example of [4] repeated in [9, Ex. 1.2, p. 927]. Suppose K is a pure transcendental extension $\mathbb{Q}(a^{\sigma}: \sigma \in \omega^{m+1})$ of \mathbb{Q} , and $\partial_i a^{\sigma} = a^{\sigma+i}$. Let L be the pure transcendental extension $K(b^{\tau}: \tau \in \omega^{m-1})$ of K, and if i < m-1, let $\partial_i b^{\tau} = b^{\tau+i}$, while $\partial_{m-1} b^{\tau} = a^{(\tau,0,0)}$. Suppose ∂_m extends to L as well. We have

$$\partial_{m-1}\partial_m{}^k b^\tau = \partial_m{}^k \partial_{m-1} b^\tau = \partial_m{}^k a^{(\tau,0,0)} = a^{(\tau,0,k)},$$

and these are all algebraically independent over $\mathbb{Q}(a^{\sigma}: \sigma \in \omega^{m+1} \wedge \sigma(m-1) > 0)$. However, $\partial_{m-1}x$ is algebraic over this field whenever x is algebraic over K. Thus all of the $\partial_m{}^k b^{\tau}$ are algebraically independent over K; in particular, when k > 0, they do not belong to L.

Finally, the union of a chain of non-companionable theories may be companionable:

Theorem 8. In the signature $\{f\} \cup \{c_k : k \in \omega\}$, where f is a singulary operationsymbol and the c_k are constant-symbols, let T_0 be axiomatized by the sentences

$$\forall x \; \forall y \; (fx = fy \to x = y)$$

and, for each k in ω ,

 $\forall x \ (f^{k+1}x \neq x), \quad \forall x \ (fx = c_k \rightarrow x = c_{k+1}), \quad fc_{k+2} = c_{k+1} \rightarrow fc_{k+1} = c_k.$ For each n in ω , let T_{n+1} be axiomatized by

$$T_n \cup \{fc_{n+1} = c_n\}.$$

Then

- (1) each T_n is universally axiomatized, and a fortiori $\forall \exists$, so it does have existentially closed models;
- (2) each T_n has the Amalgamation Property;
- (3) every existentially closed model of T_{n+1} is an existentially closed model of T_n ;
- (4) no T_n is companionable;
- (5) $\bigcup_{n \in \omega} T_n$ is companionable.

Proof. Let \mathfrak{A}_m be the model of T_0 with universe $\omega \times \omega$ such that

$$f^{\mathfrak{A}_m}(k,\ell) = (k,\ell+1), \qquad c_k^{\mathfrak{A}_m} = \begin{cases} (k-m,0), & \text{if } k > m, \\ (0,m-k), & \text{if } k \leqslant m. \end{cases}$$

Let \mathfrak{A}_{ω} be the model of T_0 with universe \mathbb{Z} such that

$$f^{\mathfrak{A}_{\omega}}k = k+1, \qquad \qquad c_k^{\mathfrak{A}_{\omega}} = -k$$

Then \mathfrak{A}_m is a model of each T_k such that $k \leq m$; and \mathfrak{A}_{ω} is a model of each T_k . Moreover, each model of T_k consists of a copy of some \mathfrak{A}_{β} such that $k \leq \beta \leq \omega$, along with some (or no) disjoint copies of ω and \mathbb{Z} in which f is interpreted as $x \mapsto x+1$. Conversely, every structure of this form is a model of T_k . The β such that \mathfrak{A}_{β} embeds in a given model of T_k is uniquely determined by that model. Consequently T_k has the Amalgamation Property. Also, a model of T_k is an existentially closed model if and only if includes no copies of ω (outside the embedded \mathfrak{A}_{β}): This establishes that every existentially closed model of T_{k+1} is an existentially closed model of T_k .

The existentially closed models of T_k are those models that omit the type $\{\forall y \ fy \neq x\} \cup \{x \neq c_j : j \in \omega\}$. In particular, \mathfrak{A}_m is an existentially closed model of T_k , if $k \leq m$; but \mathfrak{A}_m is elementarily equivalent to a structure that realizes the given type. Thus T_k is not companionable.

Finally, the model-companion of $\bigcup_{k \in \omega} T_k$ is axiomatized by this theory, together with $\forall x \exists y \ fy = x$.

References

- Zoé Chatzidakis and Ehud Hrushovski, Model theory of difference fields, Trans. Amer. Math. Soc. 351 (1999), no. 8, 2997–3071. MR 2000f:03109
- [2] Paul Eklof and Gabriel Sabbagh, *Model-completions and modules*, Ann. Math. Logic 2 (1970/1971), no. 3, 251–295. MR MR0277372 (43 #3105)
- [3] Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 94e:03002
- [4] Joseph Johnson, Georg M. Reinhart, and Lee A. Rubel, Some counterexamples to separation of variables, J. Differential Equations 121 (1995), no. 1, 42–66. MR 96g:35006
- [5] Angus Macintyre, Generic automorphisms of fields, Ann. Pure Appl. Logic 88 (1997), no. 2-3, 165–180, Joint AILA-KGS Model Theory Meeting (Florence, 1995). MR 99c:03046
- [6] Tracey McGrail, The model theory of differential fields with finitely many commuting derivations, J. Symbolic Logic 65 (2000), no. 2, 885–913. MR 2001h:03066
- [7] Alice Medvedev, QACFA, Talk given at Recent Developments in Model Theory, Oléron, France, http://modeltheory2011.univ-lyon1.fr/abstracts.html, June 2011.
- [8] _____, QACFA, preprint, http://math.berkeley.edu/~alice/grouplessqacfa.pdf, November 2012.
- [9] David Pierce, Differential forms in the model theory of differential fields, J. Symbolic Logic 68 (2003), no. 3, 923–945. MR 2 000 487
- [10] _____, Geometric characterizations of existentially closed fields with operators, Illinois J. Math. 48 (2004), no. 4, 1321–1343. MR MR2114160
- [11] _____, Fields with several commuting derivations, ArXiv e-prints (2007).
- [12] _____, Model-theory of vector-spaces over unspecified fields, Arch. Math. Logic 48 (2009), no. 5, 421–436. MR MR2505433

MIDDLE EAST TECHNICAL UNIVERSITY, NORTHERN CYPRUS CAMPUS

MIMAR SINAN FINE ARTS UNIVERSITY, ISTANBUL *E-mail address*: dpierce@msgsu.edu.tr