
CHAINS OF THEORIES AND COMPANIONABILITY
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Abstract. The theory of fields with a countably infinite family of commuting

derivations is not companionable; but if the axiom is added whereby the char-
acteristic of the fields is zero, then the resulting theory is companionable. Each

of these two theories is the union of a chain of companionable theories. In a

signature with predicates, in all finite numbers of arguments, for linear depen-
dence of vectors, the two-sorted theory of vector-spaces with their scalar-fields

is companionable, and it is the union of a chain of companionable theories, but

its model-companion is not the union of the model-companions of the theories
in the chain. Finally, the union of a chain of non-companionable theories may

be companionable.

A theory in a given signature is a set of sentences, in the first-order logic of
that signature, that is closed under logical implication. We shall consider chains
(Tm : m ∈ ω) of theories: this means

T0 ⊆ T1 ⊆ T2 ⊆ · · · (∗)
The signature of Tm will be Sm, so automatically S0 ⊆ S1 ⊆ S2 ⊆ · · ·

In one motivating example, Sm is {0, 1,−,+, · , ∂0, . . . , ∂m−1}, the signature of
fields with m additional singulary function-symbols; and Tm is m-DF, the theory
of fields (of any characteristic) with m commuting derivations. In this example,
each Tm+1 is a conservative extension of Tm, that is, Tm+1 ⊇ Tm and every
sentence in Tm+1 of signature Sm is already in Tm. We establish this by showing
that every model of Tm expands to a model of Tm+1. (This condition is sufficient,
but not necessary [3, §2.6, exer. 8, p. 66].) If (K, ∂0, . . . , ∂m−1) |= m-DF, then
(K, ∂0, . . . , ∂m) |= (m+ 1)-DF, where ∂m is the 0-derivation.

The union of the theories m-DF can be denoted by ω-DF: it is the theory
of fields with ω-many commuting derivations. Each of the theories m-DF has a
model-companion, called m-DCF [11]; but we shall show (as Theorem 3 below)
that ω-DF has no model-companion. Let us recall that a model-companion of
a theory T is a theory T ∗ in the same signature such that (1) T∀ = T ∗∀, that is,
every model of one of the theories embeds in a model of the other, and (2) T ∗

is model-complete, that is, T ∗ ∪ diag(M) axiomatizes a complete theory for all
models M of T ∗. Here diag(M) is the quantifier-free theory of M with parameters:
equivalently, diag(M) is the theory of all structures in which MM embeds. (These
notions, with historical references, are reviewed further in [11].) A theory has at
most one model-companion, by an argument with interwoven elementary chains.

Let m-DF0 be m-DF with the additional requirement that the field have char-
acteristic 0. Then m-DF0 has a model-companion, called m-DCF0 [6]. We shall
show (as Theorem 6 below) that m-DCF0 ⊆ (m+ 1)-DCF0. It will follow then that
the union ω-DF0 of the m-DF0 has a model-companion, which is the union of the
m-DCF0. This is by the following general result, which has been observed also by
Alice Medvedev [7, 8]. Again, the theories Tk are as in (∗) above.

Theorem 1. Suppose each theory Tk has a model-companion Tk
∗, and

T0
∗ ⊆ T1∗ ⊆ T2∗ ⊆ · · · (†)
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Then the theory
⋃
k∈ω Tk has a model-companion, namely

⋃
k∈ω Tk

∗.

Proof. Write U for
⋃
k∈ω Tk, and U∗ for

⋃
k∈ω Tk

∗. Suppose A |= U , and Γ is a
finite subset of U∗ ∪ diag(A). Then Γ is a subset of Tk

∗ ∪ diag(A �Sk) for some k
in ω, and also A �Sk |= Tk. Since (Tk

∗)∀ ⊆ Tk, we conclude that Γ is consistent.
Therefore U∗ ∪ diag(A) is consistent. Thus U∗∀ ⊆ U . By symmetry U∀ ⊆ U∗.

Similarly, if B |= U∗, then Tk
∗ ∪ diag(B �Sk) axiomatizes a complete theory in

each case, and therefore U∗ ∪ diag(B) is complete. �

The foregoing proof does not require that the signatures Sk form a chain, but
needs only that every finite subset of

⋃
k∈ω Sk be included in some Sk. This is

the setting for Medvedev’s [8, Prop. 2.4, p. 6], which then has the same proof as
the foregoing. Also in Medvedev’s setting, each Tk+1

∗ is a conservative extension
of Tk

∗; but only the weaker assumption Tk
∗ ⊆ Tk+1

∗ is needed in the proof.
Medvedev notes that many properties that the theories Tk might have are ‘local’

and are therefore preserved in
⋃
k∈ω Tk: examples are completeness, elimination of

quantifiers, stability, and simplicity. In her main application, Sn is the signature of
fields with singulary operation-symbols σm/n!, where m ∈ Z; and Tn is the theory
of fields on which the σm/n! are automorphisms such that

σk/n! ◦ σm/n! = σ(k+m)/n!.

Then Tn includes the theory Sn of fields with the single automorphism σ1/n!. Using
[12, §1] (which is based on [3, ch. 5]), we may observe at this point that reduction of

models of Tn to models of Sn is actually an equivalence of the categories Mod⊆(Tn)

and Mod⊆(Sn), whose objects are models of the indicated theories, and whose
morphisms are embeddings. We thus have at hand a (rather simple) instance of
the hypothesis of the following theorem.

Theorem 2. Suppose (I, J) is a bi-interpretation of theories S and T such that

I is an equivalence of the categories Mod⊆(S) and Mod⊆(T ). If S has the model-
companion S∗, and S ⊆ S∗, then T also has a model-companion, which is the theory
of those models B of T such that J(B) |= S∗.

Proof. The class of models B of T such that J(B) |= S∗ is elementary. Let T ∗ be
its theory. Then T ⊆ T ∗. Suppose B |= T . Then J(B) |= S, so J(B) embeds in
a model A of S∗. Consequently I(J(B)) embeds in I(A). Also I(A) |= T ∗, since
A ∼= J(I(A)). Since also B ∼= I(J(B)), we conclude that B embeds in a model
of T ∗. Finally, T ∗ is model-complete. Indeed, suppose now B and C are models
of T ∗ such that B ⊆ C. Then J(B) embeds in J(C), and these structures are
models of S∗, so the embedding is elementary. Therefore an elementary embedding
of I(J(B)) in I(J(C)) is induced. By the equivalence of the categories, B 4 C. �

In the present situation, the theory Sn has a model-companion [5, 1]; let us
denote this by ACFAn. By the theorem then, Tn has a model-companion Tn

∗,
which is axiomatized by Tn∪ACFAn. We have ACFAn ⊆ Tn+1

∗ by [1, 1.12, Cor. 1,
p. 3013]. By Theorem 1 then,

⋃
n∈ω Tn has a model-companion, which is the union

of the Tn
∗. Medvedev calls this union QACFA; she shows for example that it

preserves the simplicity of the ACFAn, as noted above, though it does not preserve
their supersimplicity.

The following is similar to the result that the theory of fields with a derivation
and an automorphism (of the field-structure only) has no model-companion [10].
The obstruction lies in positive characteristics p, where all derivatives of elements
with p-th roots must be 0.

Theorem 3. The theory ω-DF has no model-companion.
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Proof. We use that an ∀∃ theory T has a model-companion if and only if the class of
its existentially closed models is elementary, and in this case the model-companion
is the theory of this class [2]. (A model A of T is an existentially closed model,
provided that if B |= T and A ⊆ B, then A 41 B, that is, all quantifier-free
formulas over A that are soluble in B are soluble in A.) For each n in ω, the
theory ω-DF has an existentially closed model An, whose underlying field includes
Fp(α), where α is transcendental; and in this model,

∂kα =

{
1, if k = n,

0, otherwise.

Then α has no p-th root in An. Therefore, in a non-principal ultraproduct of the
An, α has no p-th root, although ∂nα = 0 for all n in ω, so that α does have a
p-th root in some extension. Thus the ultraproduct is not an existentially closed
model of ω-DF. Therefore the class of existentially closed models of ω-DF is not
elementary. �

It follows then by Theorem 1 that m-DCF * (m+ 1)-DCF for at least one m.
We could contrive examples to show this independently; but this by itself would not
be enough to establish the last theorem. For, by the results of [12], it is possible for
each Tk to have a model-companion Tk

∗, while
⋃
k∈ω Tk has a model-companion

that is not
⋃
k∈ω Tk

∗. We may even require Tk+1 to be a conservative extension of
Tk.

Indeed, if k > 0, then in the notation of [12], VSk is the theory of vector-
spaces with their scalar-fields in the signature {+,−,0, ◦, 0, 1, ∗, P k}, where ◦ is
multiplication of scalars, and ∗ is the action of the scalar-field on the vector-space,
and P k is k-ary linear dependence. In particular, P 2 may written also as ‖. Then
VSk has a model-companion, VSk

∗, which is the theory of k-dimensional vector-
spaces over algebraically closed fields [12, Thm 2.3]. Let VSω =

⋃
16k<ω VSk.

(This was called VS∞ in [12].) This theory has the model-companion VSω
∗, which

is the theory of infinite-dimensional vector-spaces over algebraically closed fields
[12, Thm 2.4].

Theorem 4. If 1 6 n < ω, let

Tn =
⋃

16k6n

VSk .

Then Tn has a model-companion Tn
∗, which is axiomatized by VSn

∗ ∪ Tn. Also
Tn+1 is a conservative extension of Tn. However, the model-companion VSω

∗ of
the union VSω of the chain (Tn : 1 6 n < ω) is not the union of the Tn

∗.

Proof. Every vector-space can be considered as a model of any VSk and hence of
any Tk. In particular, Tn+1 is a conservative extension of Tn. The relation P 1 is
defined by x = 0. Let VSm

n be axiomatized by VSn and the requirement that the
space have dimension at least n. If n > 2, then there are existential formulas that,
in each model of VSm

n , define the relation ‖ and its complement [12, §2, p. 431].
Similarly, if 2 6 k < n − 1, then, using existential formulas, we can define P k+1

and its complement in models of VSk ∪VSm
n : indeed, ¬P k+1x0 · · ·xk is equivalent

to ∃(xk+1, . . . ,xn−1) Pnx0 · · ·xn−1, and P k+1x0 · · ·xk is equivalent to

∃(xk+1, . . . ,xn)

(
P kx1 · · ·xk ∨

(
¬Pnx1 · · ·xn ∧

n∧
j=k

Pnx0 · · ·xj−1xj+1 · · ·xn
))

.

Therefore reduction from models of Tn to models of VSm
n is an equivalence of the

categories Mod⊆(Tn) and Mod⊆(VSm
n ) [12, Lem 1.1]. Since VSn ⊆ VSm

n and every
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model of VSn embeds in a model of VSm
n , the two theories have the same model-

companion, namely VSn
∗. Therefore VSn

∗ ∪ Tn axiomatizes Tn
∗, by Theorem 2.

The rest has already been noted. �

Let VSr
n comprise the sentences of VSn having one-sorted signature {0,−,+, Pn}.

If n > 1, then reduction of VSn to VSr
n is an equivalence of categories Mod⊆(VSn)

and Mod⊆(VSr
n), and therefore VSr

n is companionable. (This was mentioned at [12,
p. 431], but the details, and in particular Theorem 2, were not spelled out.) So there
is an alternative, one-sorted version of the last theorem, where Tn is

⋃
16k6n VSr

k.

The implication A ⇒ B in the following is used implicitly at [1, 1.12, p. 3013]
to establish the result used above, that if (K,σ) is a model of ACFA, then so is
(K,σm), assuming m > 1.

Theorem 5. Assuming as usual T0 ⊆ T1, where each Tk has signature Sk, we
consider the following conditions.

A. For every model A of T1 and model B of T0 such that

A �S0 ⊆ B, (‡)

there is a model C of T1 such that

A ⊆ C, B ⊆ C �S0. (§)

B. The reduct to S0 of every existentially closed model of T1 is an existentially
closed model of T0.

C. T0 has the Amalgamation Property: if one model embeds in two others,
then those two in turn embed in a fourth model, compatibly with the original
embeddings.

D. T1 is ∀∃ (so that every model embeds in an existentially closed model).
We have the two implications

A =⇒ B, B & C & D =⇒ A,

but there is no implication among the four conditions that does not follow from
these. This is true, even if T1 is required to be a conservative extension of T0.

Proof. Suppose A holds. Let A be an existentially closed model of T1, and let B
be an arbitrary model of T0 such that (‡) holds. By hypothesis, there is a model
C of T1 such that (§) holds. Then A 41 C, and therefore A �S0 41 C �S0, and a
fortiori A �S0 41 B. Therefore A �S0 must be an existentially closed model of
T0. Thus B holds.

Suppose conversely B holds, along with C and D. Let A |= T1 and B |= T0 such
that (‡) holds. We establish the consistency of T1∪diag(A)∪diag(B). It is enough
to show the consistency of

T1 ∪ diag(A) ∪ {∃x ϕ(x)}, (¶)

where ϕ is an arbitrary quantifier-free formula of S0(A) that is soluble in B. By
D, there is an existentially closed model C of T1 that extends A. By B then, C �S0

is an existentially closed model of T0 that extends A�S0. By C, both B and C�S0

embed over A �S0 in a model of T0. In particular, ϕ will be soluble in this model.
Therefore ϕ is already soluble in C �S0 itself. Thus C is a model of (¶). Therefore
A holds.

The foregoing arguments eliminate the five possibilities marked X on the table
below, where 0 means false, and 1, true. We give examples of each of the remaining
cases, numbered according to the table. In each example, T0 will be the reduct of
T1 to S0. We shall denote by Sf the signature {+, · ,−, 0, 1} of fields; and by Svs,
the signature {+,−,0, ◦, 0, 1, ∗} of vector-spaces as two-sorted structures.
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1 X 2 3 4 X 5 6 7 X 8 9 10 X X 11
A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1. We first give an example in which none of the four lettered conditions hold.
Let S0 = Sf ∪ {a, b} and S1 = S0 ∪ {c}. Let T1 be the theory of fields of
characteristic p with distinguished elements a, b, and c such that {a, c} or {b, c} is
p-independent, and if {b, c} is p-independent, then so is {b, c, d} for some d. Then
T0 is the theory of fields of characteristic p in which, for some c, {a, c} or {b, c} is
p-independent, and if {b, c} is p-independent, then so is {b, c, d} for some d. The
negations of the four lettered conditions are established as follows. Throughout, a,
b, c, and d will be algebraically independent over Fp.
¬A. We have

(Fp(a, b1/p, c), a, b, c) |= T1, (Fp(a, b1/p, c1/p), a, b) |= T0,

but if (Fp(a, b1/p, c), a, b, c) is a substructure of a model (K, a, b, c) of T1, then

K cannot contain c1/p.
¬B. T0 has no existentially closed models, since an element of a model that is

p-independent from a or b will always have a p-th root in some extension.
Similarly, no model of T1 in which {a, c} is not p-independent is existentially
closed. But T1 does have existentially closed models, which are just the sepa-
rably closed fields of characteristic p with p-basis {a, c} and with an additional
element b.

¬C. T0 does not have the Amalgamation Property, since (Fp(a, b1/p, c), a, b) and

(Fp(a1/p, b, c, d), a, b) are models that do not embed in the same model over
the common substructure (Fp(a, b, c), a, b), which is a model of T0.

¬D. T1 is not ∀∃, since, as we have already noted, models in which {a, c} is not
p-independent do not embed in existentially closed models.

2. For an example of the column headed by 2 in the table, we let S0 and S1

be as in 1; but now T1 is the theory of fields of characteristic p with distinguished
elements a, b, and c such that {a, c, d} or {b, c, d} is p-independent {b, c, d} for some
d. This ensures that T1 has no existentially closed models, so B holds vacuously;
but the other three conditions still fail.

3. T0 and T1 are the same theory, so A and B hold trivially; and this theory is
the theory of vector-spaces of dimension at least 2, in the signature of vector-spaces,
so it neither has the Amalgamation Property, nor is ∀∃.

4. T1 is DFp with the additional requirement that the field have p-dimension
at least 2; and S0 = Sf , so T0 is the theory of fields of characteristic p with p-
dimension at least 2. The latter theory has the Amalgamation Property; but the
other conditions fail. Indeed, let (Fp(a, b), D) be the model of T1 in which Da = 1

and Db = 0: then the field Fp(a, b) embeds in Fp(a1/p, b), which is a model of T0,
but D does not extend to this field. Also, T0 has no existentially closed models;
but T1 does, and indeed it has a model-companion, namely DCFp. Also T1 is not
∀∃, since T0 is not: there is a chain of models of the latter, whose union is not a
model, and we can make the structures in the chain into models of T1 by adding
the zero derivation.

5. S0 = Sf , and S1 = S0 ∪ {a}. T1 is the theory of fields of characteristic p
with distinguished element a, which is p-independent from another element; so T0
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is (as in 4) the theory of fields of characteristic p with p-dimension at least 2. Here
T1 has no existentially closed models, so B holds trivially.

6. T0 and T1 are the same, namely the theory of fields of characteristic p of
positive p-dimension, in the signature of fields, so this theory has the Amalgamation
Property, but is not ∀∃.

7. S0 = Svs, S1 = S0 ∪ {‖,a, b}, and T1 is axiomatized by VS2 ∪{a ∦ b},
so it is ∀∃. Then T0 is the theory of vector-spaces of dimension at least 2. As in
Theorem 4 above, T1 has a model-companion, namely the theory of vector-spaces
over algebraically closed fields with basis {a, b}. But T0 has no existentially closed
models, since for all independent vectors a and b in some model, the equation
x ∗ a + y ∗ b = 0 is always soluble in some extension. Thus B fails. Then T0 also
does not have the Amalgamation Property, since the solutions of the given equation
may satisfy 2x2 = y2 in one extension, but 3x2 = y2 in another. Similarly, A fails,
since the reduct to S0 of a model of T1 may embed in a model of T0 in which a
and b are parallel.

8. S0 = Svs ∪ {‖}, S1 = S0 ∪ {a, b}, and T1 is axiomatized by VS2 together
with

∀x ∀y (x ∗ a + y ∗ b = 0→ 2x2 = y2). (‖)
Then T0 is the theory of vector-spaces such that either the dimension is at least
2, or the scalar field contains

√
2. As in 7, T0 does not have the Amalgamation

Property. The theory T1 is ∀∃. It also has the model (Q ∗ a ⊕ Q ∗ b,a, b), and
Q ∗a⊕Q ∗b embeds in the model Q(

√
2,
√

3) ∗a of T0 when we let b =
√

3 ∗a; but
then the latter space embeds in no space in which a and b are as required by (‖).
So A fails. Finally, T1 has a model-companion, axiomatized by VS2

∗ together with

∃x ∃y (x ∗ a + y ∗ b = 0 ∧ 2x2 = y2 ∧ x 6= 0);

and T0 has a model-companion, which is just VS2
∗; so B holds.

9. T0 and T1 are both VS1.
10. T1 = DFp, and T0 is the reduct to Sf , namely field-theory in characteristic p.
11. T0 and T1 are both field-theory. �

Now let ω-DCF0 =
⋃
m∈ωm-DCF0.

Theorem 6. For all m in ω,

m-DCF0 ⊆ (m+ 1)-DCF0.

Therefore ω-DF0 has a model-companion, which is ω-DCF0. This theory admits
full elimination of quantifiers, is complete, and is properly stable.

Proof. Suppose (L, ∂0, . . . , ∂m−1) is a model of m-DF0, and L has a subfield K
that is closed under the ∂i (where i < m), and there is also a derivation ∂m on
K such that (K, ∂0 � K, . . . , ∂m−1 � K, ∂m) is a model of (m+ 1)-DF0. We shall
include (L, ∂0, . . . , ∂m−1) in another model of m-DF0, namely a model that expands
to a model of (m+ 1)-DF0 that extends (K, ∂0, . . . , ∂m). By the last theorem, it
will follow that m-DCF0 ⊆ (m+ 1)-DCF0. Since m is arbitrary, it will follow by
Theorem 1 that ω-DCF0 is the model-companion of ω-DF0.

If K = L, we are done. So suppose a ∈ L r K. We shall define an extension
K(aξ : ξ ∈ ωm+1) of K, and for each i in m+ 1, we shall define a derivation ∂̃i on
this extension so that

∂̃i �K = ∂i �K. (∗∗)
For each σ in ωm+1, we shall require

σ(m) = 0 =⇒ aσ = ∂0
σ(0) · · · ∂m−1σ(m−1)a. (††)
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If i < m + 1, let i denote the element of ωm+1 that takes the value 1 at i and 0
elsewhere. Then for each σ in ωm+1, we shall require

σ(i) > 0 =⇒ ∂̃ia
σ−i = aσ, (‡‡)

σ(m) > 0 ∧ aσ−m /∈ K(aξ : ξ < σ −m)alg =⇒ aσ /∈ L(aξ : ξ < σ)alg. (§§)

These conditions ensure that the derivations ∂̃i, if they do exist, are unique.
This uniqueness of the ∂̃i would be ensured, if the field L in the conclusion of

(§§) were replaced with K. But the condition (§§), as it is, along with (∗∗), (††),
and (‡‡), will ensure that, if i < m, then ∂̃i will agree with ∂i wherever they are
both defined, that is, on K(aξ : ξ ∈ ωm+1) ∩ L. Indeed, the conditions (∗∗), (††),
and (‡‡) ensure this agreement on K(aξ : ξ(m) = 0). Moreover, we have

K(aξ : ξ(m) = 0) = K(aξ : ξ ∈ ωm+1) ∩ L.

For, suppose σ(m) > 0 and aσ ∈ L. Then by (§§) we have aσ−m ∈ K(aξ : ξ <

σ − m)alg, and therefore, by (∗∗) and (‡‡), applying ∂̃m to aσ−m yields aσ ∈
K(aξ : ξ < σ). Repeating this result, we obtain that aσ is a rational function
over K(aξ : ξ(m) = 0) of certain aη, where η < σ; and these aη are algebraically
independent over L. Since aσ ∈ L, we conclude aσ ∈ K(aξ : ξ(m) = 0).

The last observation means that, once we have constructed K(aξ : ξ ∈ ωm+1)
as desired, then, if LrK(aξ : ξ ∈ ωm+1) is nonempty, we can repeat the process,
using an element of this difference in place of a. Thus, ultimately, we shall obtain
the desired model of (m+ 1)-DF0 whose universe includes L.

We shall build up K(aξ : ξ ∈ ωm+1) recursively, and we shall (simultaneously)
establish by induction that the desired conditions are satisfied. We shall use the
ordering of the σ in ωm+1 determined by the left-lexicographic ordering of

(σ(m), σ(0) + · · ·+ σ(m− 1), σ(0), σ(1), . . . , σ(m− 2)).

Then ωm+1 has the order-type of ω itself, and we shall have

K(aξ : ξ ∈ ωm+1) =
⋃

τ∈ωm+1

K(aξ : ξ < τ).

When τ = (0, . . . , 0, 1), then, using (††) as a definition, we have the field K(aξ : ξ <
τ) as desired. Suppose we have this field as desired for some τ in ωm+1 such

that τ(m) > 0. In particular, for all i in m + 1, we have ∂̃i as a derivation from
K(aξ : ξ + i < τ) to K(aξ : ξ < τ), and the conditions (‡‡) and (§§) hold for all σ
such that σ < τ . For defining aτ , there are two cases to consider:

1. If aτ−m is not algebraic over K(aξ : ξ < τ−m), then we let aτ be transcen-
dental over L(aξ : ξ < τ), as required by (§§). We are then free to define

∂̃ma
τ−m as aτ .

2. If aτ−m is algebraic over K(aξ : ξ < τ −m), then ∂̃ma
τ−m is determined

as an element of K(aξ : ξ < τ), and we let aτ be this element.

We now must check that, when i < m and τ(i) > 0, we can define ∂̃ia
τ−i as aτ .

Again we consider two cases.
1. Suppose aτ−i is algebraic over K(aξ : ξ < τ−i). Then ∂̃ia

τ−i is determined

as an element of K(aξ : ξ < τ). Thus the value of the bracket [∂̃i, ∂̃m] at
aτ−i−m is determined. But also, by (§§), aτ−i−m must be algebraic over
K(aξ : ξ < τ − i−m). Since the bracket is 0 on this field, it is 0 at aτ−i−m

as well [11, Lem. 4.2].

2. If aτ−i is transcendental over K(aξ : ξ < τ − i), then since we are given ∂̃i
as a derivation whose domain is this field, we are free to define ∂̃ia

τ−i as
aτ .
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Thus we have obtained K(aξ : ξ 6 τ) as desired. Therefore ω-DF0 has the model-
companion ω-DCF0.

As noted, ω-DCF0 inherits quantifier-elimination, completeness, and stability
from the m-DCF0, which have these properties [6]. Although each m-DCF0 is
actually ω-stable, ω-DCF0 is not even superstable, since if A is a set of constants
(in the sense that all of their derivatives are 0), then as σ ranges over Aω, the sets
{∂mx = σ(m) : m ∈ ω} belong to distinct complete types. �

We may note that, in the foregoing proof, we cannot use Condition A of The-
orem 5 in the stronger form in which the structure C is required to be a mere
expansion to S1 of B:

Theorem 7. If m > 0, there is a model of m-DF0 that does not expand to a model
of (m+ 1)-DF0.

Proof. We generalize the example of [4] repeated in [9, Ex. 1.2, p. 927]. Suppose K
is a pure transcendental extension Q(aσ : σ ∈ ωm+1) of Q, and ∂ia

σ = aσ+i. Let L
be the pure transcendental extension K(bτ : τ ∈ ωm−1) of K, and if i < m− 1, let
∂ib

τ = bτ+i, while ∂m−1b
τ = a(τ,0,0). Suppose ∂m extends to L as well. We have

∂m−1∂m
kbτ = ∂m

k∂m−1b
τ = ∂m

ka(τ,0,0) = a(τ,0,k),

and these are all algebraically independent over Q(aσ : σ ∈ ωm+1 ∧ σ(m− 1) > 0).
However, ∂m−1x is algebraic over this field whenever x is algebraic over K. Thus
all of the ∂m

kbτ are algebraically independent over K; in particular, when k > 0,
they do not belong to L. �

Finally, the union of a chain of non-companionable theories may be companion-
able:

Theorem 8. In the signature {f}∪{ck : k ∈ ω}, where f is a singulary operation-
symbol and the ck are constant-symbols, let T0 be axiomatized by the sentences

∀x ∀y (fx = fy → x = y)

and, for each k in ω,

∀x (fk+1x 6= x), ∀x (fx = ck → x = ck+1), fck+2 = ck+1 → fck+1 = ck.

For each n in ω, let Tn+1 be axiomatized by

Tn ∪ {fcn+1 = cn}.
Then

(1) each Tn is universally axiomatized, and a fortiori ∀∃, so it does have exis-
tentially closed models;

(2) each Tn has the Amalgamation Property;
(3) every existentially closed model of Tn+1 is an existentially closed model

of Tn;
(4) no Tn is companionable;
(5)

⋃
n∈ω Tn is companionable.

Proof. Let Am be the model of T0 with universe ω×ω such that

fAm(k, `) = (k, `+ 1), ck
Am =

{
(k −m, 0), if k > m,

(0,m− k), if k 6 m.

Let Aω be the model of T0 with universe Z such that

fAωk = k + 1, ck
Aω = −k.

Then Am is a model of each Tk such that k 6 m; and Aω is a model of each Tk.
Moreover, each model of Tk consists of a copy of some Aβ such that k 6 β 6 ω,
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along with some (or no) disjoint copies of ω and Z in which f is interpreted as x 7→
x+1. Conversely, every structure of this form is a model of Tk. The β such that Aβ
embeds in a given model of Tk is uniquely determined by that model. Consequently
Tk has the Amalgamation Property. Also, a model of Tk is an existentially closed
model if and only if includes no copies of ω (outside the embedded Aβ): This
establishes that every existentially closed model of Tk+1 is an existentially closed
model of Tk.

The existentially closed models of Tk are those models that omit the type
{∀y fy 6= x} ∪ {x 6= cj : j ∈ ω}. In particular, Am is an existentially closed model
of Tk, if k 6 m; but Am is elementarily equivalent to a structure that realizes the
given type. Thus Tk is not companionable.

Finally, the model-companion of
⋃
k∈ω Tk is axiomatized by this theory, together

with ∀x ∃y fy = x. �
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