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N = {1, 2, 3, . . . }, the set of natural numbers, and letters will
range over this set or else the set Z of integers. In N or Z, the
expression

a | b
means a divides b, and b is a multiple of a, that is, for some q,
aq = b. In this case, in N, a 6 b.

Division Theorem. If a - b, then for some unique q and r,

b = aq + r & r < a.

Since a and b have a common multiple (namely ab), they have a least
common multiple (by the Well Ordering Theorem), denoted by

lcm(a, b).

Since they have a common divisor (namely 1), and all common di-
visors are less than or equal to min{a, b}, the numbers a and b have
a greatest common divisor, denoted by

gcd(a, b);
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this can be found by the Euclidean Algorithm.

Theorem. . ab = gcd(a, b) · lcm(a, b).

. Every common divisor of a and b divides gcd(a, b).

. lcm(a, b) divides every common multiple of a and b.

Euclid’s Lemma. If a | bc, but gcd(a, b) = 1, then a | c.

Proof. By the Euclidean Algorithm, in Z we can solve

ax+ by = gcd(a, b).

If ax+ by = 1 and a | bc, then acx+ bcy = c and so a | c.

The letter p always denotes a prime number. If p | a, we may
define

a(p) = max{n : pn | a}.
(The existence of this maximum can be proved by contradiction and
the Well Ordering Theorem.) If p - a, we may let a(p) = 0. If always
a(p) 6 1, then a is squarefree.

Fundamental Theorem of Arithmetic. Every natural number
is a product of primes in only one way:

a =
∏
p

pa(p).

Proof. By the Strong Induction Theorem, every natural number is a
product of primes; by Euclid’s Lemma, it is so in only one way.

Thus

gcd(a, b) =
∏
p

pmin{a(p),b(p)}, lcm(a, b) =
∏
p

pmax{a(p),b(p)}.

A number-theoretic function or arithmetic function is a func-
tion with domain N. We define four of them:
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• τ(a) =
∑

d|a 1, the number of divisors of a;

• σ(a) =
∑

d|a d, the sum of the divisors of a;

• φ(a) =
∣∣{x ∈ N : x 6 n & gcd(x, n) = 1}

∣∣;
• µ(a) =

∏
p|a(−1), if a is squarefree; otherwise µ(a) = 0.

An arithmetic function F is multiplicative if

gcd(a, b) = 1 =⇒ F (ab) = F (a) · F (b).

Theorem. τ and σ are multiplicative, and

τ(a) =
∏
p|a

(a(p) + 1), σ(a) =
∏
p|a

a(p)∑
k=0

pk =
∏
p|a

pa(p)+1 − 1

p− 1
.

A number a is perfect if σ(a) = 2a. Examples include 6, 28, 496,
and 8128. A Mersenne prime is a prime of the form 2n−1, which
is
∑n−1

k=0 2
k. Examples include 3, 7, 31, and 127.

Theorem. The even perfect numbers are just the numbers p · (p +
1)/2, where p is a Mersenne prime.

Möbius Inversion Theorem. For arithmetic functions F and G,

G(a) =
∑
d|a

F (d) =⇒ F (a) =
∑
d|a

µ(d) ·G
(a
d

)
.

Proof. First prove the special case where F (a) =

{
1, if a = 1,

0, if a > 1.

Theorem. φ is multiplicative, and

φ(a) = a ·
∏
p|a

(
1− 1

p

)
=
∏
p|a

(
pa(p) − pa(p)−1

)
.

In particular, φ(pr) = pr − pr−1.
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Proof. First show
∑

d|a φ(d) = a. Then by Möbius Inversion,

φ(a) = a ·
∑
d|a

µ(d)

d
= a ·

∑
d|p1···pr

µ(d)

d
,

where p1 · · · pr =
∏

p|a p. By induction on r,

∑
d|p1···pr

µ(d)

d
=

r∏
n=1

(
1− 1

pn

)
.

For arbitrary integers a and b, if m ∈ N and m | a− b, we say a and
b are congruent to one another, writing

a ≡ b (mod m).

Fermat’s Theorem. ap ≡ a (mod p), and if p - a, then

ap−1 ≡ 1 (mod p).

Proof. By induction on a, or as a special case of the following.

Euler’s Theorem. If gcd(a,m) = 1, then

aφ(m) ≡ 1 (mod m).

Proof. If {x ∈ N : x 6 m & gcd(x,m) = 1} = {b1, . . . , bφ(m)}, then∏φ(m)
k=1 (abk) ≡

∏φ(m)
k=1 bk (mod m).

Chinese Remainder Theorem. If gcd(m,n) = 1, then every sys-
tem

x ≡ a (mod m), x ≡ b (mod n)

is uniquely soluble modulo mn, every solution being congruent to

anc+ bmd,

where nc ≡ 1 (mod m) and md ≡ 1 (mod n).
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