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BOOK VII.

DEFINITIONS.

1. An unit is that by virtue of which each of the things
that exist is called one.

2. A number is a multitude composed of units.

3. A number is a part of a number, the less of the
greater, when it measures the greater ;

4. but parts when it does not measure it.

5. The greater number is a multiple of the less when
it is measured by the less.

6. An even number is that which is divisible into two
equal parts.

7. An odd number is that which is not divisible into
two equal parts, or that which differs by an unit from an
even number.

8. An even-times even number is that which is
measured by an even number according to an even number.

9. An even-times odd number is that which is
measured by an even number according to an odd number.

10. An odd-times odd number is that which is
measured by an odd number according to an odd number.
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11. A prime number is that which is measured by an
unit alone,

12. Numbers prime to one another are those which
are measured by an unit alone as a common measure.

13. A composite number is that which is measured
by some number.

14. Numbers composite to one another are those
which are measured by some number as a common measure.

15. A number is said to multiply a number when that
which is multiplied is added to itself as many times as there
are units in the other, and thus some number is produced.

16. And, when two numbers having multiplied one
another make some number, the number so produced is
called plane, and its sides are the numbers which have
multiplied one another.

17. And, when three numbers having multiplied one
another make some number, the number so produced is
solid, and its sides are the numbers which have multiplied
one another.

18. A square number is equal multiplied by equal, or
a number which is contained by two equal numbers.

19. And a cube is equal multiplied by equal and again
by equal, or a number which is contained by three equal
numbers.

20. Numbers are proportional when the first is the
same multiple, or the same part, or the same parts, of the
second that the third is of the fourth.

21. Similar plane and solid numbers are those which
have their sides proportional.

22. A perfect number is that which is equal to its own
parts.
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DEFINITION 1.

Movds éorw, xaf fjv Exaorov 1dv vrur &v Aéyerar

Iamblichus (fl. circa 300 A.D.) tells us (Comm. on Nicomachus, ed. Pistelli,
p- 11, 5) that the Euclidean definition of an wnif or a monad was the definition
given by “more recent” writers (ol vewrepot), and that it lacked the words
“even though it be collective” (xdv cvoermuarwév ). He also gives (ibid.
p. 11) a number of other definitions. (1) According to “some of the Pytha-
goreans,” “an unit is the boundary between number and parts” (povds éorw
dpfpod xal poplwv pefopiov), “because from it, as from a seed and eternal
root, ratios increase reciprocally on either side,” i.e. on one side we have
multiple ratios continually increasing and on the other (if the unit be sub-
divided) submultiple ratios with denominators continually increasing. (2) A
somewhat similar definition is that of Thymaridas, an ancient Pythagorean,
who defined a monad as “limiting quantity” (wepaivovoa woadrys), the
beginning and the end of a thing being equally an extremity (mépas). Perhaps
the words together with their explanation may best be expressed by “limit of
fewness.” Theon of Smyrna (p. 18, 6, ed. Hiller) adds the explanation that
the monad is “that which, when the multitude is diminished by way of
continued subtraction, is deprived of all number and takes an abiding position
(powyv) and rest.” If, after arriving at an unit in this way, we proceed to divide
the unit itself into parts, we straightway have multitude again. (3) Some, ac-
cording to Iamblichus (p. 11, 16), defined it as the “form of forms” (el8dv €lSos
because it potentially comprehends all forms of number, e.g. it is a mlygoml
number of any number of sides from three upwards, a solid number in all
forms, and so on. (We are forcibly reminded of the latest theories of number
as a “Gattung” of “Mengen” or as a “class of classes.”) (4) Again an
unit, says Iamblichus, is the first, or smallest, in the category of Aow many
(woodv), the common part or beginning of Aow many. Aristotle defines it as
“the indivisible in the (category of) quantity,” v6 kard 76 mogdv dduaiperov
(Metaph. 1089 b 35), moodv including in Aristotle continuous as well as
discrete quantity ; hence it is distinguished from a point by the fact that it
has not position: “Of the indivisible in the category of, and gud, quantity,
that which is every way (indivisible) and destitute of position is called an
unif, and that which is every way indivisible and has position is a poins”
(Metaph. 1016 b 25). (5) In accordance with the last distinction, Aristotle
calls the unit “a point without position,” eriyun dferos (Melaph. 1084 b 26).
(6) Lastly, Iamblichus says that the school of Chrysippus defined it in a con-
fused manner (ovyxexvpévws) as “multitude ome (wAjfos &),” whereas it is
alone contrasted with multitude. On a comparison of these definitions, it
would seem that Euclid intended his to be a more popular one than those
of his predecessors, Snpuudys, as Nicomachus called Euclid’s definition of an
even number.

The etymological signification of the word povds is supposed by Theon of
Smyrna (p. 19, 7—13) to be either (1) that it remains unaltered if it be
multiplied by itself any number of times, or (2) that it is separated and isolated
(pepovdofas) from the rest of the multitude of numbers. Nicomachus also
observes (1. 8, 2) that, while any number is half the sum (1) of the adjacent
numbers on each side, (2) of numbers equidistant on each side, the unit is
maost solitary (poverdr) in that it has not a number on each side but only on
one side, and it is half of the latter alone, i.e. of 2.
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DEFINITION 2.

"Apifpds 8t 1o éx povddwv ouykeipevor wAGos.

The definition of a number is again only one out of many that are on
record. Nicomachus (1. 7, 1) combines several into one, saying that it is
“a defined multitude (wAffos dpiopévor), or a collection of units (povadwv
avompa), or a flow of quantity made up of units” (roodryres xipa ék povdduy
cuykeiuevov). Theon, in words almost identical with those attributed by
Stobaeus (Eclogae, 1. 1, 8) to Moderatus, a Pythagorean, says (p. 18, 3—s5):
“ A number is a collection of units, or a progression (mwporediouds) of mul-
titude beginning from an unit and a retrogression (dvarodiouds) ceasing at an
unit.” According to Iamblichus (p. 10) the description *“collection of units”
(novddwy ovarua) was applied to the Aow many, i.e. to number, by Thales,
following the Egyptian view (kard 16 Alyvrriaxov dpéoxov), while it was
Eudoxus the Pythagorean who said that a number was “a defined multitude”
(wAffos dpiopévor). Aristotle has a number of definitions which come to the
same thing: “limited multitude” (wAjfos 16 wemepacuévor, Metaph. 1020 a
13), “multitude” (or “combination”) “of units” or “multitude of indivi-
sibles” (ibid. 1053 a 30, 1039 a 12, 1085 b 22), “several ones” (fva whelw,
Phys. uL 7, 207 b 7), “multitude measurable by one” (Metaph. 1057 a 3)
and “multitude measured and multitude of measures,” the “ measure ” being
unity, 76 & (#6id. 1088 a 3).

DEFINITION 3.

Mépos éoriv dpilbuds dpibpod 6 éhdoowy Tob pellopos, drav xataperpy Tov
pellova.

By a part Fuclid means a submultiple, as he does in v. Def. 1, with which
definition this one is identical except for the substitution of number (dpifpds)
for magnitude (péyebos); cf. note on v. Def. 1. Nicomachus uses the word
“submultiple” (VroroAAarAdows) also. He defines it in a way corresponding
to his definition of multiple (see note on Def. 5 below) as follows (1. 18, 2):
“The submultiple, which is by nature first in the division of inequality
(called) less, is the number which, when compared with a greater, can
measure it more times than once so as to fill it exactly (wmAgpolvrws).” Simi-
larly sub-double (vwodurAaaios) is found in Nicomachus meaning /4alf, and
S0 on.

DEFINITION 4.
Mépy 8¢, drav pij kataperpy.

By the expression parés (uépy, the plural of pépos) Euclid denotes what we
should call a proper fraction. That is, a part being a submultiple, the rather
inconvenient term parfs means any number of such submultiples making up
a fraction less than unity. I have not found the word used in this special
sense elsewhere, e.g. in Nicomachus, Theon of Smyrna or Iamblichus, except
in one place of Theon (p. 79, 26) where it is used of a proper fraction, of
which £ is an illustration.
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DEFINITION 5.
MoAamAdaios 8& & pellwy rob éXdoaovos, Srav karaperpiras Smd Tob edaaoves.

The definition of a mu/tiple is identical with that in v. Def. 2, except that
the masculine of the adjectives is used agreeing with dpifuss understood
instead of the neuter agreeing with péyeflos understood. Nicomachus (1. 18,
1) defines a multiple as being “a species of the greater which is naturally
first in order and origin, being the number which, when considered in com-
parison with another, contains it in itself completely more than once,”

DEFINITIONS 6, 7.

6. “Aprios dpibuds dorv & Siya diarpodpevos.

7. Tepwoods 8¢ 6 py diapovpevos Siya % [8)] povdd: Suadépuwv dpriov dpifpod.

Nicomachus (1. 7, 2) somewhat amplifies these definitions of evex and odd
numbers thus. *‘That is even which is capable of being divided into two
equal parts without an unit falling in the middle, and that 1s 022 which cannot
be divided into two equal parts because of the aforesaid intervention (ueot-
reiav) of the unit.” He adds that this definition is derived *“from the popular
conception " (éx s Snuwdovs vrodsPews). In contrast to this, he gives (1. 7, 3)
the Pythagorean definition, which is, as usual, interesting.  “ An eren number
is that which admits of being divided, by one and the same operation, into the
greatest and the least (parts), greatest in size (mpAwomyr) but least in quantity
(rooéryri)...while an odd number is that which cannot be so treated, but is
divided into two unequal parts.” That is, as Tamblichus says (p. 12, 2—g), an
even number is divided into parts which are the greafest possible “parts,” namely
halves, and into the fewes? Possible, namely two, two being the first “num-
ber ” or ‘“ collection of units.” According to another ancient definition quoted
by Nicomachus (1. 7, 4), an even number is that which can be divided both
into two equal parts and into two unequal parts (except the first one, the
number 2, which is only susceptible of division into equals), but, however it
is divided, must have its two parts of #he same kind, i.e. both even or both
odd; while an odd number is that which can only be divided into two
unequal parts, and those parts always of differcnt kinds, i.e. one odd and
one even. Lastly, the definition of odd and even by means of each other”
says that an odd number is that which differs by an unit from an even
number on both sides of it, and an even number that which differs by an
unit from an odd number on each side. This alternative definition of an
odd number is the same thing as the second half of Euclid’s definition, “the
number which differs by an unit from an even number.” This cvidently
pre-Euclidean definition is condemned by Aristotle as unscientific, because
odd and even are coordinate, both being differentias of number, so that one
should not be defined by means of the other (Zvpées vi. 4, 142 b 7—10).

DEFINITION 8.
"Apridkis dprios dplfpds éorw o Umd dpriov dpifpot perpovuevos kata dpriov
dpBudv.
Euclid’s definition of an even-times even number differs from that given by

the later writers, Nicomachus, Theon of Smyrna and Iamb]ichgs;. and the
inconvenience of it is shown when we come to 1X. 34, where it is proved
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that a certain sort of number is doth “ even-times even” and “even-times odd.”
According to the more precise classification of the three other authorities, the
“ even-times even” and the “even-times odd ” are mutually exclusive and are
two of three subdivisions into which even numbers fall. Of these three sub-
divisions the “even-times even ” and the “even-times odd” form the extremes,
and the “odd-times even” is as it were intermediate, showing the character
of both extremes (cf. note on the following definition). The even-fimes even is
then the number which has its halves even, the halves of the halves even, and
so on, until unity is reached. In short the even-times even number is always
of the form 2". Hence Iamblichus (pp. 2o, 21) says Euclid’s definition of 1t
as that which is measured by an even number an even number of times is
erroneous. In support of this he quotes the nu mber 24 which is four times 6,
or six t:me% 4, but yet is not “even-times even” according to Euclid himself
(o?8¢ kar’ adrév), by which he must apparently mean that 24 is also 8 times 3,
which does not satisfy Euclid’s definition. There can however be no doubt that
Euclid meant what he said in his definition as we have it ; otherwise 1x. 32,
which proves that a number of the form 2" is even-times even only, would be quite
superfluous and a mere rn:p-entlon of the definition, while, as already smted,
1X. 34 clearly indicates Euclid’s view that a number might at the same time
be both even-times even and even-times odd. Hence the pévws which some
editor of the commentary of Philoponus on Nicomachus found in some
copies, making the definition say that the even-times even number is only
measured by even numbers an even number of times, is evidently an interpo-
lation by some one who wished to reconcile Euclid’s definition with the
Pythagorean (cf. Heiberg, Zuklid-studien, p. 200).

A consequential characteristic of the series of even-times even numbers
noted by Nicomachus brings in a curious use of the word &ivaus (generally
power in the sense of square, or square root). He says (1. 8, 6—7) that any
part, i.e. any submultiple, of an even-times even number is called by an even-
times even designation, while it also has an even-times even wvalue (it is
dpridiis dpriodivapor) when expressed as so many actual units. That is, the

;l,-_;th part of 2" (where m is less than #) is called after the even-times even

number 2™, while its actual za/we (Svvapus) in units is 2™, which is also an
even-times even number. Thus all the parts, or submultiples, of even-times
even numbers, as well as the even-times even numbers themselves, are con-
nected with one kind of number only, the ezen.

DEFINITION o.

"Apridxis 8¢ meploads ot & Umo dpriov dplbpot perpolpevos xara wepradv
dpifpdv.

Euclid uses the term even-fimes odd (dpridxis wepioads), whereas Nicomachus
and the others make it one word, even-odd (dpriomépurros). According to the
stricter definition given by the latter (1. 9, 1), the even-odd number is related to
the even-times even as the other extreme. It is such a number as, when once
halved, leaves as quotient an odd number ; that is, it is of the form z(zm + 1).
Nicomachus sets the even-odd numbers out as follows,

6, 10, 14, 18, 22, 26, 30, etc.

In this case, as Nicomachus observes, any part, or submultiple, is called by a
name #nof corresponding in kind to its actual value (8vvapis) in units. Thus,
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in the case of 18, the } part is called after the even number 2, but its value is
the odd number g, and the 3rd part is called after the odd number 3, while its
walue is the even number 6, and so on.

The third class of even numbers according to the strict subdivision is the
odd-even (weproadprios). Numbers are of this class when they can be halved
twice or more times successively, but the quotient left when they can no
longer be halved is an odd number and not unity. They are therefore of
the form 2"*!(zm + 1), where », m are integers. They are, so to say, inter-
mediate between, or a mixture of, the extreme classes even-times even and even-
odd, for the following reasons. (1) Their subdivision by 2 proceeds for some
way like that of the even-times even, but ends in the way that the division of
the even-odd by 2 ends. (2) The numbers after which submultiples are
called and their va/une (8vvapus) in units may be both of one kind, i.e. both odd
or both even (as in the case of the even-times even), or again may be one odd
and one even as in the case of the even-odd. For example 24 is an odd-even
number; the }th, {&th, Xth or } parts of it are even, but the }rd part of it,
or 8, is even, and the Lth part of it, or 3, is odd. (3) Nicomachus shows
(1. 10, 6—9) how to form all the numbers of the odd-even class. Set out two
lines (@) of odd numbers beginning with 3, (#) of even-times even numbers
beginning with 4, thus:

(@ 35 7 911, 13 I15etc
(&) a4, 8, 16, 32, 64, 128, 256 etc.

Now multiply each of the first numbers into each df the second row. Let
the products of one of the first into all the second set make horizontal rows ;
we then get the rows

12, 24, 48, 96, 192, 384, 768 etc.
20, 40, 8o, 160, 320, 640, 1280 etc.
28, 56, 112, 224, 448, 896, 1792 etc.

36, 72, 144, 288, 576, 1152, 2304 etc.
and so on.

Now, says Nicomachus, you will be surprised to see (pavjoeral got favpac-
7ds) that (a) the vertical rows have the property of the even-odd series, 6, 10,
14, 18, 22 etc., viz. that, if an odd number of successive numbers be taken,
the middle number is half the sum of the extremes, and if an even number,
the two middle numbers together are equal to the sum of the extremes,
(&) the horizontal rows have the property of the even-times even series 4, 8, 16
etc., viz. that the product of the extremes of any number of successive terms
is equal, if their number be odd, to the square of the middle term, or, if their
number be even, to the product of the two middle terms.

Let us now return to Euclid. His gth definition states that an even-fimes
odd number is a number which, when divided by an even number, gives an
odd number as quotient. Following this definition in our text comes a 1oth
definition which defines an odd-times even number ; this is stated to be a
number which, when divided by an odd number, gives an even number as
quotient. According to these definitions any even-fimes odd number would
also be odd-times even, and, from the fact that Iamblichus notes this, we may
fairly conclude that he found Def. 10 as well as Def. ¢ in the text of Euclid
which he used. But, if both definitions are genuine, the enunciations of 1x. 33
and 1X. 34 as we have them present difficulties. 1X. 33 says that “If a num-
ber have its half odd, it is even-times odd endy ”; but, on the assumption that
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both definitions are genuine, this would not be true, for the number would be
odd-times even as well. 1X. 34 says that “If a number neither be one of those
which are continually doubled from 2, nor have its half odd, it is both even-
times even and even-times odd.” The term odd-iimes even (mepradxis dprios)
not occurring in these propositions, nor anywhere else after the definition, that
definition becomes superfluous. Iamblichus however (p. 24, 7—14) quotes
these enunciations differently. In the first he has instead of “even-times odd
only ” the words “ doth even-times odd and odd-times even” ; and, in the second,
for “both even-times even and even-times odd” he has “is both even-times
even and at the same time even-times odd and odd-times even.” In both
cases therefore “odd-times even” is added to the enunciation as Iamblichus
had it; the words cannot have been added by Iamblichus himself because
he himself does not use the term odd-times even, but the one word odd-even
(wepioadprios). In order to get over the difficulties involved by Def. 1o and
these differences of reading we have practically to choose between (1) accept-
ing Iamblichus’ reading in all three places and (2) adhering to the reading of
our Mss. in IX. 33, 34 and rejecting Def. 10 altogether as an interpolation.
Now the readings of our text of 1x. 33, 34 are those of the Vatican ms.
and the Theonine mss. as well ; hence they must go back to a time before
Theon, and must therefore be almost as old as those of Iamblichus.
Heiberg considers it improbable that Euclid would wish to maintain a point-
less distinction between even-times odd and odd-times even, and on the whole
concludes that Def. 1o was first interpolated by some ignorant person who
did not notice the difference between the Euclidean and Pythagorean classi-
fication, but merely noticed the absence of a definition of odd-fimes even
and fabricated one as a companion to the other. When this was done, it
would be easy to see that the statement in 1x. 33 that the number referred
to is “even-times odd enfy” was not strictly true, and that the addition of
the words “and odd-times even” was necessary in 1X. 33 and IX. 34 as
well.

DEFINITION 10.

Hepwoodris 8¢ mepioads dpilfuds datw & mo mepoood dplbjpod perpovpevos
kata mwepaaoy apibpov.

The odd-times odd number is not defined as such by Nicomachus and
Iamblichus ; for them these numbers would apparently belong to the com-
posite subdivision of odd numbers. Theon of Smyrna on the other hand
says (p. 23, 21) that odd-times odd was one of the names applied to prime
numbers (excluding 2), for these have two odd factors, namely 1 and the
number itself. This is certainly a curious use of the term.

DEFINITION I1I.

Mpdros dpifpds dorw & povdde povy perpoipevos.

A prime number (mpdros dpifuds) is called by Nicomachus, Theon, and
Tamblichus a “ prime and incomposite (dovvferos) number.” Theon (p. 23, 9)
defines it practically as Euclid does, viz. as a number ““measured by no number,
but by an unit only.” Aristotle too says that a prime number is not measured by
any number (A4nal. post. 11. 13, 96 a 36), an unit not being a number (Metaph.
1088 a 6), but only the beginning of number (Theon of Smyrna says the same
thing, p. 24, 23). According to Nicomachus (1. 11, 2) the prime number is a
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subdivision, not of numbers, but of o#¢d numbers; it is “an odd number
which admits of no other part except that which is called after its own name
(mapuwvvpor éuvrg).” The prime numbers are 3, 5, 7 etc, and there is no
submultiple of 3 except §rd, no submultiple of 11 except {th, and so on. In
all these cases the only submultiple is an unit. According to Nicomachus 3
is the first prime number, whereas Aristotle ( Zopics vul. 2, 157 a 39) regards
2 as a prime number : “as the dyad is the only even number which is prime,”
showing that this divergence from the Pythagorean doctrine was earlier than
Euclid. The number 2 also satisfies Euclid’s definition of a prime number.
Iamblichus (p. 30, 27 5qq.) makes this the ground of another attack upon Euclid.
His argument (the text of which, however, leaves much to be desired) appears
to be that 2 is the only even number which has no other part except an
unit, while the subdivisions of the even, as previously explained by him (the
even-times even, the even-odd, and odd-even), all exclude primeness, and he has
previously explained that 2 is pofentially even-odd, being obtained by
multiplying by 2 the pofentially odd, i.e. the unit; hence 2 is regarded by him
as bound up with the subdivisions of even, which exclude primeness. Theon
seems to hold the same view as regards 2, but supports it by an apparent
circle. A prime number, he says (p. 23, |4—23), is also called odd-times odd ;

therefore only odd numbers are prime and incomposite. Even numbers are
not measured by the unit alone, except 2, which therefore (p. 24, 7) is odd-/ike
(mepioaoedys) without being prime.

A variety of other names were applied to prime numbers. We have
already noted the curious designation of them as odd-times odd. According to
Iamblichus (p. 27, 3—s5) some called them ewthymetric (ebbuperpuss), and
Thymaridas rectilinear (ebBvypappixds), the ground being that they can only be
set out in one dimension with no breadth (dwAaris yap & 1 éxbéoer éd’ &
povor Suarapevos). The same aspect of a prime number is also expressed by
Aristotle, who (AMefaph. 1020 b 3) contrasts the composite number with that
which is only in one dimension (pdvor é¢' & dv). Theon of Smyrna (p. 23, 12)
gives ypappuxos (/inear) as the alternative name instead of edfvypajipuxds. In
either case, to make the word a proper description of a prime number we have
to understand the word onfy; a prime number is that which is /Jinear, or
rectilinear, only. For Nicomachus, who uses the form /Jnear, expressly says
(1. 13, 6) that a// numbers are so, i.e. all can be represented as linear by dots
to the required amount placed in a line.

A prime number was called prime or jfirst, according to Nicomachus
(1. 11, 3), because it can only be arrived at by putting together a certain
number of units, and the unit is the beginning of number (r.:f. Aristotle’s
second sense of mpdéros “as not being composed of numbers,” ws py ovyxeiofal
¢ dplfpdv, Anal. Post. 11. 13, 96 a 37), and also, according to Iamblichus,
because there is no number before it, being a collection of units (povdduwr

avompa), of which it is a multiple, and it appears firs? as a basis for other
numbers to be multiples of.

DEFINITION 12,

Hpdrow mpds dAAjAovs dpiBpol elow ol povdd pdvy perpous - ncuwp" p("rp(p.

By way of further emphasising the distinction between *‘prime” and
“prime to one another,” Theon of Smyrna (p. 23, 6—8) calls the former
“prime absolutely” (dwAis), and the latter “prime to one another and nof
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absolutely " or “ not in themselves” (ob xaf’ avrovs). The latter (p. 24, 8—10)
are “ measured by the unit [sc. only] as common measure, even though, taken
by themselves (ws mpos davrovs), they be measured by some other numbers.”
From Theon’s illustrations it is clear that with him as with Euclid
a number prime to another may be even as well as odd. In Nicomachus
(L 11, 1) and Iamblichus (p. 26, 19), on the other hand, the number which is
*“in itself secondary (Seirepos) and composite (ciwferos), but in relation to
another prime and incomposite,” is a subdivision of odd. 1 shall call more
particular attention to this difference of classification when we have reached
the definitions of “composite” and “composite to one another”; for the
present it is to be noted that Nicomachus (1. 13, 1) defines a number prime %
another after the same manner as the absolutely prime ; it is a number which
“is measured not only by the unit as the common measure but also by some
other measure, and for this reason can also admit of a part or parts called by
a different name besides that called by the same name (as itself), but, when
examined in comparison with another number of similar character, is found
not to be capable of being measured by a common measure in relation to the
other, nor to have the same part, called by the same name as (any of) those
simply (dwAds) contained in the other; e.g. 9 in relation to 25, for each of
these is in itself secondary and composite, but, in comparison with one
another, they have an unit alone as a common measure and no part is called
by the same name in both, but the #4ird in one is not in the other, nor is the
Jifth in the other found in the first.”

DEFINITION 13.

S¥vleros dplpds doTwv & dplud Toe perpolpevos.

Euclid’s definition of composite is again the same as Theon’s definition
of numbers “composite in relation to themselves,” which (p. 24, 16) are
“numbers measured by any less number,” the unit being, as usual, not
regarded as a number. Theon proceeds to say that “of composite numbers
they call those which are contained by two numbers plane, as being
investigated in two dimensions and, as it were, contained by a length and a
breadth, while (they call) those (which are contained) by three (numbers)
solid, as having the third dimension added to them.” To a similar effect is
the remark of Aristotle (Mefaph. 1020 b 3) that certain numbers are
“ composite and are not only in one dimension but such as the plane and the
solid (figure) are representations of (uiunua), these numbers being so many
times so many (woodsis wogol), or so many times so many times so many
(woodxis moodxis moooi) respectively.” These subdivisions of composite
numbers are, of course, the subject of Euclid’s definitions 17, 18 respectively.
Euclid’s composite numbers may be either even or odd, like those of Theon,
who gives 6 as an instance, 6 being measured by both 2 and 3.

DEFINITION 14.

Sivferor 8¢ wpds dAMjlovs dpifipol elow ol dpifpug T perpovpevor xowg
pérpy.

Theon (p. 24, 18), like Euclid, defines numbers composite to one another as
“those which are measured by any common measure whatever” (excluding
unity, as usual). Theon instances 8 and 6, with 2 as common measure, and
6 and g, with 3 as common measure.
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As hinted above, there is a great difference between Euclid’s classification
of prime and composite numbers, and of numbers prime and composite
to one another, and the classification found in Nicomachus (1. 11—13) and
Iamblichus. According to the latter, all these kinds of numbers are sub-
divisions of the class of o4 numbers only. As the class of even numbers is
divided into three kinds, (1) the even-times even, (2) the even-odd, which
form the extremes, and (3) the odd-even, which is, as it were, lntermedlate to
the other two, so the class of odd numbers is divided into three, of which the
third is again a mean between two extremes. The three are:

(1) the prime and incomposite, which is like Euclid’s prime number except
that it excludes 2 ;

(2) the secondary and composite, which is “odd because it is a distinct
part of one and the same genus (8ux o éf évds xai rob adrob yévovs Sraxexpiofar)
but has in it nothing of the nature of a first principle (dpxoedés) ; for it arises
from adding some other number (to itself), so that, besides having a part
called by the same name as itself, it possesses a part or parts called by another
name.” Nicomachus cites 9, 15, 21, 25, 27, 33, 35, 39- It is made clear that
not only must the factors be both odd, but they must all be prime numbers.
This is obviously a very inconvenient restriction of the use of the word
composite, a word of general signification.

(3) is that which is “secondary and composite in itself but prime and
incomposite to another.” The actual words in which this is defined have been
given above in the note on Def. 12. Here again all the factors must be odd
and prime.

Besides the inconvenience of restricting the term composite to odd numbers
which are composite, there is in this classification the further serious defect,
pointed out by Nesselmann (Die Algebra der Griechen, 1842, p. 194), that
subdivisions (2) and (3) overlap, subdivision (2) including the whole of
subdivision (3). The origin of this confusion is no doubt to be found in
Nicomachus’ perverse anxiety to be symmetrical ; by hook or by crook he
must divide odd numbers into three kinds as he had divided the even.
Iamblichus (p. 28, 13) carries his desire to be logical so far as to point out
why there cannot be a fourth kind of number contrary in character to (3),
namely a number which should be “prime and incomposite in itself, but
secondary and composite to another” !

DEFINITION 15,
"Apilpds dpifpdv woMamhagdlew Méyerar, otav, doar doiv & adrd povddes,
rogavrdxis ovvredf 6 molamAagaloperos, kai yévyral Tis.

This is the well known primary definition of multiplication as an
abbreviation of addition.

DEFINITION 16.
"Orav 8¢ &o dpfpol woAdawhacidoarvres aAMjhovs rowel Tva, & jevos
émimedos xaleiray, TAevpai 8¢ adrod ol roAlarAacudavres dAMjhovs dpfpol,
The words plane and solid applied to numbers are of course adapted from

their use with reference to geometrical figures. A number is therefore called
linear (ypappuxés) when it is regarded as in one dimension, as being a length
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(mfixos). When it takes another dimension in addition, namely b&readth
(mAdros), it is in two dimensions and becomes plane (érimedos). The
distinction between a plane and a plane number is marked by the use of the
neuter in the former case, and the masculine, agreeing with apfuds, in the
latter case. So with a sguare and a sguare number, and so on. The most
obvious form of a plane number is clearly that corresponding to a rectangle in
geometry ; the number is the product of two linear numbers regarded as sides
(wAevpai) forming the length and breadth respectively. Such a number is, as
Aristotle says, ‘““so many times so many,” and a plane is its counterpart
(mipnpa). So Plato, in the ZVeaetetus (147 E—148 B), says: “ We divided all
numbers into two kinds, (1) that which can be expressed as equal multiplied
by equal (rov Svvdpevor loov loaxis yiyveoflad), and which, likening its form to
the square, we called sguare and equilateral ; (2) that which is intermediate,
and includes 3 and 5 and every number which cannot be expressed as equal
multiplied by equal, but is either less times more or more times less, being
always ‘contained by a greater and a less side, which number we likened to
the oblong figure (mpopyrer axjpary) and callea an odlong number.... Such
lines therefore as sguare the equilateral and plane number [i.e. which can
form a plane number with equal sides, or a square] we defined as lemgth
(pixos) ; but such as square the oblong (here érepopnxys) [i.e. the square of
which is equal to the oblong] we called roofs (Suvduess) as not being com-
mensurable with the others in length, but only in the plane areas (émurédoss),
to which the squares on them are equal (& 8vvavrar).” This passage seems
to make it clear that Plato would have represented numbers as Euclid does,
by straight lines proportional in length to the numbers they represent (so far
as practicable) ; for, since 3 and 5 are with Plato oblong numbers, and /Zines
with him represent the sides of oblong numbers (since a line represents the
“root,” the square on which is equal to the oblong), it follows that the unit
representing the smaller side must have been represented as a line, and 3, the
larger side, as a line of three times the length. But there is another possible way
of representing numbers, not by lines of a certain length, but by poinss disposed
in various ways, in straight lines or otherwise. Iamblichus tells us (p. 56, 27)
that “in old days they represented the quantuplicities of number in a more
natural way (¢vowdrepor) by splitting them up into units, and not, as in our
day, by symbols” (cupBolwxds). Arstotle too (Metaph. 109z b 10) mentions
one Eurytus as having settled what number belonged to what, such a number
to a man, such a number to a horse, and so on, “copying their shapes”
(reading rovrwy, with Zeller) “with pebbles (rais ynjdois), just as those do who
arrange numbers in the forms of triangles or squares.”” We accordingly find
numbers represented in Nicomachus and Theon of Smyrna by a number of
o’s ranged like points according to geometrical figures. According to this
system, any number could be represented by points in a straight line, in which
case, says Iamblichus (p. 56, 26), we shall call it rectilinear because it is
without breadth and only advances in length (dwherds éml povov 76 pijkos
mpoeow). The prime number was called by Thymaridas rectilinear par
excellence, because it was without breadth and in one dimension only (ép &
povov Suordpevos). By this must b2 meant the impossibility of representing,
say, 3 as a plane number, in Plato’s sense, i.e. as a product of two numbers
corresponding to a rectangle in geometry ; and this view would appear to rest
simply upon the representation of a number by posnis, as distinct from lines.
Three dots in a straight line would have s¢ breadth ; and if breadth were
introduced in the sense of producing a rectangle, i.e. by placing the same
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number of dots in a second line below the first line, the first p/ane number
would be 4, and 3 would not be a plane number at all, as Plato says it is. It
seems therefore to have been the alternative representation of a number by
points, and not lines, which gave rise to the different view of a plane number
which we find in Nicomachus and the rest. By means of separate points we
can represent numbers in geometrical forms other than rectangles and squares.
One dot with two others symmetrically arranged below it shows a #riangle,
which is a figure #n fwo dimensions as much as a rectangle or parallelogram is.
Similarly we can arrange certain numbers in the form of regular pentagons or
other polygons. According therefore to this mode of representation, 3 is the
first plane number, being a #riangular number. The method of formation of
triangular, square, pentagonal and other polygonal numbers is minutely
described in Nicomachus (i1. 8—11), who distinguishes the separate series of
gnomons belonging to each, i.e. gives the law determining the number which
has to be added to a polygonal number with # in a side, in order to make it
into a number of the same form but with 7 + 1 in a side (the addend being of
course the gnomon). Thus the gnomonic series for triangular numbers is
1, 2, 3, 4 §5...; that for squares 1, 3, 5, 7...; that for pentagonal numbers
1, 4 7, 10..., and so on. ‘The subject need not detain us longer here, as we
are at present only concerned with the different views of what constitutes a
plane number.

Of plane numbers in the Platonic and Euclidean sense we have seen that
Plato recognises fwo kinds, the sguare and the oblong (mpopsjxys or érepopsjnns).
Here again Euclid’s successors, at all events, subdivided the class more
elaborately. Nicomachus, Theon of Smyrna, and Iamblichus divide plane
numbers with unequal sides into (1) érepopsjreis, the nearest thing to squares,
viz. numbers in which the greater side exceeds the less side by 1 only, or
numbers of the form # (7 + 1), e.g. 1.2, 2. 3, 3. 4, etc. (according to Nico-
machus), and (2) mpounres, or those whose sides differ by 2z or more, i.e. are of
the form # (n + m), where m is not less than 2 (Nicomachus illustrates by 2. 4,
3.6, etc.). Theon of Smyrna (p. 30, 8—14) makes mpoprjxets include érepoprjes,
saying that their sides may differ by 1 or more; he also speaks of parallelogram-
numbers as those which have one side different from the other by 2 or more ;
I do not find this latter term in Nicomachus or Iamblichus, and indeed it
seems superfluous, as parallelogram is here only another name for oblong.
Iamblichus (p. 74, 23 sqq.), always critical of Euclid, attacks him again here
for confusing the subject by supposing that the érepopnrys number is the pro-
duct of any two different numbers multiplied together, and by not distinguishing
the oblong (wpopsjrys) from it : ““for his definition declares the same number
to be square and also érepopsjrys, as for example 36, 16 and many others:
which would be equivalent to the odd number being the same thing as the
even.” No importance need be attached to this exaggerated statement ; it is
in any case merely a matter of words, and it is curious that Euclid does not in
fact use the word &repopsiiys of numbers at all, but only of geometrical oblong
figures as opposed to squares, so that Iamblichus can apparently only have
inferred that he used it in an unorthodox manner from the geometrical use of
the term in the defipitions of Book 1. and from the fact that he does not give
the two subdivisions of plame mumbers which are not square, but seems only
to divide plane numbers into square and notsquare. The argument that
drepopsjkers numbers are a mafural, and therefore essential, subdivision
Iamblichus appears to found on the method of successive addition by which
they can be evolved ; as square numbers are obtained by successively adding
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odd numbers as gnomons, so érepoprjkes are obtained by adding even numbers
as gnomons. Thus1.2=2,2.3=2+4, 3.4=2+ 4+ 6, and so on.

DEFINITION 17.

“Orav 8¢ tpeis dpiflpol wolhawdacidoarres dAAjAovs ool Tiva, 6 yevdpevos
oTepeds oy, whevpal 8¢ adrod ol moddarAacidgarres dAAjAovs dpibpol,

What has been said of the two apparently different ways of regarding a
plane number seems to apply equally, mutatis mutands, to the definitions of a
solid number. Aristotle regards it as a number which is so many times so
many times so many (rogdxis wogaxis roodv). Plato finishes the passage about
lines which represent the sides of sguare numbers and lines which are ‘roofs
(Svvapes), i.e. the squares on which are equal to the rectangle representing a
number which is oblong and not square, by adding the words, * And another
similar property belongs to solids ” (xai Tept 7& orepea dAdo Towotirov). That is,
apparently, there would be a corresponding term to roof (8dvams)—practically
representing a surd—to denote the side of a cube equal to a parallelepiped
representing a solid number which is the product of three factors but
not a cube. Such is a solid number when numbers are represented by
straight lines: it corresponds in general to a parallelepiped and, when all
the factors are equal, to a cube.

But again, if numbers be represented by points, we may have solid numbers
(i.e. numbers in three dimensions) in the form of pyramids as well. The first
number of this kind is 4, since we may have three points forming an
equilateral triangle in one plane and a fourth point placed in another plane.
The length of the sides can be increased by 1 successively; and we can have
a series of pyramidal numbers, with triangles, squares or polygons as bases,
made up of layers of triangles, squares or similar polygons respectively, each
of which layers has one less in the side than the layer below it, until the top
of the pyramid is reached, which of course. is one point representing unity.
Nicomachus (1. 13—16), Theon of Smyrna (p. 41—2), and Iamblichus
(p. 95, 15sqq.), all give the different kinds of pyramidal solid numbers in
addition to the other kinds.

These three writers make the following further distinctions between solid
numbers which are the product of three factors.

1. First there is the equal by equal by equal (ivdxis iodxis {oos), which is,
of course, the cube.

2. The other extreme is the unequal by unequal by unequal (dvigaxis
awodxis avwos), or that in which all the dimensions are different, e.g. the
roduct of 2, 3, 4 or 2, 4, 8 or 3, 5, 12. These were, according to Nicomachus
81. 16), called scalene, while some called them o¢mvioror (wedge-shaped), others
o¢nrioxot (from o¢ié, a wasp), and others Buwulokoc (altar-shaped). Theon
appears to use the last term only, while Iamblichus of course gives all three
names.

3. Intermediate to these, as it were, come the numbers “whose planes
form érepopsjkeis numbers” (i.e. numbers of the formn(z + 1)). These, says
Nicomachus, are called parallelepipedal.

Lastly come two classes of such numbers each of which has two equal
dimensions but not more.
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4. If the third dimension is less than the others, the number is egual 3y
equal by less (lodxis loos é\arrovdxs) and is called a plinth (wAwlis), e.g.
8.8.3.

5. If the third dimension is greater than the others, the number is egual/
by equal by greater (lodxs loos pefovdxis) and is called a deam (Soxis), e.g.
3.3.7. Another name for this latter kind of number (according to
Iamblichus) was omMAis (diminutive of orjAy).

Lastly, in connexion with pyramidal numbers, Nitomachus (11. 14, 5) dis-
tinguishes numbers corresponding to frusta of pyramids. These are fruncated
(xdAovpoc), fwice-truncated (Sicohovpor), thrice-truncated (rpixdXoupor) pyramlds,
and so on, the term being used mostly in theoretic treatises (& avyypdppact
pdhwra tois Bewpnparicols). The fruncated pyramid was formed by cutting
off the point forming the vertex. The fwice-truncated was that which lacked
the vertex and the next plane, and so on. Theon of Smyrna (p. 42, 4) only
mentions the fruncated pyramid as “that with its vertex cut off” (7 mp
Kopuijv dmoreTunuévy), saying that some also called it a trapezium, after the
similitude of a plane trapezium formed by cutting the top off a triangle
by a straight line parallel to the base.

DEFINITION 18.

’Terpuiywos dplfpds ot & lodis Toos 4 [8] dwd &o lowv dplbpdy wep-
€x0p€Evos.

A particular kind of square distinguished by Nicomachus and the rest was
the square number which ended (in the decimal notatior) with the same
number as its side, e.g. 1, 25, 36, which are the squares of 1, 5 and 6. These
square numbers were called ¢yclic (xvkhixol) on the analogy of circles in
geometry which return again to the point from which they started.

DEFINITION 19q.
KvBos 8¢ & lodxis loos lodkes 1 [8] Iwd mpudy lowv dpilbudy meprexdpevos.

Similarly cube numbers which ended with the same number as their sides,
and the squares of those sides also, were called spherical (opapwol) or recurrent
(¢woxaracraricei). One might have expected that the term spkerical would be
applicable also to the cubes of numbers which ended with the same digit as the
side but not necessarily with the same digit as the sguare of the side also.
E.g. the cube of 4, i.e. 64, ends with the same digit as 4, but not with the
same digit as 16. But apparently 64 was not called a spherical number, the
only instances given by Nicomachus and the rest being those cubed from
numbers ending with 5 or 6, which end with the same digit if sguared. A
spherical number is in fact derived from a ¢ireular number only, and that by
adding another equal dimension. Obviously, as Nesselmann says, the names
eyclic and spherical applied to numbers appeal to an entirely different principle
from that on which the figured numbers so far dealt with were formed.
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DEFINITION 20.

"ApBpoi a'vd.\c:ydv elow, dray & wpéros Tob Sevrépov xal & Tpiros Tod Terdprov
irdus §j moMarhdaws 7 10 abrd pépos § Ta abrd pépy dow.

Euclid does not give in this Book any definition of ratio, doubtless because
it could only be the same as that given at the beginning of Book v., with
numbers substituted for “ homogeneous magnitudes ” and *in respect of size”
(mpAudryra) omitted or altered. We do not find that Nicomachus and the
rest give any substantially different definition of a ratio between numbers.
Theon of Smyrna says, in fact (p. 73, 16), that “ratio in the sense of
proportion (Adyos & xar’ dvdAoyov) is a sort of relation of two homogeneous
terms to one another, as for example, double, triple.” Similarly Nicomachus
says (1L 21, 3) that “‘a ratio is a relation of two terms to one another,” the word
for “relation” being in both cases the same as Euclid’s (exéois). Theon of
Smyrna goes on to classify ratios as greater, less, or equal, i.e. as ratios of greater
inequality, less inequality, or equality, and then to specify certain arithmetical
ratios which had special names, for which he quotes the authority of Adrastus.
The names were wolAamAdouos, éwyudpios, émyueprls, moldamAagiemuopios,
woMawAaoiemuepis (the first of which is, of course, a multiple, while the rest
are the equivalent of certain types of improper fractions as we should call
them), and the reciprocals of each of these described by prefixing iwé or sub.
After describing these particular classes of arithmetical ratios, Theon goes on
to say that numbers still have ratios to one another even if they are different
from all those previously described. We need not therefore concern ourselves
with the various types; it is sufficient to observe that any ratio between
numbers can be expressed in the manner indicated in Euclid’s definition of
arithmetical proportion, for the greater is, in relation to the less, either one or
a combination of more than one of the three things, (1) a multiple, (2) a
submultiple, (3) a proper fraction.

It is when we come to the definition of progortion that we begin to find
differences between Euclid, Nicomachus, Theon and Iamblichus. “Proportion,”
says Theon (p. 82, 6), ““is similarity or sameness of more ratios than one,”
which is of course unobjectionable if it is previously understood what a ratio
is ; but confusion was brought in by those (like Thrasyllus) who said that
there were three proportions (dvaloyiai), the arithmetic, geometric, and
harmonic, where of course the reference is to arithmetic, geometric and
harmonic means (peadryres). Hence it was necessary to explain, as Adrastus
did (Theon, p. 106, 15), that of the several means * the geometric was called
both proportion par excellence and primary...though the other means were
also commonly called proportions by some writers,” Accordingly we have
Nicomachus trying to extend the term “proportion” to cover the various
means as well as a proportion in three or four terms in the ordinary sense. He
says (1 21, 2): “ Proportion, par excellence (xvpiws), is the bringing together
(oiAAnys) to the same (point) of two or more rafios ; or, more generally, (the
bringing together) of two or more relations (oyéoewv), even though they be
subjected not to the same ratio but to a difference or some other (law).”
Iamblichus keeps the senses of the word more distinct. He says, like Theon,
that “ proportion is similarity or sameness of several ratios” (p. 98, 14), and
that “it is to be premised that it was the geometrical (proportion) which the
ancients called proportion par excellence, though it is now common to apply
the name generally to all the remaining means as well ” (p. 100, 15). Pappus
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remarks (111. p. 70, 17), “A mean differs from a proportion in this respect that, if
anything is a proportion, it is also a mean, but not conversely. For there are
three means, of which one is arithmetic, one geometric and one harmonic.”
The last remark implies plainly enough that there is only one proportion
(dvaloyia) in the proper sense. So, too, says Iamblichus in another place
(p. 104, 19): *“the second, the geometric, mean has been called proportion
par excellence because the terms contain the same ratio, being separated
according to the same proportion (dva 7ov adrév Adyov Sweorires).” The
natural conclusion is that of Nesselmann, that originally the geometric
proportion was called dvahoyia, the others, the arithmetic, the harmonic, etc.,
means ; but later usage had obliterated the distinction.

Of proportions in the ancient and Euclidean sense Theon (p. 82, 10)
distinguished the continuous (avvexis) and the separated (Sigpnpéiy), using the
same terms as Aristotle (E#4. MNic. 1131 a 32). The meaning is of course
clear: in the continuous proportion the consequent of one ratio is the ante-
cedent of the next; in the separated proportion this is not so. Nicomachus
(1. 21, 5—6) uses the words connected (cvvnuuévn) and disjoined (Bielevypévn)
respectively. Euclid regularly speaks of numbers in continuous proportion as
* proportional in order, or successively ” (é5js dvdloyor).

DEFINITION 21I.
‘Opotor émiwedor xai arepeol dpfpol elowv ol dvaloyov Eyovres Tas whevpds.

Theon of Smyrna remarks (p. 36, 12) that, among plane numbers, aZ/
squares are similar, while of érepoprxeis those are similar ““ whose sides, that
is, the numbers containing them, are proportional.” Here érepoprixns must
evidently be used, not in the sense of a number of the form # (# + 1), but as
synonymous with mpoungxys, any oblong number; so that on this occasion
Theon follows the terminology of Plato and (according to Iamblichus) of
Euclid. Obviously, if the strict sense of érepounxns is adhered to, no two
numbers of that form can be similar unless they are also eguwa/. We may
compare Iamblichus’ elaborate contrast of the square and the érepopsjcys.
Since the two sides of the square are equal, a square number might, as he
says (p. 82, g), be fitly called iSiourjxns (Nicomachus uses rafrousjxys) in
contrast to érepowuys; and the ancients, according to him, called square
numbers “the same” and “similar” (radrovs e xai dpolovs), but érepoprires
numbers “dissimilar and other” (dvopolovs xai farépovs).

With regard to solid numbers, Theon remarks in like manner (p. 37, 2)
that a// cube numbers are similar, while of the others those are similar whose
sides are proportional, i.e. in which, as length is to length, so is breadth to
breadth and height to height.

DEFINITION 22.

Tékeros dpiBpds éorwv & Tols davrod pépeaw loos dv.

Theon of Smyrna (p. 45, 9 sqq.) and Nicomachus (1. 16) both give
the same definition of a perfec/ number, as well as the law of formation of
such numbers which Euclid proves in the later proposition, 1x. 36. They
add however definitions of two other kinds of numbers in contrast with it,
(1) the over-perfect (vmepredsjs in Nicomachus, vmepréhewos in Theon), the
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sum of whose parts, i.e. submultiples, is greater than the number itself, e.g. 12,
24 etc., the sum of the of 12 being 6+4+3+2+1=16, and the
sum of the parts of 24 being 12 +8+6+4+3+2+1=36, (2) the defective
(&Aumijs), the sum of whose parts is less than the whole, e.g. 8 or 14, the
parts in the first case adding up to 4 + 2+ 1, or 7, and in the second case to
7+2+1,or 1o. All three classes are however made by Theon subdivisions
of numbers in general, but by Nicomachus subdivisions of ezen numbers.

The term perfect was used by the Pythagoreans, but in another sense, of
10; while Theon tells us (p. 46, 14) that 3 was also called perfect “because
it is the first number that has beginning, middle and extremity; it is also both
a /ine and a plane (for it is an equilateral triangle having each side made up
of two units), and it is the first link and potentiality of the solid (for a solid
must be conceived of in three dimensions).”

There are certain unexpressed axioms used in Book viL as there are in
earlier Books.

The following may be noted.
1. If 4 measures B, and B measures C, 4 will measure C.

2. If A measures B, and also measures C, A will measure the difference
between B and C when they are unequal.

d;.c If A measures B, and also measures C, 4 will measure the sum of B
an

It is clear, from what we know of the Pythagorean theory of numbers, of
musical intervals expressed by numbers, of different kinds of means etc., that
the substance of Euclid Books vii.—IX. was no new thing but goes back, at
least, to the Pythagoreans. It is well known that the mathematics of Plato’s
T¥maeus is essentially Pythagorean. It is therefore @ priori probable (if not
perhaps quite certain) that Plato mvfayopi{e. even in the passage (32 A, B) where
he speaks of numbers “whether solid or square” in continued proportion,
and proceeds to say that between planes one mean suffices, but to connect
two so/ids two means are necessary. This passage has been much discussed,
but I think that by “planes” and “solids” Plato certainly meant sguare and
solid numbers respectively, so that the allusion must be to the theorems
established in Eucl. viiL 11, 12, that between two square numbers there is
one mean proportional number, and between two cube numbers there are
two mean proportional numbers®.

1 It is true that simi/ar plane and solid numbers have the same rty (Eucl, viin. (8,
19) ; but, if Plato had meant similar plane and solid numbers generally, I think it would
have been necessary to specify that they were * similar,” whereas, seeing that the Zimacus is
as a whole concerned with regular figures, there is nothing unnatural in allowing rffxlar or
equilateral to be understood. Further Plato speaks first of duvduers and Byxoc and then of
‘““planes” (¢xlreda) and *‘solids” (oreped) in such a way as to est that Suwduers cor-
respond to érlweda and Syxo to w!fd. Now the regular meaning of dtvaus is sguare (or
sometimes sguare roof), and I think it is here used in the sense of sguare, notwit standing
that Plato seems to speak of #Arer squares in continued proportion, whercas, in general, the
mean bel:we_en two squares as extremes would not be square but oblong. And, if Suwdpues are

q yit is r le to snp;;_clme that the Syxoc are also eguilateral, i.e. the " solids” are
cubes. I am aware that Th. Hibler (Bibliotheca Mathematica, Villg, 1908, pp. 173—4)
thinks that the passage is to be explained by reference to the problem of the duplicatinn of
the cube, and does not refer to numbers at all. Against this we have to put the evidence of
Nicomachus (11. 24, 6) who, in speaking of *‘a certain Platonic theorem,” quotes the very
same results of Eucl. VIIL 11, 12. Secondly, it is worth noting that Habler's explanation is
distinctly ruled out by Democritus the Platonist (3rd cent. A.D.) who, according to Proclus
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It is no less clear that, in his method and line of argument, Euclid was
following earlier models, though no doubt making improvements in the ex-
position. The tract on the Sectio Canonis, kararopn xavovos (as to the genuine-
ness of which see above, Vol. 1., p. 17) is in style and in the form of the
propositions generally akin to the Elements. In one proposition (2) the author
says ‘“awe learned (éudfopev) that, if as many numbers as we please be in (con-
tinued) proportion, and the first measures the last, the first will also measure
the intermediate numbers”; here he practically quotes Elem. viit. 7. In the
3rd E;oposition he proves that no number can be a mean between two
numbers in the ratio known as émudpuos, the ratio, that is, of #+ 1 to », where
n is any integer greater than unity. Now, fortunately, Boethius, De institutione
musica, ut. 11 (pp, 285—6, ed. Friedlein), has preserved a proof by Archytas
of this same proposition ; and the proof is substantially identical with that
of Euclid. The two proofs are placed side by side in an article by Tannery
(Bibliotheca Mathematica, v1,, 1905/6, p. 227). Archytas writes the smaller
term of the proportion first (instead of the greater, as Euclid does). Let, he
says, 4, B be the “ superparticularis proportio ” (éryudpiov Stdorpua in Euclid).
Take C, DE the smallest numbers which are in the ratio of 4 to B. [Here
DE means D + E: and in this respect the notation is different from that of
Euclid who, as usual, takes a line DF divided into two parts at G, GF
corresponding to £, and DG to D, in Archytas’ notation. The step of taking
C, DE, the smallest numbers in the ratio of 4 to B, presupposes Eucl. viL
33.] Then DE exceeds C by an aliquot part of itself and of C [cf. the
definition of érudpios dpifuds in Nicomachus, 1. 19, 1] Let D be the excess
[i.e. £ is supposed equal to C]. “I say that .D is not a number but an unit.”

For, if D is a number and a part of DE, it measures DE ; hence it
measures £, that is, C. Thus D measures both C and DE, which is
impossible ; for the smallest numbers which are in the same ratio as any
numbers are prime to one another. [This presupposes Eucl. vir, 22.] There-
fore D is an unit; that is, DE exceeds C by an unit. Hence no number can
be found which is a mean between two numbers C, DE. Therefore neither
can any number be a mean between the original numbers 4, B which are in
the same ratio [this implies Eucl. viL 20].

‘We have then here a clear indication of the existence at least as early as
the date of Archytas (about 430—365 B.C.) of an Elements of Arithmetic in
the form which we call Euclidean; and no doubt text-books of the sort
existed even before Archytas, which probably Archytas himself and Eudoxus
improved and developed in their turn.

(/n Platonis T taria, 149 ), said that the difficulties of the of the
Timaeus had misled some people into connecting it with the duplication of the cube,
whereas it really referred to similar planes and solids with sides in rational numbers.
Thirdly, I do not think that, under the supposition that the Delian problem is referred to,
we get the required sense. The problem in that case is not that of finding two mean
pr:roﬂionnls between two cubes but that of finding a second cube the content of which
shall be equal to twice, or # times (where £ is any number not a complete cube), the content
of a given cube (¢%). Two mean proportionals are found, not between cubes, but between
two straight lines in the ratio of 1 to &, or between a and £a, Unless # is a cube, there
would be no point in saying that two means are necessary to connect 1 and #, and not one
mean ; for &4 is no more natural than /4, and would be less natural in the case where 4
happened to be square. On the other hand, if £ is a cube, so that it is a question of findin,

means between cube mumbers, the dictum of Plato is perfectly intelligible ; nor is any real
difficulty caused by the generality of the statement that two means are a/ways necessary to
connect them, because any property enunciated generally of two cube numbers should
obviously be true of cubes as swuch, that is, it must hold in the extreme case of two cubes
which are prime to one another.




BOOK VII. PROPOSITIONS.

ProprosITION 1.

Two unequal numbers being set out, and the less being
continually subtracted in turn from the greater, if the number
which is left never measures the one beforve it until an unit is
left, the original numbers will be prime to one another.

For, the less of two unequal numbers 48, CD being
continually subtracted from the greater, let the
number which is left never measure the one
before it until an unit is left ;

I say that A8, CD are prime to one another,
that is, that an unit alone measures 45, CD.

A
H
i

For, if A8, CD are not prime to one another,
some number will measure them.

Let a number measure them, and let it be D
E; let CD, measuring BF, leave A less than
itself,

let AF, measuring DG, leave GC less than itself,
and let GC, measuring F/, leave an unit A A4.

Since, then, £ measures €D, and CD measures BF,
therefore £ also measures BF.

E

But it also measures the whole 54 ;
therefore it will also measure the remainder.A4F.
But A F measures DG ;
therefore £ also measures DG.
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But it also measures the whole DC -
therefore it will also measure the remainder CG.
But CG measures F/ ;
therefore £ also measures FH.
But it also measures the whole 74 ;

therefore it will also measure the remainder, the unit 44,
though it is a number : which is impossible.

Therefore no number will measure the numbers 45, CD,
therefore A8, CD are prime to one another. [viL Def. 13]
Q. E. D.

It is proper to remark here that the representation in Books viL to 1xX. of
numbers by straight lines is adopted by Heiberg from the mMss. The method
of those editors who substitute poin#s for lines is open to objection because it
practically necessitates, in many cases, the use of specific numbers, which is
contrary to Euclid’s manner.

“Let CD, measuring BF, leave FA less than itself.” This is a neat
abbreviation for saying, measure along BA successive len equal to CD
until a point # is reached such that the length #4 remaining is less than
CZ?B Aln other words, let BF be the largest exact multiple of C.D contained
in

Euclid’s method in this proposition is an application to the particular
case of prime numbers of the method of finding tﬁe greatest common measure
of two numbers not prime to one another, which we shall find in the next
proposition. With our notation, the method may be shown thus. Supposing
the two numbers to be g, 4, we have, say,

b)a(s
2

)b(g
gc
d)e(r
rd
I
If now a, & are not pnrne to one a.nother, they must have a common
measure ¢, where ¢ is some integer, not unity.
And since ¢ measures a, &, it measures a — g5, i.e. ¢.

Again, since ¢ measures 4, ¢, it measures & - ¢, i.e. d,
and lastly, since ¢ measures ¢, 4, it measures ¢ - 74, i.e. 1:
which is impossible.

Therefore there is no integer, except unity, that measures &, 4, which are
accordingly prime to one another.

Observe that Euclid assumes as an axiom that, if @, & are _both divisible by

¢, s0is a—pb. In the next proposition he assumes as an axiom that ¢ will in
the case supposed divide a + 6.
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ProprosiTioN 2.

Given two numbers not prime to one another, to find their
grealest common measuve.
Let A5, CD be the two given numbers not prime to one

another.
Thus it is required to find the greatest ,

common measure of A5, CD. c

If now CD measures AB—and it also © F
measures itself —C/Z) is a common measure of |
CD, AB. i

And it is manifest that it is also the greatest ; |
for no greater number than CD will measure
CD.

But, if CD does not measure 475, then, the less of the
numbers 428, CD being continually subtracted from the
greater, some number will be left which will measure the one
before it.

For an unit will not be left; otherwise 45, CD will be
prime to one another [viL. 1], which is contrary to the
hypothesis.

Therefore some number will be left which will measure
the one before it.

Now let CD, measuring BE, leave £A less than itself,
let £A, measuring DF, leave FC less than itself,

and let CF measure A F.
Since then, CF measures 4 £, and AE measurcs DF,
therefore '/ will also measure DF.
But it also measures itself ;
therefore it will also measure the whole CD,
But CD measures BE :
therefore CF also measures BE.
But it also measures ~£A4 ;
therefore it will also measure the whole 5A4.
But it also measures CD;
therefore C/” measures A58, CD.,
Therefore CF is a common measure of A8, CD.
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I say next that it is also the greatest.

For, if CFis not the greatest common measure of A28,
CD, some number which is greater than CF will measure the
numbers 45, CD.

Let such a number measure them, and let it be G.

Now, since G measures CD, while CD measures BE,
G also measures BE.

But it alse measures the whole 54 ;

therefore it will also measure the remainder 4 Z,
But A £ measures DF;

therefore G will also measure DF.
But it also measures the whole DC ;

therefore it will also measure the remainder CF, that is, the
greater will measure the less : which is impossible.

Therefore no number which is greater than C# will measure
the numbers 45, CD ;

therefore CF is the greatest common measure of A5, CD.

Porism. From this it is manifest that, if a number
measure two numbers, it will also measure their greatest
common measure. Q E. D..

Here we have the exact method of finding the greatest common measure
given in the text-books of algebra, including the reductio ad absurdum proof
that the number arrived at is not only a common measure but the greafest
common measure. The process of finding the greatest common measure
is simply shown thus :

b)a(p
¥4
¢)b(g
gc
d)e(r

rd

We shall arrive, says Euclid, at some number, say 4, which measures the one
before it, i.e. such that ¢=rd. Otherwise the process would go on until we
arrived at unity. This is impossible because in that case a, 4 would be prime
to one another, which is contrary to the hypothesis.

Next, like the text-books of algebra, he goes on to show that & will be some
common measure of a, &, For d measures ¢;
therefore it measures ¢¢ + 4, that is, 4,
and hence it measures pé + ¢, that is, a.

Lastly, he proves that & is the greafest common measure of a, & as follows.

Suppose that ¢ is a common measure greater than 4.

Then ¢, measuring a, 4, must measure a — g4, or c.
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Similarly ¢ must measure 4 — ¢, that is, 4: which is impossible, since ¢ is
by hypothesis greater than 4.

Therefore etc.

Euclid’s proposition is thus identical with the algebraical proposition as
generally given, e.g. in Todhunter’s algebra, except that of course Euclid’s
numbers are integers.

Nicomachus gives the same rule (though without proving it) when he
shows how to determine whether two given odd numbers are prime or not
prime to one another, and, if they are not prime to one anothet, what is their
common measure. We are, he says, to compare the numbers in turn by
continually taking the less from the greater as many times as possible,
then taking the remainder as many times as possible from the less of the
original numbers, and so on ; this process “ will finish either at an unit or at
some one and the same number,” by which it is implied that the division of a
greater number by a less is done by separate subtractions of the less. Thus,
with regard to 21 and 49, Nicomachus says, “I subtract the less from the
greater; 28 is left; then again I subtract from this the same 21 (for this is
possible); 7 is left; I subtract this from 21, 14 is left; from which I again
subtract 7 (for this is possible); 7 will be left, but 7 cannot be subtracted from
7.” The last phrase is curious, but the meaning of it is obvious enough, as
also the meaning of the phrase about ending “at one and the same number.”

The proof of the Porism is of course contained in that part of the propo-
sition which proves that G, a common measure different from CZF must
measure CF.  The supposition, thereby proved to be false, that & is greater
than CF does not affect the validity of tll:;e proof that G measures CFin any
case.

ProrosiTiON 3.

Given three numbers not prime to one another, to find their
greatest common measure.

Let 4, B, C be the three given numbers not prime to
one another ;
thus it is required to find the greatest
common measure of 4, B, C.

Forletthegreatest common measure, B
D, of the two numbers A4, B be taken; ¢

[vir. 2]

then D either measures, or does not
measure, C.

First, let it measure it.

But it measures 4, B also;
therefore 2D measures 4, B, C;
therefore D is a common measure of 4, B, C.

I say that it is also the greatest.

o, E| F|
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For, if D is not the greatest common measure of 4, B, C,
some number which is greater than 2 will measure the numbers
A, B, C.

Let such a number measure them, and let it be £.

Since then £ measures 4, B, C,
it will also measure 4, 5 ;
therefore it will also measure the greatest common measure
of A, B. [vi1. 2, Por.]

But the greatest common measure of 4, B is D;
therefore £ measures D), the greater the less: which is
impossible.

Therefore no number which is greater than 2 will measure
the numbers 4, B, C;

therefore D is the greatest common measure of 4, B, C.

Next, let D not measure C;
I say first that C, D are not prime to one another.

For, since 4, B, C are not prime to one another, some
number will measure them.
Now that which measures 4, B, C will also measure 4,
B, and will measure D, the greatest common measure of 4, B,
[vi 2, Por.]
But it measures C also ;

therefore some number will measure the numbers D, C;
therefore 2D, C are not prime to one another.

Let then their greatest common measure £ be taken.
[viL 2]
Then, since £ measures 0,

and D measures 4, 5,
therefore £ also measures 4, 5,
But it measures C also;
therefore £ measures 4, B, C;
therefore £ is a common measure of 4, 5, C.
I say next that it is also the greatest.
For, if £ is not the greatest common measure of 4, B, C,
some number which is greater than £ will measure the

numbers 4, B, C.
Let such a number measure them, and let it be 7.
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Now, since /" measures 4, B, C,
it also measures 4, B ;

therefore it will also measure the greatest common measure
of 4, B. [vi1. 2, Por.]

But the greatest common measure of 4, B is D;
therefore /" measures D.

And it measures C also;
therefore /" measures D, C;

therefore it will also measure the greatest common measure
of D, C. [viL. 2, Por.]
But the greatest common measure of D, Cis £;
therefore F measures Z, the greater the less: which is
impossible.
Therefore no number which is greater than £ will measure
the numbers 4, B, C;

therefore £ is the greatest common measure of 4, B, C.
Q. E. D.

Euclid’s proof is here longer than we should make it because he
distinguishes two cases, the simpler of which is really included in the other.

Having taken the greatest common measure, say 4, of @, 4, two of the
three given numbers g, 4, ¢, he distinguishes the cases

(1) in which & measures ¢,
(2) in which 4 does not measure .

In the first case the greatest common measure of 4, ¢ is 4 itself; in the
second case it has to be found by a repetition of the process of vir. 2. In
either case the greatest common measure of @, 4, ¢ is the greatest common
measure of d, ¢

But, after disposing of the simpler case, Euclid thinks it necessary to
prove that, if 4 does not measure ¢, 4 and ¢ must necessarily Aave a greatest
common measure. This he does by means of the original hypothesis that
a, b, ¢ are not prime to one another. Since they are not prime to one another,
they must have a common measure; any common measure of 4, & is a measure
of d, and therefore any common measure of a, 4, ¢ is a common measure of
d, ¢; hence d, ¢ must have a common measure, and are therefore not prime to
one another.

The proofs of cases (1) and (2) repeat exactly the same argument as we
saw in VIL 2, and it is proved separately for 4 in case (1) and ¢ in case (2),
where ¢ is the greatest common measure of 4, ¢,

(a) that it is a common measure of g, 4, ¢,
(B) that it is the greafest common measure.

Heron remarks (an-Nairizi, ed. Curtze, p. 191) that the method does
not only enable us to find the greatest common measure of #4ree numbers ;
it can be used to find the greatest common measure of as many numbers
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as we please. This is because any number measuring two numbers also
measures their greatest common measure ; and hence we can find the c.c.m.
of pairs, then the G.c.M. of pairs of these, and so on, until only two numbers
are left and we find the G.c.m. of these. Euclid tacitly assumes this extension
in vir. 33, where he takes the greatest common measure of as many numbers
as we please.

ProrosiTiON 4.

Any number is either a part or parts of any number, the
less of the greater.

Let 4, BC be two numbers, and let BC be the less;
I say that BC is either a part, or parts, of A.

For 4, BC are either prime to one another
or not.

First, let 4, BC be prime to one another.

Then, if BC be divided into the units in it,
each unit of those in ZC will be some part of 4 ;
so that BC is parts of A4.

Next let 4, BC not be prime to one another;
then BC either measures, or does not measure, 4.

If now BC measures 4, BC is a part of 4.

But, if not, let the greatest common measure D of A, BC
be taken ; [vir. 2]
and let BC be divided into the numbers equal to D, namely
BE, EF, FC.

Now, since 2D measures A4, D is a part of 4.

But D is equal to each of the numbers BE, EF, FC,;

therefore each of the numbers BE, £F, FC is also a part of 4 ;
so that BC is parts of 4.
Therefore etc.

|o

0O m m o

Q. E. D.

The meaning of the enunciation is of course that, if @, # be two numbers
of which & is the less, then & is either a submultiple or some proper fraction of a.

(1) If @, 4 are prime to one another, divide each into its units ; then &
contains & of the same parts of which & contains a. Therefore 4 is “ parts ” or
a proper fraction of a.

(2) If a,4 be not prime to one another, either 4 measures @, in which
case ¢ is a submultiple or “part” of a, or, if ¢ be the greatest common
measure of @, 4, we may put a=mg and 4= ng, and 4 will contain # of the
same parts (g) of which a contains m, so that 4 is again ““ parts,” or a proger

Jraction, of a.
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ProrosiTION 5.

If a number be a part of a number, and another be the
same part of another, the sum will also be the same part of the
sum that the one is of the one.

For let the number A4 be a part of BC,
and another, D, the same part of another £ that 4 is of BC;

I say that the sum of 4, D is also the same
part of the sum of BC, £F that A4 is of BC. B

For since, whatever part 4 is of BC, D &
is also the same part of £F, |
F

therefore, as many numbers as there are in
BC equal to A4, so many numbers are there
also in £F equal to D.

Let BC be divided into the numbers equal to 4, namely
BG, GC,

and E£F into the numbers equal to D, namely £H, HF;

then the multitude of BG, G'C will be equal to the multitude
of EH, HF.

And, since BG is equal to 4, and £H to D,
therefore BG, E£H are also equal to 4, D.

For the same reason
GC, HF are also equal to 4, D.

Therefore, as many numbers as there are in BC equal to
A, so many are there also in BC, £F equal to A4, D.

Therefore, whatever multiple ZC is of A4, the same multiple
also is the sum of BC, £F of the sum of 4, D.

Therefore, whatever part 4 is of BC, the same part also
is the sum of A4, D of the sum of BC, EF.

Q. E. D.
If a=£6, and c=ld, then
n n
atc= ;l; (6 +4d).
The proposition is of course true for any quantity of pairs of numbers

similarly related, as is the next proposition also; and both propositions are
used in the extended form in viL g, 10.
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ProrosiTION 6.

If a number be parts of a number, and another be the same
parts of another, the sum will also be the same parts of the sum

that the one is of the one.
For let the number 45 be parts of the number C,
and another, D Z, the same parts of another,
F, that AR is of C;
I say that the sum of A8, DE is also the A
same parts of the sum of C, # that A8 is c o
Ji
DE is also the same parts of 7, G e
therefore, as many parts of C as there are
in A8, so many parts of / are there also in DE.
Let 4B be divided into the parts of C, namely 4G, GB,
and DE into the parts of 7, namely DA, HE ;
thus the multitude of 4G, GB will be equal to the multitude
DH of F also,
therefore, whatever part AG is of C, the same part also is the
sum of AG, DH of the sum of C, F. [vie 5]
For the same reason,
whatever part GB is of C, the same part also is the sum of
GB, HE of the sum of C, F.

of C.
For since, whatever parts 45 is of C,
of DH, HE.
And since, whatever part AG is of C, the same part is
Therefore, whatever parts A5 is of C, the same parts also
is the sum of 4B, DE of the sum of C, F.

Q. E. D.
If azgé, and ¢=—d,
n
then a+:=%’(b+d).
More generally, if
m m m
) f=;d, e—;f,

then (a+c+¢+g+...}=%(b+r{+f+/!+...).
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In Euclid’s proposition 7 <#, but the generality of the result is of course
not affected. This proposition and the last are complementary to v. 1, which
proves the corresponding result with mu/tiple substituted for “part” or

“parts.”

ProrosiTiON 7.

If a number be that part of a number, which a number
subtracted is of a number subtracted, the remainder will also
be the same part of the remainder that the whole is of the
whole.

For let the number 45 be that part of the number CD
which 4 £ subtracted is of C/ subtracted ;

I say that the remainder £25 is also the same part of the
remainder /0 that the whole 475 is of the whole CD.

A E B
G Cc F D

For, whatever part AZ is of CF, the same part also let
ERB be of CG.

Now since, whatever part 4Z is of CF, the same part
also is £B of CG,

therefore, whatever part A£ is of CF, the same part also is
AR of GF. [vi. 5]

But, whatever part AZ£ is of CF, the same part also, by
hypothesis, is A8 of CD ;

therefore, whatever part 425 is of G/, the same part is it of
CD also;

therefore GF is equal to CD.
Let CF be subtracted from each;
therefore the remainder GC is equal to the remainder #2D.

Now since, whatever part 4Z£ is of CF, the same part
also is £8 of GC,

while GC is equal to /D,

therefore, whatever part AZ is of CF, the same part also is
EB of FD.

But, whatever part 4 is of CZ, the same part also is A8
of CD;
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therefore also the remainder ZZ is the same part of the
remainder ~0 that the whole 4275 is of the whole CD.

Q. E. D.
If a= 5!} and ::i d, we are to prove that
1
Gt (6-4d),
a result differing from that of vii. 5 in that minus is substituted for plus.

Euclid’s method is as follows.
Suppose that ¢ is taken such that

|
@=C=— 0 i (1)
Now c==d.
n
Therefore a =:—! (@ +e), [viL 5]
whence, from the hypothesis, d+e=b,
so that e=b-d,
and, substituting this value of e in (1), we have
I
a-c==(b-d).

ProrosiTion 8.

If a number be the same parts of a number that a number
subtracted is of @ number subtvacted, the remainder will also
be &;‘&e same parts of the remainder that the whole is of the
whole.

For let the number 423 be the same parts of the number
CD that A subtracted is of CF
subtracted ; c F D
I say that the remainder £8'is 5 mk N
also the same parts of the re-
mainder 7D that the whole A8 j7——F—+¢+ s
is of the whole CD.

For let G/ be made equal to 45. .

Therefore, whatever parts GA is of CD, the same parts
also is AE of CF.

Let GH be divided into the parts of CD, namely GK, KH,
and A Z into the parts of CF, namely AL, LE ;
thus the multitude of GX, KA will be equal to the multitude
of AL, LE.
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Now since, whatever part GKX is of CD, the same part
also is AL of CF,

while. CD is greater than CF,
therefore GK is also greater than AL.
Let GM be made equal to AL.

Therefore, whatever part GK is of CD, the same part also
is GM of CF,

therefore also the remainder MK is the :ame part of the
remainder ~0 that the whole GX is of the whole CD. [vi. 7]

Again, since, whatever part K'/7 is of CD, the same part
also is £L of CF,

while C2 is greater than CF,
therefore //K is also greater than £L.

Let ANV be made equal to £L.
Therefore, whatever part K/ is of CD, the same part
also is ANV of CF;

therefore also the remainder N/ is the same part of the
remainder /0 that the whole A/ is of the whole CD.

[vin 7]
But the remainder /K was also proved to be the same
[E‘alr)t of the remainder /D that the whole GX is of the whole
therefore also the sum of MK, NH is the same parts of DF
that the whole A is of the whole CD.
But the sum of MK, NH is equal to £B,
and G is equal to B4 ;

therefore the remainder £2 is the same parts of the remainder
FD that the whole 42 is of the whole CD.
Q. E. D.

If a-gé and ::-’-:-Ed, (m<n)

then a-c="(6-d).
Euclid’s proof amounts to the following.
Take ¢ equal to > 4, and f equal to > 4.

Then since, by hypothesis, 4> d,
e>f,

and, by v 7, e—f= ’% (6-4d).
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_ Repeat this for all the parts equal to ¢ and f that there are in 4, 4 respec-
tively, and we have, by addition («, # containing # of such parts respectively),

mle—f)=""(-d).
But me—f)=a-c
Therefore a—c= ’: (6 -4d).

The propositions vir. 7, 8 are complementary to v. 5 which gives the
corresponding result with mu/iiple in the place of “part” or *parts.”

ProrosiTION 9.

If a number be a part of a number, and another be the
same part of another, alternately also, whatever part or parts
the first is of the third, the same part, or the same parts, will
the second also be of the fourth.

For let the number A4 be a part of the number BC,
and another, 2, the same part of another, £7,

that A4 is of BC; £
[ say that, alternately also, whatever part or 8

parts A is of D, the same part or parts is BC G |D "
of £F also. "‘I o 5

For since, whatever part 4 is of BC, the
same part also is D of £F,
therefore, as many numbers as there are in BC equal to 4,
so many also are there in £/ equal to D.

Let BC be divided into the numbers equal to A4, namely
BG, GC,
and £F into those equal to D, namely £H, HF;
thus the multitude of BG, GC will be equal to the multitude
of EH, HF.

Now, since the numbers BG, GC are equal to one another,
and the numbers £/, HF are also equal to one another,
while the multitude of BG, GC is equal to the multitude of
EH, HF,
therefore, whatever part or parts BG 1s of £/, the same
part or the same parts is GC of HF also;
so that, in addition, whatever part or parts BG is of £H,

the same part also, or the same parts, is the sum ZC of the
sum EF. {vi. 5, 6]
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But BG is equal to 4, and £H to D;

therefore, whatever part or parts A is of [, the same part or
the same parts is BC of EF also.

Q. E. D.

Ifa =£ 4 and :=i d, then, whatever fraction (“ part” or “ parts”) a is of

¢, the same fraction will & be of 7.

Dividing & into each of its parts equal to @, and 4 into each of its parts
equal to ¢, it is clear that, whatever fraction one of the parts # is of one of the
parts ¢, the same fraction is any other of the parts @ of any other of the parts «.

And the number of the parts a is equal to the number of the parts ¢, viz. ».

Therefore, by viL. 5, 6, #a is the same fraction of n¢ that a is of ¢, i.e. & is
the same fraction of & that a is of ¢.

ProrosITION 10.

If a number be parts of a number, and another be the
same parts of another, alternately also, whatever parts or part
the first is of the third, the same partls or the same part will
the second also be of the fourth.

For let the number 42 be parts of the number C,
and another, DZ, the same parts of another,

I say that, alternately also, whatever parts or

part AB is of DE, the same parts or the , o

same part is C of / also. c w
For since, whatever parts 47 is of C, ©

the same parts also is DZ of F, 8 E

therefore, as many parts of C as there are
in A B, so many parts also of / are there in DE.

Let A3 be divided into the parts of C, namely 4G, G2,
and DE into the parts of 7, namely DH, HE;

thus the multitude of 4G, GB will be equal to the multitude
of DH, HE.

Now since, whatever part 4G is of C, the same part also
is DH of F,

alternately also, whatever part or parts 4G is of DA,
the same part or the same parts is C of # also. [vir. 9]
For the same reason also,

whatever part or parts GB is of HE, the same part or the
same parts is C of / also;
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so that, in addition, whatever parts or part A8 is of DE,
the same parts also, or the same part, is C of /. [viL 5, 6]
Q. E. D.

m m . . .
Ifa= = b and ¢ = ;d, then, whatever fraction a is of ¢, the same fraction

is 4 of 4.

To prove this, @ is divided into its m parts equal to 4/», and ¢ into its
m parts equal to dfn.

Then, by vit. g, whatever fraction one of the » parts of a is of one of the
m parts of ¢, the same fraction is » of 4.

And, by vii. 5, 6, whatever fraction one of the m parts of a is of one of
the m parts of ¢, the same fraction is the sum of the parts of a (that is, a) of
the sum of the parts ot ¢ (that is, ¢).

Whence the result follows.

In the Greek text, after the words “so that, in addition” in the last line
but one, is an additional explanation making the reference to vir. 5, 6 clearer,
as follows: “whatever part or parts 4G 1s of DH, the same part or the
same parts is GB of HE also;
therefore also, whatever part or parts 4G is of DA, the same part or the same
parts is A8 of DE also. [viL 5, 6]

But it was proved that, whatever part or parts 4G is of DA, the same
part or the same parts is C of Falso;
therefore also ” etc. as in the last two lines of the text.

Heiberg concludes, on the authority of P, which only has the words in
the margin in a later hand, that they may be attributed to Theon.

PRrorosITION 11.

If, as whole is to whole, so ts a number subtvacted to a
number subtracted, the vemainder will also be to the remaindeyr
as whole to whole.

As the whole 4 B is to the whole C.2, so iet A E subtracted
be to CF subtracted;

I say that the remainder £25 is also to the remainder 5
FD as the whole A28 to the whole CD.

Since, as A8 is to CD, so is AE to CF, €l ¥

whatever part or parts A5 is of CD, the same part
or the same parts is AZ of CF also;  [vm. Def. 20] 8! p

Therefore also the remainder £8 is the same

part or parts of 7D that A8 is of CD. [vir. 7, 8]
Therefore, as £8 is to FD, so is AB to CD. [vi. Def. 20]
Q. E. D.

It will be observed that, in dealing with the proportions in Props. 11—13,
Euclid only contemplates the case where the first number is “a part” or
“parts” of the second, while in Prop. 13 he assumes the first to be “a part”
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or “parts” of the third also; that is, the first number is in all three propositions
assumed to be less than the second, and in Prop. 13 less than the third also.
Yet the figures in Props. 11 and 13 are inconsistent with these assumptions.
If the facts are taken to correspond to the figures in these propositions, it is
necessary to take account of the other possibilities involved in the definition
of proportion (vi1. Def. zo), that the first number may also be a multiple, or
a multiple p/us “a part” or “parts” (including once as a multiple in this case),
of each number with which it is compared. Thus a number of different cases
would have to be considered. The remedy is to make the ratio which is in
the lower terms the first ratio, and to invert the ratios, if necessary, in order
to make “a part” or “parts” literally apply.

If a:b=c:d (a>¢ b>d)
then (a—¢):(b—d)=a:b.

This_proposition for numbers corresponds to v. 19 for magnitudes. The
enunciation is the same except that the masculine (agreeing with apifuds)
takes the place of the neuter (agreeing with péyefos).

The proof is no more than a com%ination of the arithmetical definition of
proportion (vi1. Def. 20) with the results of vii. 7, 8, The language of propor-
tions is turned into the language of fractions by Def. 20 ; the results of vir. 7, 8
are then used and the language retransformed by Def. 2o into the language of
proportions,

ProrosiTiON 12.

If there be as many numbers as we please in proportion,
then, as one of the antecedents s to one of the consequents, so
are all the antecedents to all the consequents.

Let 4, B, C, D be as many numbers as we please in
proportion, so that,

as Aisto B,sois Cto D;

I say that, as A4 is to B, so are 4, Cto B, D.
For since, as 4 is to B, so is C to D, nl Bl cl o
whatever part or parts 4 is of 5, the same part
or parts is C of D also. [viL Def. 20]
Therefore also the sum of A4, C is the same
part or the same parts of the sum of B, D that 4 is of 5.
VIL 5, 6
Therefore, as A4 is to B, so are A, Cto B, D. [vn.[ Def.szo]]

If aidg=bi =il =
then each ratio is equal to (a+4+¢+...) : (@' + &+ +...).

The proposition corresponds to V. 12, and the enunciation is word for word
the same with that of v. 12 except that dpifués takes the place of péyefos.

Again the proof merely connects the arithmetical definition of proportion
(vir. Def. zo) with the results of viL s, 6, which are quoted as true for any

numbeg of numbers, and not merely for two numbers as in the enunciations of
VIL 5, 6.
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ProrosiTiON 13.

If four numbers be proportional, they will also be propor-
tional alternately.

Let the four numbers 4, B, C, D be proportional, so that,

as A isto B,sois Cto D;
I say that they will also be proportional alternately, so that,
as A is to C, so will 5B be to D.

For since, as A is to B, sois C to D, X

therefore, whatever part or parts 4 is of B, i

the same part or the same parts is C of D also. ?
[vir. Def. z0]
Therefore, alternately, whatever part or
parts A is of C, the same part or the same
parts is /2 of D also. [vin. 10]
Therefore, as 4 is to C, so is 5 to D. [vht. Def. 20]
Q. E. D.
If a:b=c¢:d,
then, alternately, a:c=b:d.

The proposition corresponds to v. 16 for magnitudes, and the proof
consists in connecting vii. Def. 20 with the result of vii, 10.

ProrosiTiON 14.

If theve be as many numbers as we please, and others equal
to them in multitude, whickh taken two and two are in the same
ratio, they will also be in the same ratio ex aequali.

Let there be as many numbers as we please 4, B, C,
and others equal to them in multitude 0, £, #, which taken
two and two are in the same ratio, so that,

as A isto B,sois Dto E,
and, as Bisto C,sois £ to F;
I say that, ex aeguali,
as A is to C, so also is D to F.

e — BT
—_— E
— —_—

For, since, as A4 is to B, so is D to £,
therefore, alternately,
as A is to 1), so is B to E. [vir. 13]
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Again, since, as B is to C, so is £ to F,
therefore, alternately,
as Bisto £, sois Cto F. [vir 13]
But, as Bisto £, sois A to D;
therefore also, as 4 is to D, so is C to F.
Therefore, alternately,
as A isto C, sois D to F. [id.]

If a:b=d:e,
and dre=e it
then, ex aegual, a:c=d:f;
and the same is true however many successive numbers are so related.
The proof is simplicity itself.

By vir. 13, alternately, a:d=b:e
and bie=c:f
Therefore ard=cif,
and, again alternately, a:c=d:f.

Observe that this simple method cannot be used to prove the corresponding
proposition for magnitudes, v. 22, although v. 22 has been preceded by the
two propositions in that Book corresponding to the propositions used here,
viz. v. 16 and v. 11. The reason of this is that this method would only prove
v. 22 for six magnitudes a// of the same kind, whereas the magnitudes in v. 22
are not subject to this limitation.

Heiberg remarks in a note on vir. 19 that, while kuclid has proved
several propositions of Book v. over again, by a separate proof, for numbers,
he has neglected to do so in certain cases; e.g., he often uses v. 11 in these pro-
positions of Book vir., v. g in VIL. 19, V. 7 in the same proposition, and so on.
Thus Heiberg would apparently suppose Euclid *o use v. 11 in the last step
of the present proof (Ratios whick are the same with the same ratio are also the
same with one another). I think it preferable to suppose that Euclid regarded
the last step as axiomatic; since, by the definition of proportion, the first
number is the same multiple or the same part or the same parts of the second
that the third is of the fourth: the assumption is no more than an assumption
that the numbers or proper fractions which are respectively equal to the same
number or proper fraction are equal to one another.

Though the proposition is only proved of six numbers, the extension to as
many as we please (as expressed in the enunciation) is obvious.

ProrosiTiON 15.

If an unit measure any numéber, and another number measure
any other number the same number of times, allernately also,
the unit will measure the thivd number the same number of
times that the second measures the fourth.
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For let the unit 4 measure any number BC,
and let another number 2D
measure any other number £
the same number of times ; D
I say that, alternately also, the E K L F
unit 4 measures the number
D the same number of times that ZC measures E£F.

For, since the unit 4 measures the number BC the same
number of times that /) measures ~£F,
therefore, as many units as there are in 2C, so many numbers
equal to 0 are there in £/ also.

Let BC be divided into the units in it, BG, GH, HC,
and £F into the numbers £K, KL, LF equal to D.

Thus the multitude of BG, GH, HC will be equal to the
multitude of £X, KL, LF.

And, since the units BG, GH, HC are equal to one another,
and the numbers £K, KL, LF are also equal to one another,

while the multitude of the units BG, GH, HC is equal to the
multitude of the numbers £K, KL, LF,

therefore, as the unit BG is to the number £X, so will the
unit GAH be to the number XZ, and the unit ZC to the
number LF.

Therefore also, as one of the antecedents is to one of
the consequents, so will all the antecedents be to all the
consequents ; [viL 12]

therefore, as the unit BG is to the number £X, so is BC to
EF.

But the unit ZG is equal io the unit 4,
and the number £X to the number D.
Therefore, as the unit 4 is to the number D), so is BC to

A B G H ©

EF.
Therefore the unit 4 measures the number 2 the same
number of times that ZC measures £F. Q. E. D.

If there be four numbers 1, m, a, ma (such that 1 measures m the same
number of times that @ measures ma), 1 measures @ the same number of
times that m measures ma.

Except that the first number is unity and the numbers are said to measure
instead of being a par? of others, this proposition and its proof do not differ
from viL g; in fact this proposition is a particular case of the other.
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ProrosiTiON 16.

If two numbers by multiplying one another make certain
numbers, the numbers so produced will be equal to one another.

Let 4, B be two numbers, and let 4 by multiplying B
make C, and B by multiplying

A make D ; A
I say that C is equal to D. Pl b s |
For, since 4 by multiply- ¢ i
ing B has made C, D
therefore B measures C ac- —E

cording to the units in 4.

But the unit £ also measures the number 4 according to
the units in it;

therefore the unit £ measures 4 the same number of times
that 2 measures C.

Therefore, alternately, the unit £ measures the number B
the same number of times that 4 measures C. [vir. 15]
Again, since B by multiplying 4 has made D,
therefore 4 measures D according to the units in 5.

But the unit £ also measures B according to the units
in it;

therefore the unit £ measures the number B the same
number of times that 4 measures D.

But the unit £ measured the number 5 the same number
of times that .4 measures C;

therefore 4 measures each of the numbers C, D the same
number of times.

Therefore C is equal to D. Q. E. D.

+2. The numbers so produced. The Greek has ol yevbuevor é& adrdw, *“ the (numbers)
produced from them.” By *‘from them” Euclid means *‘from the original numbers,” though
this is not very clear even in the Greek. [ think ambiguity is best avoided by leaving out
the words.

This proposition proves that, if any numbers be multiplied together, the order
of multiplication is indifferent, or ab= ba.

It is important to get a clear understanding of what Euclid means when
he speaks of ome number multiplying another. viL. Def. 15 states that the
effect of “a multiplying &” is taking @ times 4. We shall always represent
“g times 4” by aé and “¢ times a” by #a. This being premised; the proof
that ab = ba may be represented as follows in the language of proportions.
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By vir. Def. 20, 1:a=56:ab
Therefore, alternately, 1b=a:ab [vin 13]
Again, by vi1. Def. 20, ib=a: ba.

Therefore a: ab a:ba,

or ab = ba.

Euclid does not use the language of proportions but that of fractions or
their equivalent measures, quoting vii. 15, a particular case of vi. 13
differently expressed, instead of vil. 13 itself.

PRrOPOSITION 17.

If a number by mulliplying two numbers make certain
numbers, the numbers so produced will have the same ratio
as the numbers multiplied.

For let the number 4 by multiplying the two numbers 5,
C make D, E;

I say that, as Bis to C, so is D to E.
For, since 4 by multiplying 2 has made D,
therefore B measures [ according to the units in 4.

But the unit # also measures the number A4 according to
the units in it ;
therefore the unit /" measures the number 4 the same number
of times that A measures .

Therefore, as the unit / is to the number 4, so is B to D.

[viL. Def. 20]

For the same reason,
as the unit #is to the number A4, so also is C to £;
therefore also, as B is to D, so is C to £.

Therefore, alternately, as B is to C, so is D to £. [vi. 13]

Q. E. D
b:e=ab: ac

In this case Euclid translates the language of measures into that of

proportions, and the proof is exactly like that set out in the last note.

By vi Def. 2o, 1:a=0:ab,

and 1:a=¢:ac

Therefore b:ab=c: a,
and, alternately, bie=ab: ac [vir 13]
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ProrosiTiON 18.

If two numbers by multiplying any number make certain
numbers, the numbers so produced will have the same ratio as
the multipliers.

For let two numbers 4, B by multiplying any number C
make D, F;

I say that, as A isto B,so is D © :
to £. D
For, since 4 by multiplying E
C has made D,
therefore also C by multiplying A4 has made D. [vi. 16)

For the same reason also
C by multiplying B has made £.

Therefore the number C by mult.plying the two numbers
A, B has made D, E.

Therefore, as A isto B, svis D to E. [viL 17]
It is here proved that a:b=ac: b
The argument is as follows.
ac=ca. [vir 16]
Similarly be=ch.
And a:b=ca:c; [vi. 17]
therefore a:b=ac: be

Proros(TioN 19.

If four numbers be proportional, the number produced from
the first and fourth will be equal to the number produced from
the second and third; and, if the number produced from the
JSorst and fourth be equal to that produced from the second and
thivd, the four numbers will be proportional.

Let 4, B, C, D be four numbers in proportion, so that,
as A isto B,sois Cto D;
and let 4 by multiplying 2D make £, and let B by multiply-
ing C make F';
I say that £ is equal to /.
For let A by multiplying C make G.
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Since, then, 4 by multiplying C has made G, and by
multiplying 2 has made E,
the number 4 by multiplying the two
numbers C, D has made Gy Eg
Therefore, as C isto [, sois G to E.
fmagl, AL S
But,as Cisto ), sois 4 to B;
therefore also, as 4 is to B, so is G
to E.
Again, since A4 by multiplying C
has made G,
but, further, Z has also by multiplying
C made F,

the two numbers 4, B by multiplying a certain number C
have made G, F.

Therefore, as A is to B, so is G to F. [V 18]
But further, as 4 isto B, sois G to £ also;
therefore also, as G is to £, so is G to F.

Therefore G has to each of the numbers £, F the same
ratio ;

C| Dl E|F| G

therefore £ is equal to /. [cf. v. 9]
Again, let £ be equal to ~;
I say that, as 4 is to B, so is C to D.
For, with the same construction,
since £ is equal to 7,

therefore, as G is to £, so is G to F. [cf. v. 7]
But, as G is to £, sois Cto D, [vie. 17]
and, as G is to F, so is A to B. [vir. 18]
Therefore also, as A4 is to B, sois C to D.

Q. E. D
If a:b=c:d,
then ad = le ; and conversely.
The proof is equivalent to the following,
(1) ac:ad=c:d [vi. 17]
=g vl
But a:b=ac: b [vi1. 18]
Therefore ac: ad=ac: b,
or ad = be.



320 BOOK VII [vi 19, 20

(2) Since ad = b,
ac:ad=ac: b
But ac:ad=c:d, [vir. 17]
and ac:be=a:b. [viL 18]
Therefore a:b=c:d.

As indicated in the note on viL 14 above, Heiberg regards Euclid as
basing the inferences contained in the last step of part (1) of this proof and
in the first step of part (2) on the propositions v. g and v. 7 respectively,
since he has not proved those propositions separately for numbers in this
Book. I prefer to suppose that he regarded the inferences as obvious and
not needing proof, in view of the definition of numbers which are in pro-
portion. E.g., if ac is the same fraction (“ part” or “parts”) of ad that ac is
of ée, it is obvious that a4 must be equal to ée.

Heiberg omits from his text here, and relegates to an Appendix, a
proposition appearing in the manuscripts V, p, ¢ to the effect that, if Zhree
numbers be proportional, the product of the extremes is equal to the square
of the mean, and conversely. It does not appear in P in the first hand, B has
it in the margin only, and Campanus omits it, remarking that Euclid does
not give the proposition about tiree proportionals as he does in vi. 17, since
it is easily proved by the proposition just given. Moreover an-Nairizi quotes
the proposition about three proportionals as an ebservation on vil. 19 probably
due to Heron (who is mentioned by name in the preceding paragraph).

ProrosiTiON 20.

The least numbers of those whick have the same ratio with
them measure those whick have the same ratio the same number
of times, the greater the grealer and the less the less.

For let CD, EF be the least numbers of those which have
the same ratio with 4, 7 ;

I say that CD measures 4 the same number
of times that £/ measures 5.
Now CD is not parts of A4. g
For, if possible, let it be so; f c E
therefore £F is also the same parts of B o *«
that CD is of 4. [viL. 13 and Def. z0] F
Therefore, as many parts of 4 as there )
are in CD, so many parts of B are there also
in EF.

Let CD be divided into the parts of 4, namely CG, GD,
and £F into the parts of B, namely £H, HF;
thus the multitude of CG, GD will be equal to the multitude
of EH, HF.



VIL 20] PROPOSITIONS 19, 20 321

Now, since the numbers CG, GD are equal to one another,
and the numbers £/, HF are also equal to one another,

while the multitude of CG, GD is equal to the multitude of
EH, HF,
therefore, as CG is to £H, so is GD to HF.

Therefore also, as one of the antecedents is to one of
the consequents, so will all the antecedents be to all the
consequents, [viL 12]

Therefore, as CG is to £H, so is CD to EF.

Therefore CG, EH are in the same ratio with CD, £F,
being less than they :
which is impossible, for by hypothesis CD, £F are the least
numbers of those which have the same ratio with them.

Therefore CD is not parts of 4 ;
therefore it is a part of it. [vir. 4]

And £F is the same part of B that CD is of 4 ;

[vir. 13 and Def. 20]
therefore CD measures A4 the same number of times that £/
measures 5.

Q. E, D.

If a, & are the least numbers among those which have the same ratio
(i.e. if a/4 is a fraction in its lowest terms), and ¢, 4 are any others in the same
ratio,.i.e. if

a:b=c:d,

then a =£r and 4= ’-:d, where # is some integer.

The proof is by reductio ad absurdum, thus.

[Since a <¢, a is some proper fraction (“part” or “parts”) of ¢, by viL. 4.]

Now @ cannot be equal to g:, where m is an integer less than » but
greater than 1.

For, if a:E:. b:%da!so. [vir. 13 and Def. 20]

Take each of the m parts of @ with each of the m parts of &, two and two;
the ratio of the members of all pairs is the same ratio % a: ”1'6.

Therefore

1 I

mdigpb=ab [vir 12]

But éa and %6 are respectively less than a, 4 and they are in the same
ratio : which contradicts the hypothesis.
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Hence a can only be “a part” of ¢, or

. I
a is of the form 76

and therefore & is of the form ia’.

Here also Heiberg omits a proposition which was no doubt interpolated
by Theon (B, V, p, ¢ have it as viL. 22, but P only has it in the margin
and in a later hand; Campanus also omits it) proving for numbers the ex
aequali proposition when “the proportion is perturbed,” i.e. (cf. enunciation

of v. 22) if
F. 300 T X0 AR I © J
and DA C RTS8 iirvnrnersstonssnnapumpitanatadns (2)
then a:c=d:f
The proof (see Heiberg's Appendix) depends on vi1. 19.
From (1) we have af = be,
and from (2) be=cd. [viL. 19]
Therefore af = cd,
and accordingly a:c=d:f. [viL. 19]

ProrosiTION 21.

Numbers prime to one another are the least of those whick
have the same ratio with them.

Let A, B be numbers prime to one another;
I say that 4, B are the least of
those which have the same ratio
; ofo [E
with them. Al @ I i

For, if not, there will be some |
numbers less than 4, B which are
in the same ratio with 4, 5.

Let them be C, D.

Since, then, the least numbers of those which have the
same ratio measure those which have the same ratio the
same number of times, the greater the greater and the less
the less, that is, the antecedent the antecedent and the
consequent the consequent, [vii. 20]
therefore C measures A the same number of times that D
measures 5.

Now, as many times as C measures 4, so many units let
there be in £.

Therefore D also measures & according to the units in £.
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And, since C measures 4 according to the units in £,
therefore £ also measures 4 according to the units in C.

[viL 16]

For the same reason
E also measures B according to the units in 2. [vir. 16]
Therefore £ measures A4, B which are prime to one
another: which is impossible. [vir. Def. 12]

Therefore there will be no numbers less than A4, B which
are in the same ratio with 4, 5.
Therefore A, B are the least of those which have the same
ratio with them,
Q. E. D,

In other words, if a, # are prime to one another, the ratio @ : & is “in its
lowest terms.”

The proof is equivalent to the following.

If not, suppose that ¢, 4 are the /eas? numbers for which

ab=c:d
[Euclid only supposes some numbers ¢, 4 in the ratio of a to & such that
¢<a, and (consequently) 4<4. It is however necessary to suppose that
¢, d are the /Jeast numbers in that ratio in order to enable vii. 20 to be
used in the proof.]

Then (Vi 20] a = m¢, and b = md, where m is some integer.

Therefore a=cm, b=dm, [vi. 16]
and m is a common measure of g, 4, though these are prime to one another.
which is impossible. [viL. Def. u}

Thus the least numbers in the ratio of @ to 4 cannot be less than g,
themselves.

Where I have quoted vii. 16 Heiberg regards the reference as being to
viL. :5. I think the phraseology of the text combined with that of Def. 15
suggests the former rather than the latter.

ProrosiTioN 22.

The least numbers of those whick have the same ratio with
them are prime lo one another.

Let A, B be the least numbers of those which have the
same ratio with them;
I say that 4, B are prime to one
another.

. ; c

For, if they are not prime to one
another, some number will measure g
them.

Let some number measure them, and let it be C.

A
B
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And, as many times as C measures 4, so many units
let there be in D,

and, as many times as C measures 5, so many units let there
be in £
Since C measures A4 according to the units in D,
therefore C by multiplying 2 has made 4. [vi. Def. 15]
For the same reason also
C by multiplying £ has made 5.
Thus the number C by multiplying the two numbers D,
E has made 4, B;
therefore, as D is to £, sois A to B; [vir. 17]
therefore D, £ are in the same ratio with 4, B, being less
than they : which is impossible.

Therefore no number will measure the numbers 4, 5.
Therefore A, B are prime to one another.
Q. E. D.
If @ : 4 is “in its lowest terms,” a, 4 are prime to one another.
Again the proof is indirect.
dIf a, b are not prime to one another, they have some common measure ¢,
an
a=me¢ b=ne
Therefore min=a:b. [vi. 17 or 18]

But m, n are less than a, & respectively, so that a : 4 is not in its lowest
terms : which is contrary to the hypothesis.
Therefore etc.

PRroposITION 23.

If two numbers be prime to one another, the number whick
measures the one of them will be prime to the remaining
number.

Let A4, B be two numbers prime to one another, and let
any number C measure 4 ;
I say that C, B are also prime to one another.

For, if C, B are not prime to one another,
some number will measure C, 5.

Let a number measure them, and let it be 2.

Since D measures C, and C measures 4,
therefore D also measures 4. A B o

But it also measures 5 ;
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therefore 2 measures 4, B which are prime to one another:
which is impossible. [vir. Def. 12)

Therefore no number will measure the numbers C, 5.
Therefore C, B are prime to one another.
Q. E. D.

If a, mb are prime to one another, 4 is prime to a. For, if not, some
number & will measure both a and 4, and therefore both a and mé: which is
contrary to the hypothesis.

Therefore etc.

PROPOSITION 24.

Lf two numbers be prime to any number, their product also
will be prime to the same.

For let the two numbers 4, B be prime to any number C,
and let 4 by multiplying B make D ;
I say that C, D are prime to one another.
For, if C, D are not prime to one another,
some number will measure C, D.

Let a number measure them, and let it g F
be E.

Now, since C, A are prime to one ¢
another, D
and a certain number £ measures C,
therefore 4, £ are prime to one another. [vir. 23]

As many times, then, as £ measures /), so many units let
there be in ~;

therefore / also measures 2 according to the units in £,
[viL 16]

Therefore £ by multiplying # has made 2.  [vir. Def. 15]
But, further, 4 by multiplying 2 has also made D ;
therefore the product of £, F is equal to the product of 4, B.

But, if the product of the extremes be equal to that of the
means, the four numbers are proportional ; [vin. 19]

therefore, as £ is to A, so is B to F.

But A, £ are prime to one another,
numbers which are prime to one another are also the least of
those which have the same ratio, [vir. 21)
and the least numbers of those which have the same ratio
with them measure those which have the same ratio the same
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number of times, the greater the greater and the less the less,
that is, the antecedent the antecedent and the consequent the
consequent ; [vin 20]
therefore £ measures 5.

But it also measures C;
therefore £ measures B, C which are prime to one another:
which is impossible. [vL. Def. 12]

Therefore no number will measure the numbers C, D.

Therefore C, D are prime to one another.

Q. E. D.

1. their product. & é abrdr yevbuevos, literally * the (number) produced from them,”
will henceforth be translated as "thei.r preduct.”

If a, & are both prime to ¢, then @, ¢ are prime to one another.

The proof is again by reductio ad absurdum.

If ab, ¢ are not prime to one another, let them be measured by 2 and be
equal to md, nd, say, respectively.

Now, since &, ¢ are prime to one another and 4 measures ¢,

a, d are prime to one another. [viL 23]
But, since ab = md,
dia=b:m [viL 19]
Therefore [vi1. 20] d measures 4,
or b= pd, say.
But ¢c=nd.

Therefore 4 measures both 4 and ¢, which are therefore not prime to one
another : which is impossible.
Therefore etc.

ProrosiTION 25,
If two numbers be }}nme o one another, the product of onme
of them into tself will be prime lo the remaining one.
Let 4, B be two numbers prime to one another,
and let 4 by multiplying itself make C:
I say that B, C are prime to one another.

For let D be made equal to 4. f
Since A, B are prime to one another, B
and A4 is equal to D,
therefore D, B are also prime to one another. D‘ &

Therefore each of the two numbers D, A is
prime to B ;

therefore the product of D, 4 will also be prime to £. [vi. 24]
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But the number which is the product of D, A4 is C.
Therefore C, B are prime to one another. Q. E. D.

1. the product of one of them into itself. The Greek, 6 éx roil évds alrdv yevbuevos,
literally * the number produced from the one of them,” leaves * multiplied into itself ” to be
understood.

If @, 4 are prime to one another,
a® is prime to 4.

Euclid takes & equal to a, so that 4, a are both prime to &.

Hence, by viL. 24, da, i.e. @* is prime to .

The proposition is a particular case of the preceding proposition ; and the
method of proof is by substitution of different numbers in the result of that

proposition,

ProrosiTION 26.

If two numbers be prime to two numbers, botk to each, their-
products also will be prime to one another.

For let the two numbers A4, B be prime to the two
numbers C, D; both to each,
and let 4 by multiplying 2
make £, and let C by multi-
plying D make F;

I say that E, F are prime to
one another.

For, since each of the numbers 4, B is prime to C,
therefore the product of 4, B will also be prime to C. [vi. 24]

But the product of 4, B is £;
therefore £, C are prime to one another.

For the same reason
£, D are also prime to one another.

Therefore each of the numbers C, D is prime to £.

Therefore the product of C, D will also be prime to £.

[viL 24]
But the product of C, D is F.
Therefore £, F are prime to one another. Q. E. D.
If both a and & are prime to each of two numbers ¢, 4, then aé, «d will be

prime to one another.
Since a, & are both prime to

c
D

mTm e >

ab, ¢ are prime to one another. [viL 24]
Similarly ab, d are prime to one another.
Therefore ¢. d are both prime to a?,

and so therefore is <d. [vin 24)
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ProrosITION 27.

If two numbers be prime to ome another, and eack by
multiplying itself make a certain number, the products will be
prime to one another ; and, if the original numbers by mults-
Plying the products make certain numbers, the latter will also
be prime to one another [and this is always the case with the

extremes).

Let A, B be two numbers prime to one another,
let 4 by multiplying itself make C, and by

multiplying C make D,

and let B by multiplying itself make £, and A

by multiplying £ make #;

I say that both C, £ and D, F are prime £

to one another. Bl
For, since 4, B are prime to one another,

and A by multiplying itself has made C,

therefore C, B are prime to one another. [viL. 25]
Since then C, B are prime to one another,

and A by multiplying itself has made £,

therefore C, £ are prime to one another. [id.)
Again, since A4, B are prime to one another,

and B by multiplying itself has made £,

therefore 4, £ are prime to one another. [4d.]

Since then the two numbers 4, C are prime to the two
numbers B, £, both to each,

therefore also the product of 4, Cis prime to the product of
B, E. [v11. 26)

And the product of A4, C is D, and the product of B, £
is /.

Therefore D, F are prime to one another.
Q E. D.

If a, 4 are prime to one another, so are 4%, #* and so are &° #; and,
generally, @", 4* are prime to one another.

The words in the enunciation which assert the truth of the proposition for
any powers are suspected and bracketed by Heiberg because (1) in mepi rods
dxpovs the use of axpo is peculiar, for it can only mean “the last products,”
and (2) the words have nothing corresponding to them in the proof, much
less is the generalisation proved. Campanus omits the words in the enuncia-
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tion, though he adds to the proof a remark that the proposition is true of any,

the same or different, powers of a, 5. Heiberg concludes that the words are
an interpolation of date earlier than Theon.

Euclid’s proof amounts to this.

Since a, 4 are prime to one another, so are &%, # [vi1. 25), and therefore
also a*, & [vin 25]

Similarly [viL. 25] a, 4 are prime to one another. o=

Therefore a, a* and &, #* satisfy the description in the enunciation of
viL. 26.

Hence 4° & are prime to one another.

ProrositTion 28.

If two numbers be prime to one another, the sum will also
be prime to each of them ; and, if the sum of two numbers be
prime to any one of them, the original numbers will also be
prime to one another.

For let two numbers 45, BC prime to one another be
added ;

I say that the sum AC is also prime z— 5 )
to each of the numbers A5, BC.

For, if CA, AB are not prime to
one another,

some number will measure CA4, A5.

Let a number measure them, and let it be D.
Since then D measures CA4, AR5,

therefore it will also measure the remainder BC.,
But it also measures 54 ;

therefore D measures 45, BC which are prime to one another:
which is impossible. [vir. Def. 12]

Therefore no number will measure the numbers CA4, A5;
therefore CA, A B are prime to one another.
For the same reason

AC, CB are also prime to one another.
Therefore CA is prime to each of the numbers A5, BC.
Again, let CA, 4B be prime to one another ;

I say that A58, BC are also prime to one another.
For, if AB, BC are not prime to one another,

some number will measure 45, BC.

D
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Let a number measure them, and let it be 2.

Now, since ) measures each of the numbers A5, BC, it
will also measure the whole CA4.

But it also measures 45 ;
therefore ) measures CA, A B which are prime to one another:
which is impossible. [viL Def. 12]

Therefore no number will measure the numbers 45, BC.

Therefore A8, BC are prime to one another.
Q. E. D.

If @, & are prime to one another, @ + & will be prime to both @ and 4; and
conversely.

For suppose (@ +4), @ are not prime to one another. They must then
have some common measure 4.

Therefore & also divides the difference (a + &) —a, or 4, as well as ¢ ; and
therefore a, 4 are not prime to one another: which is contrary to the

hypothesis.
Therefore a + b is prime to a.
Similarly a + & is prime to 4.

The converse is proved in the same way.

Heiberg remarks on Euclid’s assumption that, if ¢ measures both @ and 4,
it also measures a + 4. But it has already (vi. 1, 2) been assumed, more
generally, as an axiom that, in the case supposed, ¢ measures a + gb.

ProrosiTiON 29.

Any prime number is prime lo any number whick it does
not measure.

Let A be a prime number, and let it not measure 5 ;
I say that B, A4 are prime to one another.

For, if B, A are not prime to one ———a
another, at il o PDg
some number will measure them.

Let C measure them.

Since C measures B,
and 4 does not measure 7,
therefore C is not the same with A.

Now, since C measures 5, A,
therefore it also measures 4 which is prime, though it is not
the same with it :
which is impossible.
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Therefore no number will measure B, 4.
Therefore A, B are prime to one another.
Q. E. D.

If @ is prime and does not measure 4, then @, & are prime Lo one another.
The proof is self-evident.

ProrosiTioN 30.

If two numbers by multiplying one anolher make some
number, and any prime number measurve lhe product, it will
also measure one of the original numbers.

For let the two numbers 4, B by multiplying one another
make C, and let any prime number
D measure C;

I say that D measures one of the o

numbers 4, B. c -
For let it not measure 4. s
Now D is prime ; f——————
therefore 4, D are prime to one
another. [vi1. z9]

And, as many times as D measures C, so many units let
there be in £.
Since then D measures C according to the units in £,

therefore 2 by multiplying £ has made C. [vir. Def. 15]
Further, 4 by multiplying B has also made C;

therefore the product of 0, £ is equal to the product of
A, B.

Therefore, as D is to A, so is B to E. [viL 19]
But D, A are prime to one another,
primes are also least, [vir 21]

and the least measure the numbers which have the same
ratio the same number of times, the greater the greater and
the less the less, that is, the antecedent the antecedent and
the consequent the consequent ; [vi1. 20]
therefore D measures 5.

Similarly we can also show that, if D do not measure 5,
it will measure A.

Therefore ) measures one of the numbers 4, 5.

Q. E. D.
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If ¢, a prime number, measure aé, ¢ will measure either @ or 4,
Suppose ¢ does not measure a.

Therefore ¢, a are prime to one another. [vin 29]
Suppose ab = me.

Therefore cia=b:m. [vi. 19]
Hence [viL. 20, 21] ¢ measures .

Similarly, if ¢ does not measure 4, it measures a.
Therefore it measures one or other of the two numbers a, 4.

ProvosiTioNn 31.

Any composite number is measuved by some prime number.

Let 4 be a composite number ;
I say that 4 is measured by some prime number.
For, since A is composite,

s some number will measure it. A
Let a number measure it, and letit 8
be B. c

Now, if B is prime, what was en-
joined will have been done.
10 But if it is composite, some number will measure it.
Let a number measure it, and let it be C,
Then, since C measures 7,
and 5 measures A,
therefore C also measures A.
15 And, if C is prime, what was enjoined will have been
done.
But if it is composite, some number will measure it.
Thus, if the investigation be continued in this way, some
prime number will be found which will measure the number
20 before it, which will also measure A.
For, if it is not found, an infinite series of numbers will
measure the number 4, each of which is less than the other:
which is impossible in numbers.

Therefore some prime number will be found which will
25 measure the one before it, which will also measure 4.
Therefore any composite number is measured by some
prime number.
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8, if B is prime, what was enjoined will have been done, i.e. the implied
problem of finding a prime number which measures 4.

18. some prime number will be found which will measure. In the Greek the
sentence stops here, but it is necessarly to add the words * the number hefore it, which will
alsu measure 4,” which are found a few lines further down. It is possible that the words
may have fallen out of P here by a simple mistake due to duotoréhevror (Heiberg).

Heiberg relegates to the Appendix an alternative proof of this proposition,
to the following effect. Since 4 is composite, some number will measure it.
Let B be the /last such number. I say that B is prime. For, if not, B is
composite, and some number will measure it, say C; so that C is less than B.
But, since C measures 5, and B measures 4, C must measure 4. And Cis
less than B : which is contrary to the hypothesis.

PropoSITION 32.

Any number either is prime or is measured by some prime
number.

Let A4 be a number;

I say that A either is prime or is measured by some prime
number.

If now A is prime, that which was 4
enjoined will have been done.

But if it is composite, some prime number will measure it.

viL. 31]

Therefore any number either is prime or is measurged by

some prime number.

Q. E. D.

PROPOSITION 33.

Given as many numbers as we please, to find the least of
those whick have the same ratio with them.

Let A, B, C be the given numbers, as many as we please ;
thus it is required to find the least of
s those which have the same ratio with l
AR C. Al 50
A, B, C are either prime to one
another or not,
Now, if 4, B, C are prime to one |
o another, they are the least of those
which have the same ratio with them.
[vin 21]
But, if not, let D the greatest common measure of 4, B, C
be taken, [vir 3]

KI.[L F
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and, as many times as £ measures the numbers 4, 5, C
15 respectively, so many units let there be in the numbers
E, F, G respectively.
Therefore the numbers £, 7, G measure the numbers 4,
B, C respectively according to the units in D, [vir. 16]
Therefore £, F, G measure A4, B, C the same number of
20 times ;
therefore £, F, G are in the same ratio with 4, B, C.
[vir. Def. z0]
I say next that they are the least that are in that ratio.
For, if £, F, G are not the least of those which have the
same ratio with 4, B, C,
25 there will be numbers less than £, #, G which are in the
same ratio with 4, B, C.

Let them be A, X, L;
therefore /A measures 4 the same number of times that the
numbers X, L measure the numbers B, C respectively.
30 Now, as many times as /7 measures 4, so many units let
there be in M ;
therefore the numbers X, L also measure the numbers B, C
respectively according to the units in A/.

And, since & measures A according to the units in //,

35 therefore M also measures 4 according to the units in A.
[viL 16]
For the same reason
M also measures the numbers Z, C according to the units in
the numbers X, L respectively ;
Therefore M measures 4, B, C.
o  Now, since /7 measures A4 according to the units in /7,
therefore /7 by multiplyir;% M has made 4. [viL Def. 15)
For the same reason also
£ by multiplying D has made 4.

Therefore the product of £, D is equal to the product of
s H, M.
Therefore, as £ is to /, so is M to D. [vi. 19]
But £ is greater than /7 ;
therefore A is also greater than D.
And it measures 4, B, C:
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so which is impossible, for by hypothesis D is the greatest
common measure of A, B, C.
Therefore there cannot be any numbers less than £, F, G
which are in the same ratio with 4, 5, C.
Therefore £, F, G are the least of those which have the
55 same ratio with A4, 7, C.
Q. E. D.

17. the numbers E, F, G measure the numbers A, B, C respectively,
litemilg (as usual) ““each of the numbers £, /. G measures each of the numbers A,
C.

Given any numbers &, 4, ¢, ..., to find the least numbers that are in the
same ratio.

Euclid’s method is the obvious one, and the result is verified by reductio
ad absurdum.

We will, like Euclid, take three numbers only, a, 4, .

Let g, their greatest common measure, be found [vi1. 3], and suppose that

a=mg, ie gm, [viL 16]
b=ng, ie gn,
c=pg le gp.

It follows, by vir. Def. 20, that
m:n:p=a:bd:c
m, n, p shall be the numbers required.
For, if not, let x, y, z be the least numbers in the same ratio as a4, 4, ¢,
being less than m, #, p.

Therefore a=kx (or xk, viL 16),
b=Ry (or yh),
c=kz (or zk),
where £ is some integer. [viL 20]
Thus mg=a=uxk.
Therefore m:x=k:g [vin 19)

And m > x ; therefore £> g.

Since then # measures g, 4, ¢, it follows that g is not the greatest common
measure: which contradicts the hypothesis.

Therefore etc.

It is to be observed that Euclid merely supposes that z, y, z are smaller
numbers than , #, g in the ratio of @, &, ¢; but, in order to justify the next
inference, which apparently can only depend on vIL 20, x, ¥, 2 must also be
assumed to be the /east numbers in the ratio of a, &, ¢.

The inference from the last proportion that, since m > x, %> g is supposed
by Heiberg to depend upon viL 13 and V. 14 together. I prefer to regard
Euclid as making the inference quite independently of Book v. E.g, the
proportion could just as well be written

x:m=g: Ak
when the definition of proportion in Book vi1. (Def. 20) gives all that we want,
since, whatever proper fraction x is of m, the same proper fraction is g of 2.
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ProrosiTiON 34.

Given two numbers, to find the least number whick they
measure.

Let A4, B be the two given numbers;
thus it is required to find the least number which they
measure,
Now A4, B are either prime to one " 8
another or not. c
First, let A4, B be prime to one o
another, and let 4 by multiplying B
make C; A
therefore also B by multiplying 4 has
made C. [viL 16]
Therefore 4, B measure C
I say next that it is also the least number they measure.
For, if not, A, B will measure some number which is less
than C.
Let them measure D.

Then, as many times as 4 measures 2, so many units let
there be in £,

and, as many times as 2 measures /), so many units let there
be in F;
therefore 4 by multiplying £ has made 0,

and 2 by multiplying # has made D ; [vir. Def. 15]

therefore the product of 4, £ is equal to the product of B, F.
Therefore, as A4 is to B, so is F to £E. [vir. 19]
But 4, B are prime,

primes are also least, [vin 21]

and the least measure the numbers which have the same ratio
the same number of times, the greater the greater and the less
the less; [vir. 20]
therefore B measures £, as consequent consequent.
And, since 4 by multiplying B, £ has made C, D,
therefore, as B is to £, so is C to D. [vir. 17)
But B measures £';
therefore C also measures 2, the greater the less :
which is impossible.
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Therefore A, B do not measure any number less than C;
therefore C is the least that is measured by 4, 5.

Next, let 4, B no* be prime to one another,
and let /, £, the least numbers of those which have the same

ratio with 4, B, be taken ; [vir 33]
therefore the product of 4, £ is equal to the product of 5, F.
VIL I
And let 4 by multiplying £ e
make C; A el
therefore also B by multiplying ~ 3 E
has made C;
therefore A, B measure C. A AT
I say next that it isalsothe least _q _—q

number that they measure.

For, if not, A, B will measure some number which is less
than C.

Let them measure D.

And, as many times as 4 measures ), so many units let
there be in G,

and, as many times as & measures /), so many units let there
be in A.
Therefore A4 by multiplying G' has made D,
and B by multiplying // has made D.
gherefore the product of 4, G is equal to the product of
B, H;
therefore, as A is to B, so is A to G. [viL 19]
But, as A4 is to B, so is &£ to £.
Therefore also, as Fis to £, so is /4 1o G.
But F, £ are least,

and the least measure the numbers which have the same ratio
the same number of times, the greater the greater and the
less the less; [viL. 20]

therefore £ measures G.
And, since 4 by multiplying £, G has made C, D,
therefore, as £ is to G, so is C to D. [vir 17]
But £ measures G ;
therefore C also measures D, the greater the less :
which is impossible.
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Therefore A, B will not measure any number which is less
than C.
Therefore C is the least that is measured by 4, 5.
Q. E. D

This is the problem of finding the least common multiple of two numbers,
as a, b

I. If a, 4 be prime to one another, the L.c.M. is aé.

For, if not, let it be 7, some number less than a.

Then d = ma = nb, where m, n are integers.
Therefore a:b=n:m, [vi. 19]
and hence, a, 4 being prime to one another,
& measures m, [vin. 20, 21]
But b:m=ab:am [vi 17]
=ab:d.

Therefore ab measures #: which is impossible.

II. If a, 4 be not prime to one another, find the numbers which are the

least of those having the ratio of a to &, say m, n; [vr. 33]
then arb=m:n,
and an=bm (=¢, say); [viL 19]

¢ is then the L.c.M.
For, if not, let it be 4 (< ¢), so that
ap = bg = d, where p, ¢ are integers.

Then a:b=g:p, [vin. 19]
whence min=g:p,
so that n measures 2. [vir. 20, 21]
And n:p=an:ap=c:d,
so that ¢ measures 4’ :

which is impossible.
Therefore etc.
By vi1. 33, m=
, where g is the c.c.M. of g, &.

S gl QIR

. a
Hence the L.c.M. is ?
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ProrosiTiON 35.

If two numbers measure any number, the least number
measured by them will also measure the same.

For let the two numbers 4, B medsure any number CD,
and let £ be the least that they
measure ;

I say that £ also measures CD.

For, if £ does not measure .
CD, let E, measuring DF, leave CF less than itself.
Now, since A4, B measure £,

and £ measures DF,
therefore 4, B will also measure DF.
But they also measure the whole CD ;

therefore they will also measure the remainder CF which is
less than £':

which is impossible.
Therefore £ cannot fail to measure CD;
therefore it measures it.

c F

Q. E. D.

The /east common multiple of any two numbers must measure any other
common multiple.

The proof is obvious, depending on the fact that, if any number divides @
and 4, it also divides a — pb.

ProrosiTION 36.
Given three numbers, to find the least number whick they

measure.

Let 4, B, C be the three given numbers ;
thus it is required to find the least
number which they measure.

Let D, the least number mea-
sured by the two numbers 4, 5,
be taken. (v 34]

Then C either measures, or
does not measure, 1,

First, let it measure it,

moom >
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But A4, B also measure D ;
therefore A, B, C measure D.
I say next that it is also the least that they measure.
For, if not, A, B, C will measure some number which is
less than D.
Let them measure £.
Since A4, B, C measure E,
therefore also 4, B measure £,
Therefore the leasc number measured by 4, B will also
measure £, [v. 35]
But D is the least number measured by 4, B;
therefore D will measure £, the greater the less :
which is impossible.
Therefore A, B, C will not measure any number which is
less than D ;
therefore D is the least that A4, B, C measure,
Again, let C not measure D,
and let £, the least number measured by

C, D, be taken. (v 34] i
Since A4, B measure D, ¢

and D measures £, o

therefore also 4, B measure £, —_—F
But C also measures £ ; e T

therefore also 4, B, C measure £.
I say next that it is also the least that they measure.
For, if not, A, B, C will measure some number which
is less than Z.
Let them measure 7.
Since A4, B, C measure F,
therefore also A, B measure F;
therefore the least number measured by 4, B will also
measure Z. [vin. 35]
But D is the least number measured by 4,*5;
therefore D measures F.
But C also measures F;
therefore D, C measure F,
so that the least number measured by D, C will also measure #,
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But £ is the least number measured by C, D ;
therefore £ measures F, the greater the less:
which is impossible.

Therefore A, B, C will not measure any number which is
less than £,

Therefore £ is the least that is measured by 4, B, C.
Q. E. D.

Euclid’s rule for finding the L.c.M. of #kree numbers g, 4, ¢ is the rule with
which we are familiar. e L.C.M. of @, & is first found, say 4, and then the
L.c.M. of 4 and ¢ is found.

Euclid distinguishes the cases (1) in which ¢ measures 4, (2) in which ¢
does not measure 4. We need only reproduce the proof of the general case
(2). The method is that of reductio ad absurdum.

Let ¢ be the L.c.m. of 4, ¢.

Since a, 4 both measure 4, and 4 measures ¢,

a, 4 both measure e.

So does ¢

Therefore ¢ is some common multiple of g, 4, c.
If it is not the Zeast, let f be the L.c.M.

Now a, & both measure f;

therefore d, their L.c.M., also measures f. [vir 35]
Thus 4, ¢ both measure f;
therefore ¢, their L.c.M., measures /: [viL 35]
which is impossible, since f<e.
Therefore etc.

The process can be continued ad /iditum, so that we can find the L.c.M,,
not only of three, but of as many numbers as we please.

ProrosiTION 37.

If a number be measured by any number, the number which
is measured will have a part called by the same name as the
measuring numbey.

For let the number 4 be measured by any number 5;

I say that 4 has a part called by the same

name as 5. A
For, as many times as B measures 4, g
so many units let there be in C. o

Since B measures A according to the ,__
units in C,
and the unit D also measures the number C according to the
units in it,
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therefore the unit 2 measures the number C the same number
of times as B measures A4.

Therefore, alternately, the unit 2 measures the number 5
the same number of times as C measures A4 ; [v11. 15)

therefore, whatever part the unit D is of the number B, the
same part is C of A4 also.

But the unit D is a part of the number 7 called by the
same name as it;

therefore C is also a part of A4 called by the same name as 5,
so that 4 has a part C which is called by the same name as 5.
Q. E. D,

If & measures a, then %th of a is a whole number.

Let a=m.b
Now m=m.1.
Thus 1, m, &, a satisfy the enunciation of vir. 15 ;
therefore m measures a the same number of times that 1 measures 4.

But :is%thputof&;

I

therefore m is 7

th part of a.

ProrositionN 38.

If a number have any part whatever, it will be measured
by a number called by the same name as the part.

For let the number A4 have any part whatever, 25,

and let C be a number called by the same
name as the part 5 ;

I say that C measures 4.

For, since B is a part of 4 called by
the same name as C,

and the unit D is also a part of C called
by the same name as it,

therefore, whatever part the unit 2 is of the number C,
the same part is B of 4 also;

thel:efore the unit 2 measures the number C the same number
of times that B measures 4,

>

—0D
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Therefore, alternately, the unit 2 measures the number 5
the same number of times that C measures 4. [vir. 15)
Therefore C measures A.
Q. E. D.

This proposition is practically a restatement of the preceding proposition.
It asserts that, if & is ith part of a,
1

i.e., if b= ’; a,
then 7 measures a.
1
We have b=-a,
m
I
and 1=—m.
m

Therefore 1, m, , a, satisfy the enunciation of viL. 1 5, and therefore m
measures @ the same number of times as 1 measures &, or

m=1a
_6 'y

ProrosiTION 39.

To find the number which is the least that will have given
parts.
Let 4, B, C be the given parts;
thus it is required to find the number which is the least thau
will have the parts 4, B, C.
A B c
D

Let D, E, F be numbers called by the same name as the
parts 4, B, C,

and let G, the least number measured by D, £, F, be taken.

[viL 36]

Therefore G has parts called by the same name as D, E, F.

[vi. 37
But A4, B, C are parts called by the same name as D, £, F;

therefore G has the parts 4, B, C.
I say next that it is also the least number that has.
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For, if not, there will be some number less than G which
will have the parts 4, 5, C.

Let it be A.

Since /A has the parts 4, B, C,
therefore A will be measured by numbers called by the same
name as the parts 4, B, C. [vi 38)

But D, E, F are numbers called by the same name as the
parts 4, B, C;
therefore /A is measured by D, E, F.

And it is less than G : which is impossible.

Therefore there will be no number less than G that will
have the parts 4, B, C.

Q. E. D.

This again is practically a restatement in another form of the problem of
finding the r.c.M.

To find a number which has ;:lh, gth and %th parts.
Let d be the L.c.M. of q, &, ¢.
Thus 4 has ith, %th and %th parts. [vi. 37]

If it is not the least number which has, let the least such number be e
Then, since ¢ has those parts,

e is measured by a, 4, ¢; and e <d:

which is impossible.
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ProrosiTiON 1.

If there be as many numbers as we please in continued
proportion, and the extvemes of them be prime to one another,
the numbers ave the least of those whick have the same ratio
with them.

Let there be as many numbers as we please, 4, 5, C, D,
in continued proportion,

and let the extremes of them A s
A, D be prime to one another; B8 F—
I say that 4, B, C, D are the © G
least of those which have the P H

same ratio with them.

For, if not, let £, F, G, A be less than A4, B, C, D, and
in the same ratio with them.

Now, since 4, B, C, D are in the same ratio with £, 7,
G, H,
and the multitude of the numbers 4, B, C, D is equal to the
multitude of the numbers £, F, G, H,

therefore, ex aequali,

as 4 isto D, sois E to H. {viL 14]
But 4, D are prime,
primes are also least, [vin 21]

and the least numbers measure those which have the same
ratio the same number of times, the greater the greater and
the less the less, that is, the antecedent the antecedent and
the consequent the consequent. [viL z0]
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Therefore 4 measures £, the greater the less :
which is impossible.
Therefore £, F, G, A which are less than 4, B, C, D
are not in the same ratio with them.
Therefore A4, B, C, D are the least of those which have
the same ratio with them.
Q. E. D.

What we call a geometrical progression is with Euclid a series of terms “in
continued proportion” (s dvakoyo).

This proposition proves that, if a, 4, ¢, ... £ are a series of numbers in
geometrical progression, and if @, 4 are prime to one another, the series is in
the lowest terms possible with the same common ratio.

The proof is in form by reductio ad absurdum. We should no doubt
desert this for/m while retaining the substance. If @, &, ¢, ... ¥ be any other
series of numbers in G.p. with the same common ratio as before, we have,
ex aequall,

a:k=a:k, [vin. 14]
whence, since a, £ are prime to one another, g, £ measure &, # respectively, so
that a', &' are greater than a, £ respectively.

ProrosITION 2.

7o find numbers in continued proportion, as many as may
be prescribed, and the least that are in a given ratio.

Let the ratio of 4 to B be the given ratio in least
numbers ;
thus it is required to find numbers in continued proportion,
as many as may be prescribed, and the least that are in the
ratio of 4 to 5.

Let four be prescribed ;

let A by multiplying itself make C, and by multiplying 5 let
it make D ;

let B by multiplying itself make £';
further, let 4 by multiplying C, D, £ make 7, G, H,
and let Z by multiplying £ make X.
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Now, since 4 by multiplying itself has made C,
and by multiplying 2 has made D,
therefore, as 4 is to B, sois C to D. [vir 17]
Again, since 4 by multiplying Z has made D,
and B by multiplying itself has made £,
therefore the numbers 4, B by multiplying B have made the
numbers D, E respectively.
Therefore, as A4 is to B, so is D to E. [vin 18]
But, as 4 isto B, sois Cto D;
therefore also, as Cis to D, so is D to £.
And, since 4 by multiplying C, D has made 7, G,
therefore, as Cis to D, so is F to G. (v 17]
But, as Cis to D, so was 4 to B;
therefore also, as 4 is to B, so is F to G.
Again, since 4 by multiplying D, £ has made G, H,
therefore, as D is to £, so is G to A. [vir 17]
But, as D is to £, so is A to 5.
Therefore also, as 4 is to B, so is G to H.
And, since 4, B by multiplying £ have made #, X,
therefore, as A is to B, so is A to XK. [viL. 18]

But, as A4 is to B, so is Fto G, and G to AH.

Therefore also, as ' is to G, so is G to A, and A to K;
therefore C, D, E, and F, G, A, K are proportional in the
ratio of A to B.

I say next that they are the least numbers that are so.

For, since A, B are the least of those which have the
same ratio with them,
and the least of those which have the same ratio are prime
to one another, [vir. 22]
therefore A4, B are prime to one another.

And the numbers 4, B by multiplying themselves re-
spectively have made the numbers C, £, and by multiplying
the numbers C, £ respectively have made the numbers 7, X;
therefore C, £ and F, K are prime to one another respectively.

[vi 27)]

But, if there be as many numbers as we please in continued

proportion, and the extremes of them be prime to one another,
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they are the least of those which have the same ratio with

them. [vim 1]
Therefore C, D, E and F, G, H, K are the least of those
which have the same ratio with 4, 5. Q. E. D.

Porism. From this it is manifest that, if three numbers
in continued proportion be the least of those which have the
same ratio with them, the extremes of them are squares, and,
if four numbers, cubes.

To find a series of numbers in geometrical progression and in the least
terms which have a given common ratio (understanding by that term #ke ratio
of one lerm lo the next).

Reduce the given ratio to its lowest terms, say, @ : &. (This can be done
by vi. 33.)

Then a®, a*'b, a"*F, ... a%"?, ab®, B
is the required series of numbers if (# + 1) terms are required.

That this is a series of terms with the given common ratio is clear from
Vil 17, 18.

That the G.P. is in the smallest terms possible is proved thus.

a, & are prime to one another, since the ratio a : 4 is in its lowest terms.

[viL 22]
Therefore a*, #* are prime to one another ; so are 4% #* and, generally,
a*, . [viL 27]

Whence the G.P. is in the smallest possible terms, by vi1L. 1.
The Porism observes that, if there are z terms in the series, the
extremes are (# — 1)th powers.

ProrosiTION 3.

If as many numbers as we please in continued proportion
be the least of those whick have the same ratio with them, the
extremes of them are prime to one another.

Let as many numbers as we please, 4, B, C, D, in con-
tinued proportion be the least of those which have the same
ratio with them ;

>
w

(]
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I say that the extremes of them A4, D are prime to one
another.

For let two numbers £, F, the least that are in the ratio

of A, B, C, D, be taken, [vi 33)
then three others G, A, K with the same property ;
and others, more by one continually, [vi. 2]

until the multitude taken becomes equal to the multitude of
the numbers 4, B, C, D.

Let them be taken, and let them be Z, M, N, O.
Now, since £, F are the least of those which have the
same ratio with them, they are prime to one another. [vi. 22]
And, since the numbers £, /° by multiplying themselves
respectively have made the numbers G, X, and by multiplying
the numbers G, X respectively have made the numbers L, O,
[vu1. 2z, Por.]

therefore both G, K"and L, O are prime to one another. [v1. 27]

And, since 4, B, C, D are the least of those which have
the same ratio with them,

while L, M, N, O are the least that are in the same ratio with
A, B, C D,

and the multitude of the numbers 4, B, C, D is equal to the
multitude of the numbers L, M, N, O,

therefore the numbers 4, B, C, D are equal to the numbers
L, M, N, O respectively ;

therefore A4 is equal to Z, and D to O.

And Z, O are prime to cne another.
Therefore A, D are also prime to one another.
Q. E. D.

The proof consists in merely equating the given numbers to the terms of
a series found in the manner of vl 2.

If a, b, ¢, ... & (n terms) be a geometrical progression in the lowest terms
having a given common ratio, the terms must respectively be of e form

uﬂ-l‘ a"’ﬂ, . a‘ﬁ"", aﬁl—l’ Ba-‘l
found by viin. 2, where a : 8 is the ratio a : 4 expressed in its lowest terms, so
that a, B are prime to one another [vi1. 22], and hence a"™, 8"~! are prime
to one another [vii. 27].
But the two series must be the same, so that

a=a*, b=pg"!
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PROPOSITION 4.

Given as many ratios as we please in least numbers, to find
numbers in comtinued proporiion whick are the least in the
given ratios.

Let the given ratios in least numbers be that of 4 to 5,

s that of C to D, and that of £ to F;
thus it is required to find numbers in continued proportion
which are the least that are in the ratio of 4 to B, in the
ratio of C to 0, and in the ratio of £ to 7.

A— B——
c— D—
E— F
i a
) H

M

P L

Let G, the least number measured by B, C, be taken.

[vir. 34]
1o And, as many times as B measures G, so many times also

let 4 measure A,
and, as many times as C measures G, so many times also let
D measure X,
Now E either measures or does not measure X.
15 First, let it measure it,
And, as many times as £ measures X, so many times let
£ measure L also.
Now, since 4 measures / the same number of times that
B measures G,
20 therefore, as 4 is to B, so is H to G. [vi. Def. 20, viv. 13)
For the same reason also, :

as Cisto D, sois G to X,
and further, as £ isto 7, sois K'to L ;
therefore A, G, K, L are continuously proportional in the
25 ratig of A to B, in the ratio of C to D, and in the ratio of £
to £,
I say next that they are also the least that have this
property.
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For, if H, G, K, L are not the least numbers continuously
3 proportional in the ratios of 4 to B, of C to D, and of £
to 7, let them be NV, O, M, P.
Then since, as 4 isto B, sois V to O,
while 4, B are least,
and the least numbers measure those which have the same
35 ratio the same number of times, the greater the greater and
the less the less, that is, the antecedent the antecedent and the
consequent the consequent ;
therefore B measures O, [vir. 20]
For the same reason
40 C also measures O;
therefore B, C measure O;
therefore the least number measured by B, C will also
measure O, [vie. 35]
But G is the least number measured by 2, C;
45 therefore G' measures O, the greater the less:
which is impossible.
Therefore there will be no numbers less than A, G, X, L
which are continuously in the ratio of 4 to B, of C to D, and
of £ to F.

50 Next, let £ not measure X.

A— c— E
B— 0— F
G H
Ke—, ——a
M R
o s
N T
P

Let M, the least number measured by £, X, be taken.
And, as many times as X measures /7, so many times let
H, G measure N, O respectively,

and, as many times as £ measures J, so many times let /
55 measure 2 also.

Since A measures NV the same number of times that G
measures O,

therefore, as A is to G, so is V to O. [vir. 13 and Def. z0)
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But, as A isto G, sois A to B;
6o therefore also, as A is to /7, so is NV to O.
For the same reason also,
as Cisto D, sois Oto M.
Again, since £ measures M the same number of times that
F measures P,

65 therefore, as £ is to /, so is M to P; [vir 13 and Def. 20]
therefore &V, O, M, P are continuously proportional in the
ratios of 4 to B, of C to D, and of £ to F.

I say next that they are also the least that are in the ratios
A:B,C:D, E:F.

70 For, if not, there will be some numibers less than &, O,
M, P continuously proportional in the ratios 4:58, C:D,
E:F.

Let them be O, R, S, 7.
Now since, as Qis to &, so is A to B,

75 while A4, B arc least,
and the least numbers measure those which have the same
ratio with them the same number of times, the antecedent the
antecedent and the consequent the consequent, [vi1. 20]
therefore B measures .

% For the same reason C also measures X ;
therefore B, C measure X.

Therefore the least number measured by 5B, C will also
measure X, [vir 35]
But G is the least number measured by 5, C;

8s therefore G measures 2.

And,as Gisto R, sois K to S: [vir. 13)
therefore X also measures S.

But £ also measures S;
therefore £, K measure S.

9o Therefore the least number measured by £, X will also

measure S. [vi. 35]
But A/ is the least number measured by £, X';

therefore M/ measures S, the greater the less :

which is impossible.

os  Therefore there will not be any numbers less than &, O,
M, P continuously proportional in the ratios of 4 to B, of
Cto D, and of £ to F;
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therefore N, O, M, P are the least numbers continuously
proportional in the ratios 4: 58, C: D, E: F. Q. E. D.

, 71, 99. the ratios A: B, C: D, E: F. This abbreviated expression is in the
Gmﬁd&&gl‘gmkm

The teria *“in continued proportion” is here not used in its proper sense,
since a geometrical progression is not meant, but a series of terms each of
which bears to the succeeding term a given, but not the same, ratio.

The proposition furnishes a good example of the cumbrousness of the
Greek method of dealing with non-determinate numbers. The proof in fact
is not easy to follow without the help of modern symbolical notation. If
this be used, the reasoning can be made clear enough.

Euclid takes #&ree given ratios and therefore requires to find four numbers.
We will leave out the simpler particular case which he puts first, that namely
in which £ accidentally measures X, the multiple of D found in the first few
lines ; and we will reproduce the general case with #Aree ratios.

Let the ratios in their lowest terms be

a:b c:d, e:f
Take /;, the L.c.M. of 4, ¢ and suppose that
I‘ = M = N
Form the numbers ma, mb ]_, nd.
=nc

These are in the ratios of a to 4 and of ¢ to 4 respectively.
Next, let /, be the L.c.M. of nd| ¢ and let
ly=pnd = ge.
Now form the numbers
pma, pmb ), pnd }. A
=pnc =ge
and these are the four numbers required.
If they are nof the least in the given ratios, let
xl yl ,i u
be less numbers in the given ratios.
Since a : 4 is in its lowest terms, and

a:b=x:y,
& measures y.
Similarly, since c:d=y:s3,
¢ measures y.
Therefore 4, the L.c.M. of &, ¢, measures y.
But hind[=c:d]=y:z
Therefore nd measures 2.
And, since e:f=5:u,
& measures 2.

Therefore 4, the L.c.M. of nd, ¢, measures z: which is impossible, since
<y or prd.

The step (line 86) inferring that G : R =K : S is of course alternando
from G: K[=C:D]=R:S.

It will be observed that viii. 4 corresponds to the portion of vi. 23 which
shows how to compound two ratios between straight lines.
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ProrosITION 5.
Plane numbers have to one another the rotio compounded
of the ratios of their sides.
Let A, B be plane numbers, and let the numbers C, D
be the sides of 4, and £, F of B;

5 I say that 4 has to & the ratio com-
pounded of the ratios of the sides.

For, the ratios being given which C  _¢ A
has to £ and D to A%‘, let the least G
numbers G, A, K that are continuously

10in the ratios C: Z, D :F be taken, so
that,

as Cisto £, sois G to A,
and, as D is to F, so is H to K. [vi. 4]
And let D by multiplying £ make L.

15 Now, since 2D by multiplying C has made 4, and by
multiplying £ has made Z,

therefore, as Cis to £, so is 4 to L. [vir. 17]
But, as Cis to £, sois G to H ;
therefore also, as G is to A, sois A to L.

20  Again, since £ by multiplying D has made Z, and further
by multiplying /' has made B,

therefore, as D is to /, sois L to B. [vir. 17]
But, as Dis to F, sois H to K;
therefore also, as A is to X, sois L to B.
25 But it was also proved that,
as Gisto H,sois Ato L;
therefore, ex aequali,
as Gisto K, sois A to B. [vie. 14)
But G has to X the ratio compounded of the ratios of the
o sides;

therefore A also has to 2 the ratio compounded of the ratios
of the sides. Q. E. D.

1, 5, 29, 31. compounded of the ratios of their sides. As in vI. 23, the Greek
has the less exact phrase, ‘‘ compounded of their sides.”

If a=d, b=¢f,
then a has to & the ratio compounded of ¢:eand 2 : £

Take three numbers the least which are continuously in the given ratios.
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If /is the L.c.M. of ¢, @ and /= me = nd, the three numbers are

me, me } , nf [vim. 4]
=nd
Now de:de=c:e [vin. 17]
=mc: me=mc : nd.
Also ed:ef=d:f [vir 17]
=nd : nf.
Therefore, ex aeguali, ed : ef =me: nf

= (ratio compounded of ¢: ¢ and 4: f).

It will be seen that this proof follows exactly the method of vi. 23 for
parallelograms.

ProrosiTIiON 6.

If there be as many numbers as we please in continued
proportion, and the first do not measure the second, neither
will any other measure any other.

Let there be as many numbers as we please, 4, B, C, D, E,
in continued proportion, and let 4 not measure 5 ;

I say that neither will any other measure any other.

A

~—F
—a
H

Now it is manifest that 4, 2, C, D, £ do not measure
one another in order ; for 4 does not even measure B3,

I say, then, that neither will any other measure any other.

For, if possible, let 4 measure C.

And, however many 4, B, C are, let as many numbers
F, G, H, the least of those which have the same ratio with
A, B, C, be taken. [vir. 33]

Now, since 7, G, A are in the same ratio \-ith 4, B, C,
and the multitude of the numbers 4, B, C is equal to the
multitude of the numbers #, G, H,

therefore, ex aequali, as A is to C, so is F to H. [vir. 14]
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And since, as A is to B, sois Fto G,
while 4 does not measure 5,

therefore neither does / measure G ; [vir. Def. 20)
therefore 7 is not an unit, for the unit measures any number.
Now £, A are prime to one another. [vn. 3]

And, as Fis to A, sois A to C;
therefore neither does A4 measure C,

Similarly we can prove that neither will any other measure
any other.

Q. E. D,

Leta, b, ¢... & be a geometrical progression in which @ does not measure 4.
Suppose, if possible, that 2 measures some term of the series, as /.
Take x, y, 5, 4, v, w the /east numbers in the ratio @, 4, ¢, d, ¢, f.
Since x:y=a:b

and a does not measure 4,

x does not measuré¢ y; therefore x cannot be unity.
And, ex aeguali, xiw=a:f

Now x, w are prime to one another. [vim. 3]
Therefore a does not measure f.

We can of course prove that an intermediate term, as 4, does not measure
a later term f by using the series &, ¢, 4, ¢, f and remembering that, since
b:c=a:b, & does not measure ¢

ProrosiTiON 7.

If there be as many numbers as we please in continued
proportion, and the first measure the last, it will measure the
second also.

Let there be as many numbers as we please, 4, B, C, D,
in continued proportion; and
let 4 measure D A—
I say that 4 also measures B. B
For, if A does not measure
B, neither will any other of the D
numbers measure any other. [vin. 6]
But 4 measures D,
Therefore A4 also measures 5.

Q. E. D.
An obvious proof by reductio ad absurdum from vi, 6.
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ProrosiTiON 8.

If between two numbers therve fall numbers in continued
proportion with them, then, however many numbers fall between
them in continued proportion, so many will also fall in con-
tinued proportion between the numbers which have the same
ratio with the original numbers.

Let the numbers C, D fall between the two numbers 4,
B in continued proportion with them, and let £ be made in
the same ratio to /~ as A4 is to 5 ;
I say that, as many numbers as have fallen between A, B in
continued proportion, so many will also fall between £, # in
continued proportion.

A

m Z T m

[+
D
B
Q_
"_.___

L

For, as many as 4, B, C, D are in multitude, let so many
numbers &, H, K, L, the least of those which have the same
ratio with 4, C, D, B, be taken; [vin 33)
therefore the extremes of them &, L are prime to one another.

[vi 3]

Now, since A, C, D, B are in the same ratio with G, A,
K, L,
and the multitude of the numbers 4, C, D, B is equal to the
multitude of the numbers G, H, X, L,
therefore, ex aequal, as A is to B, so is G to L. [vir. 14]

But, as A4 is to B, so is £ to F;
therefore also, as G is to L, so is £ to F.

But G, L are prime,
primes are also least, [vir. 21]
and the least numbers measure those which have the same
ratio the same number of times, the greater the greater and
the less the less, that is, the antecedent the antecedent and the
consequent the consequent. [vir. 20]
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Therefore G measures £ the same number of times as L
measures F.

Next, as many times as G' measures £, so many times let
H, K also measure M, N respectively ;
therefore G, A, K, L measure E, M, N, F the same number
of times.

Therefore G, H, K, L are in the same ratio with £, M,
N, F, [viL. Def. 20]

But G, A, K, L are in the same ratio with 4, C, D, B;
therefore A, C, D, B are also in the same ratio with £, M,
N, F.

But 4, C, D, B are in continued proportion ;
therefore £, M, N, F are also in continued proportion.

Therefore, as many numbers as have fallen between 4, B
in continued proportion with them, so many numbers have also
fallen between £, F in continued proportion.

Q. E. D,
1. fall. The Greek word is duwiwrew, “fall in' =*can be interpolated.”

If a:b=e:f, and between a, & there are any number of geometric
means ¢, &, there will be as ‘many such means between ¢, £,

Let a, B, 7, ..., 8 be the least possible terms in the same ratio as a,
6 d,...0

Then a, 8 are prime to one another, [vir. 3]
and, ex aequali, a:8=a:d
=e:f

Therefore ¢ = ma, f= m8, where m is some integer. [vin 20]

Take the numbers ma, mB, my, ... md.

This is a series in the given ratio, and we have the same number of
geometric means between ma, m3, or ¢, £, that there are between a, 4.

ProrosITION 9.

If two numbers be prime to one another, and numbers fall
between them in continued proportion, then, however many
numbers fall between them in continued proportion, so many
will also fall between eack of them and an unit in continued
proportion.

Let A, B be two numbers prime to one another, and let
C, D fall between them in continued proportion,
and let the unit £ be set out ;

I say that, as many numbers as fall between 4, B in con-
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tinued proportion, so many will also fall between either of
the numbers 4, B and the unit in continued proportion.

For let two numbers 7, G, the least that are in the ratio
of 4, C, D, B, be taken,

three numbers /7, K, L with the same property,
and others more by one continually, until their multitude is

equal to the multitude of 4, C, D, 5. [vin. 2]

A H—
c K———
D L—
B

E- M

F— N

G— o

P

Let them be taken, and let them be M, &, O, P.

It is now manifest that # by multiplying itself has made
H and by multiplying A has made A/, while G by multiplying
itself has made L ang by multiplying Z has made 2. 3

vIIL 2, Por.

And, since M, N, O, P are the least of those \\Ehlich have]
the same ratio with 7, G,
and A4, C, D, B are also the least of those which have the
same ratio with 7, G, [vi 1]
while the multitude of the numbers M, VN, O, P is equal to the
multitude of the numbers 4, C, D, B,
therefore M, N, O, P are equal to A4, C, D, B respectively;
therefore M is equal to A4, and 7 to B.

Now, since #/ by multiplying itself has made /,
therefore /" measures A according to the units in /.

But the unit £ also measures /" according to the units in it;

therefore the unit Z measures the number # the same number
of times as / measures /.
Therefore, as the unit £ is to the number F, so is # to A,
[vir. Def. 20]
Again, since 7 by multiplying /7 has made ¥,
therefore /7 measures M according to the units in £,
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But the unit £ also measures the number 7 according to
the units in it;
therefore the unit £ measures the number 7 the same number
of times as /A measures M.

Therefore, as the unit Z is to the number 7, so is A to M.

But it was also proved that, as the unit £ is to the number
F,sois Fto H;
therefore also, as the unit £ is to the number F, so is F to A,
and A to M.

But M is equal to 4 ;
therefore, as the unit £ is to the number 7, so is /¥ to A,
and A to A.

For the same reason also,
as the unit £ is to the number G, sois G to L and L to B.

Therefore, as many numbers as have fallen between A4,
B in continued proportion, so many numbers also have fallen
between each of the numbers 4, B and the unit £ in continued
proportion.

Q. E. D.

Suppose there are # geometric means between a, §, two numbers prime to
one another; there are the same number (#) of geometric means between 1
and @ and between 1 and 4.

If ¢, d... are the # means between a, &,

a ¢ d..b
are the least numbers in that ratio, since &, 4 are prime to one another. [viiL. 1)
The terms are therefore respectively identical with
ulH-l’ unﬁ, |..,.a—lﬁl - aﬁn’ BI&],

where a, B is the common ratio in its lowest terms. [vur 2, Por.]
Thus a=a*, j=f",
Now 1ia=a:a'=a':a".. =a:a"",
and 1:8=8:8=p:p..=8":p"";

whence there are # geometric means between 1, @, and between 1, &.

ProrosITION 10.

If numbers fall between eack of two numbers and an unit
in continued proportion, however many numbers fall between
eack of them and an unit in continued proportion, so many
also will fall between the numbers themselves in continued

proportion.
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For let the numbers D, £ and F, G respectively fall

between the two numbers A4, B and the unit C in continued
proportion ;
I say that, as many numbers as have fallen between each of
the numbers 4, B and the unit C in continued proportion, so
many numbers will also fall between 4, B in continued pro-
portion.

For let D by multiplying # make /A, and let the numbers
D, F by multiplying /7 make K, L respectively.

c— A
B
D—
E— H———
F—
G L

Now, since, as the unit C is to the number D, so is D to E,

therefore the unit C measures the number 2 the same number
of times as 2 measures £. [vi1. Def. zo]

But the unit C measures the number D according to the
units in D ;
therefore the number D also measures £ according to the units
in D;
therefore £ by multiplying itself has made £.

Again, since, as C is to the number D, so is £ to A,

therefore the unit C measures the number D the same number
of times as £ measures 4.

But the unit C measures the number D according to the
units in D ;

therefore £ also measures A4 according to the units in D ;
therefore D by multiplying £ has made 4.
For the same reason also

F by multiplying itself has made G, and by multiplying G has
made 5.

And, since D by multiplying itself has made £ and by
multiplying # has made 4,

therefore, as D is to F, so is £ to H. [vir. 17]
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For the same reason also,
as D is to F, sois H to G. [vin 18]
Therefore also, as £ is to /, so is A to G.
Again, since 2 by multiplying the numbers £, A has
made A4, K respectively,
therefore, as £ is to A, so is A to K. [vii. 17]
But, as £ is to A, so is D to F;
therefore also, as 2 is to F, so is 4 to XK.
Again, since the numbers 2, F by multiplying /7 have
made X, L respectively,
therefore, as D is to 7, sois K to L. [viL. 18]
But, as Disto 7, sois A to X ;
therefore also, as A4 is to X, so is K to L.
Further, since # by multiplying the numbers /A, G has
made L, B respectively,
therefore, as A is to G, so is L to B. [vir 17]
But, as A is to G, so is D to F;
therefore also, as D is to /7, so is L to B.
But it was also proved that,
as Disto F,sois Ato Kand Kto L;
therefore also, as 4 isto X, sois K to L and L to 5.
Therefore 4, K, L, B are in continued proportion.
Therefore, as many numbers as fall between each of the
numbers 4, B and the unit C in continued proportion, so
many also will fall between 4, B in continued proportion.
Q. E. D.

If there be # geometric means between 1 and @, and also between 1 and
&4, there will be #» geometric means between a and 4.

The proposition is the converse of the preceding.

The 7 means with the extremes form two geometric series of the form

1,  a?..a% a't,
I, Bs ﬁ. e 08‘! ﬁ'Hl!
where a*tl=q, pri=4,

By multiplying the last term in the first line by the first in the second,
the last but one in the first line by the second in the second, and so on, we

get the series
a‘”, anﬁ’ u."'lﬁ’ n’ﬁ”", aﬁ“, ﬁu-l-l
and we have the # means between a and 4.

It will be observed that, when Euclid says “ For the same reason also, as
D is to F, so is Hto G,” the reference is really to vii. 18 instead of viL 17.



VIIL 10, 11] PROPOSITIONS 10, 11 363

He infers namely that D x F: Fx F=D : F._ But since, by vi. 16, the
order of multiplication is indifferent, he is practically justified in saying *for
the same reason.” The same thing occurs in later propositions.

PRroOPOSITION 1T,

Between two square numbers there is one mean proportional
number, and the square has to the square the ratio duplicate
of that whick the side has to the side.

Let A, B be square numbers,
and let C be the side of 4, and D of B;

I say that between A4, B there is one mean proportional
number, and 4 has to B the ratio

duplicate of that which C has to D. A
For let C by multiplying D make £Z. 8
Now, since A4 is a square and Cis o©c— D
its side,
therefore C by multiplying itself has
made A.

For the same reason also
D by multiplying itself has made 5.

Since then C by multiplying the numbers C, D has made
A, E respectively,

therefore, as C is to D, so is A to £. [vir. 17]
For the same reason also,
as Cisto D, sois £ to B. [vit. 18]

Therefore also, as A4 is to E, so is £ to B.
Therefore between A, B there is one mean proportional
number.

I say next that A also has to B the ratio duplicate of
that which C has to D.

For, since 4, E, B are three numbers in proportion,
therefore A4 has to B the ratio duplicate of that which 4 has
to E. [v. Def. 9]

But, as A isto £, sois C to D.

Therefore A has to B the ratio duplicate of that which
the side C has to D. Q. E. D.

According to Nicomachus the theorems in this proposition and the next,
that two squares have one geometric mean, and two cubes #wo geometric

means, betweerr them are Platonic. Cf. Zimaeus, 32 a sqq. and the note
thereon, p. 294 above.
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a’, #* being two squares, it is only necessary to form the product a4 and
to prove that
a, ab P
are in geometrical progression. Euclid proves that
at:ab=ab: P
by means of vir 17, 18, as usual.

In assuming that, since a? is to 4 in the duplicate ratio of a* to ab, a* is
to & in the duplicate ratio of a to 4, Euclid assumes that ratios which are
the duplicates of equal ratios are equal. This, an obvious inference from
V. 22, can be inferred just as easily for numbers from vii. 14.

ProrosITION 12.

Between two cube numbers there are two mean proportional
numbers, and the cube has lo the cube the ratio triplicate of that
whick the side has to the side.

Let A, B be cube numbers,
and let C be the side of 4, and D of B;

I say that between A4, B there are two mean proportional

numbers, and A has to 2 the ratio triplicate of that which C
has to D.

A E=—=
B F
C— H——— G

D— K

For let C by multiplying itself make £, and by multiplying
D let it make F;
let D by multiplying itself make G,
and let the numbers C, D by multiplying 7~ make A, K
respectively.

Now, since 4 is a cube, and C its side,
and C by multiplying itself has made £,

therefore C by multiplying itself has made £ and by multiply-
ing £ has made 4.

For the same reason also
D by multiplying itself has made G and by multiplying G has
made B.

And, since C by multiplying the numbers C, D has made
E, F respectively,
therefore, as Cis to D, so is £ to F. [vin 17]



VIIL 12, 13] PROPOSITIONS 1r1—13 365

For the same reason also,
as Cisto D, sois Fto G. [vin 18]

Again, since C by multiplying the numbers £, F has
made A4, A respectively,
therefore, as £ is to /7, so is 4 to A. [vir 17]

But, as £ isto F, sois C to D.

Therefore also, as C is to D, so is A to H.

Again, since the numbers C, 2 by multiplying /# have
made /A, K respectively,
therefore, as Cis to D, so is A to K. [vir. 18]

Again, since 2D by multiplying each of the numbers 7, G
has made X, 2 respectively,
therefore, as /' is to G, so is X to B. [vir. 17)

But, as Fisto G,sois Cto D;
therefore also,as C is to D, sois 4 to H, H to K,and K to B.

Therefore /7, K are two mean proportionals between 4, 5.

I say next that A4 also has to 2 the ratio triplicate of that
which C has to D.

For, since A, A, K, B are four numbers in proportion,
therefore 4 has to B the ratio triplicate of that which 4 has
to A. [v. Def. 10]

But, as 4 is to A, sois Cto D;
therefore A4 also has to 2 the ratio triplicate of that which C
has to .

Q. E. D,

The cube numbers &° # being given, Euclid forms the products a%, ab®
and then proves, as usual, by means of vii. 17, 18 that

a, a%, ab, ¥
are in continued proportion.

He assumes that, since @® has to # the ratio triplicate of & : a%, the
ratio a@® : /* is triplicate of the ratio a : 4 which is equal to @®: a%. This
is again an obvious inference from viI. 14.

ProrosiTION 13.

If theve be as many numbers as we please in continued
proportion, and eack by mulliplying itself make some number,
the products will be proportional; and, if the original numbers
by multiplying the products make certain numbers, the latter
will also be proportional.



366 BOOK VIII [vim. 13
Let there be as many numbers as we please, 4, B, C, in
continued proportion, so that, as 4 is to B, so is B to C;

let 4, B, C by multiplying themselves make D, £, F, and by
multiplying D, £, F let them make G, H, K ;

I say that D, £, F and G, A, K are in continued proportion.

A G
B H
o] K
D

e M
F N
L P
Q Q

For let A by multiplying B make L,

and let the numbers 4, B by multiplying L make M. N
respectively.

And again let B by multiplying C make O,

and let the numbers B, C by multiplying O make P, Q
respectively.

Then, in manner similar to the foregoing, we can prove
that

D, L, E and G, M, N, H are continuously proportional in the
ratio of 4 to B,

and further £, O, F and H, P, Q, K are continuously propor-
tional in the ratio of A to C.

Now, as A isto B, sois Bto C;
therefore D, L, E are also in the same ratio with £, O, F,
and further G, M, NV, H in the same ratio with A, 2, Q, X.

And the multitude of D, Z, £ is equal to the multitude of
E, O, F, and that of G, M, N, H to that of H, P, Q, K ;

therefore, ex acgual,
as Dis to E, sois £ to F,
and, as Gisto H, sois H to K. [vin. 14)
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If a, &, ¢ ... be a series in geometrical progression, then
2
2 ‘:,’ ;‘;’ :: } are also in geometrical progression.
Heiberg brackets the words added to the enunciation which extend the
theorem to any powers. The words are “‘and this always occurs with the
extremes ” (xai del wepl Tovs dxpovs Tovro aupfaiver). They seem to be rightly
suspected on the same grounds as the same words added to the enunciation

of vi. 27. There is no allusion to them in the proof, much less any proof
of the extension.

Euclid forms, besides the squares and cubes of the given numbers, the
products ab, a*, al?, be, &c, be®. When he says that “we prove in manner
similar to the foregoing,” he indicates successive uscs of viL 17, 18 as
in viL 12.

With our notation the proof is as easy to sce for any powers as for squares
and cubes.

To prove that a*, %, ¢*... are in geometrical progression.
Form all the means between a®, 4", and set out the series
a® a"-', "% ... ad"", .
The common ratio of one term to the next is a : 4.
Next take the geometrical progression
g LW 8
the common ratio of which is 4 : .
Proceed thus for all pairs of consecutive terms,
Now a:b=bic=..
Therefore any pair of succeeding terms in one series are in the same ratio as
any pair of succeeding terms in any other of the series.

And the number of terms in each is the same, namely (# + 1).
Therefore, ex aeguali,

at i = Ih L Sa g

ProrosiTION 14.

If a square measure a square, the side will also measure
the side ; and, if the side measure the side, the square will also
measure the square.

Let A, B be square numbers, let C, D be their sides, and
let A measure B;

I say that C also measures D. A-—

For let C by multiplying D make £; 8
therefore 4, £, B are continuously pro- —C —erl
portional in the ratio of Cto . [vir 11] E

And, since 4, E, B are continuously
proportional, and 4 measures 5,

therefore A also measures £. [vin. 7]
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And, as A isto £, sois C.to D;
therefore also € measures D. [vii. Def. 20]

Again, let C measure D ;
I say that 4 also measures 5.

For, with the same construction, we can in a similar
manner prove that 4, £, B are continuously proportional in
the ratio of C to D,

And since, as C is to D, so is 4 to E,

and C measures D,

therefore A4 also measures £. [vir. Def. 20]
And A, E, B are continuously proportional ;

therefore A also measures 2.

Therefore etc.
Q. E. D.

If a® measures /*, a measures 4 ; and, if @ measures &, a® measures /°

(1) a*, ab, & are in continued proportion in the ratio of a to &.

Therefore, since a® measures &,

a® measures ab. [vi 7]
But a:ab=a:b.
Therefore a measures 5.

(2) Since a measures 4, a* measures ab.
And &, ab, #* are continuously proportional.

Thus ab measures #°
And a* measures ab.
Therefore a® measures 5.

It will be seen that Euclid puts the last step shortly, saying that, since
a® measures ad, and a° ab, #* are in continued proportion, a*® measures 5.
The same thing happens in viiL 15, where the series of terms is one more
than here.

ProrosITION T15.

If a cube number measure a cube number, the side will also
measure the side; and, if the side measure the side, the cube
will also measure the cube.

For let the cube number 4 measure the cube 5,
and let C be the side of 4 and D of B;

I say that C measures 0.
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For let C by multiplying itself make £,

and let D by multiplying itself make G ;

further, let C by multiplying D make £,

and let C, D by multiplying # make #, K respectively.
A—
B
o-
o— K
E —
G

F—

Now it is manifest that £, 7, G and A4, H, K, B are
continuously proportional in the ratio of Cto D. [viw 11, 12]
And, since 4, A, K, B are continuously proportional,

and 4 measures 5,

therefore it also measures /. [vin. 7)
And, as A isto A, sois Cto D;
therefore C also measures D. [vir. Def. 20]

Next, let C measure D ;

I say that 4 will also measure 5.

For, with the same construction, we can prove in a similar
manner that 4, /A, K, B are continuously proportional in the
ratio of C to D.

And, since C measures D,
and, as Cis to D, sois A to H,
therefore A also measures /A, [vir. Def. 20]
so that 4 measures 7 also.

Q. E. D.

If a® measures %, a measures 4; and vice versa. The proof is, mutatis
mutandis, the same as for squares.

(1) &, a%, a¥*, & are continuously proportional in the ratio of a to 4;
and 4® measures &,

Therefore 4* measures a% ; [vi. 7]
and hence @ measures J.

(2) Since @ measures 4, a* measures a%.

And, @, %, al®, & being continuously proportional, each term measures the
succeeding term ;
therefore ¢* measures
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ProrosiTiON 16.

If a square number do not measure a square number, neither
will the side measure the side; and, if the side do not measure
the side, neither will the square measure the square.

Let A, B be square numbers, and let C, D be their sides;
and let .4 not measure 5 ;

I say that neither does C measure D. A
For, if C measures D, A4 will also B
measure 5. [vi. 14] ©—

But A does not measure 5 ; bD—

therefore neither will C measure D,

Again, let C not measure D ;
I say that neither will 4 measure 5.

For, if A measures B, C will also measure D, [vin. 14)
But C does not measure D ;

therefore neither will .4 measure 5.
Q. E. D.

If a® does not measure &%, a will not measure 4; and, if @ does not
measure &, @® will not measure 2.
The proof is a mere reductio ad absurdum using viIlL. 14.

ProrosiTION 17.

If a cube number do not measure a cube number, neither
will the side measure the side; and, if the side do not measure
the side, neither will the cube measure the cube.

For let the cube number A4 not measure the cube
number 5,
and let C be the side of 4,and D A
of B; B
I say that C will not measure D. o

D—_
For if C measures D, A will
also measure 5. [vimn. 15)
But A does not measure 5 ;

therefore neither does C measure D,

Again, let C not measure D ;
I say that neither will 4 measure 5.
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For, if A measures B, C will also measure D. [vin. 15]
But C does not measure D ;
therefore neither will 4 measure 5.
Q. E. D.

If a® does not measure #*, 2 will not measure & ; and vice versa.
Proved by reductio ad absurdum employing vii. 15.

ProrosiTiON 18.

Between two similar plane numbers therve is one mean
proportional number; and the plane number has to the plane
number the ratio duplicate of that whick the corrvesponding
side has to the corvesponding side.

Let A4, B be two similar plane numbers, and let the numbers
C, D be the sides of 4, and £, F of B.

A c—

B D
E

a F

Now, since similar plane numbers are those which have
their sides proportional, [vir. Def. 21]
therefore, as C is to [, so is £ to F.

I say then that between 4, B there is one mean propor-
tional number, and A4 has to 2 the ratio duplicate of that
which C has to £, or D to F, that is, of that which the corre-
sponding side has to the corresponding side.

Now since, as C is to D, so is £ to F,
therefore, alternately, as C is to £, so is D to F. [vis 13]

And, since A4 is plane, and C, D are its sides,
therefore 2 by multiplying C has made 4.

For the same reason also
E by multiplying /# has made 5.

Now let D by multiplying £ make G.

Then, since D by multiplying C has made 4, and by
multiplying £ has made G,
therefore, as Cis to £, so is 4 to G. [vit 17]
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But, as Cisto £, sois D to F;
therefore also, as D is to 7, sois 4 to G.

Again, since £ by multiplying 2 has made G, and by
multiplying # has made 25,
therefore, as D is to F, so is G to B. [vis. 17]

But it was also proved that,
as Disto F,sois Ato G;
therefore also, as 4 isto G, so is G to B.

Therefore 4, G, B are in continued proportion.

Therefore between A4, B there is one mean proportional
number.

I say next that A4 also has to B the ratio duplicate of
that which the cormpondin% side has to the corresponding
side, that is, of that which C has to £ or D to F.

For, since A, G, B are in continued proportion,
A has to B the ratio duplicate of that which it has to G.
[v. Def. 9]
And, as A isto G, sois Cto £, and so is D to F.

Therefore A also has to A the ratio duplicate of that which
Chasto Eor DtoF,

Q. E. D.

If @b, ed be “similar plane numbers,” i.e. products of factors such that
a:b=c:d,

there is one mean proportional between ab and ¢d; and @b is to «d in the
duplicate ratio of @ to ¢ or of & to 4.

Form the product ¢ (or ad, which is equal to it, by viL 19).

Then ab, dr} , o
is a series of terms in geometrical progression.
For a:b=c:d.
Therefore a:c=b:d. [vi. 13)
Therefore ab:be=bc: dd. [vin 17 and 16)

Thus & (or ad) is a geometric mean between a, «d.

And aé is to cd in the duplicate ratio of aé to &¢ or of é¢ to ed; that is, of
atocorof dtod.
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ProrosiTION 19.

Between two similar solid numbers there fall two mean
proportional numbers; and the solid number has to the similar
solid number the ratio triplicate of that whick the corresponding
side has to the corvesponding side.

Let A, B be two similar solid numbers, and let C, D, £
be the sides of 4, and 7, G, H of B.

Now, since similar solid numbers are those which have
their sides proportional, [viL. Def. 21]
therefore, as Cis to D, so is Fto G,

and, as Disto £, sois G to H.

I say that between A4, B there fall two mean proportional

numbers, and A has to B the ratio triplicate of that which C
has to #, D to G, and also £ to A.

A—
B
c- Er= N
D— G— o)
E— He—

K—

L

M—

For let C by multiplying D make X, and let # by
multiplying G make L.

Now, since C, D are in the same ratio with 7, G,
and X is the product of C, D, and L the product of F, G,
K, L are similar plane numbers ; [vir. Def. 21]
therefore between X, L there is one mean proportional n{umb&rEI

viL 18

Let it be M/

Therefore M is the product of D, F, as was proved in the
theorem preceding this. [vn. 18]

Now, since by multiplying C has made X, and by
multiplying 7 has made ,
therefore, as C is to #, so is K to M. [vir 17]

But, as K is to M, sois M to L.
Therefore X, M, L are continuously proportional in the
ratio of C to 7.
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And since, as Cis to D, so is F to G,
alternately therefore, as C is to &, so is D to G. [vir. 13]

For the same reason also,

as Disto G,sois E to H.

Therefore K, M, L are continuously proportional in the
ratio of C to F, in the ratio of D to G, and also in the ratio
of £ to H.

Next, let £, A by multiplying M make &V, O respectively.

Now, since A is a solid number, and C, D, E are its sides,
therefore £ by multiplying the product of C, D has made 4.

But the product of C, D is K ;
therefore £ by multiplying A has made A4.

For the same reason also

H by multiplying L has made 5.

Now, since £ by multiplying X has made 4, and further
also by multiplying #/ has made WV,
therefore, as K is to M, so is A to V. [vi. 17]

But, as K is to M, so is C to F, D to G, and also £ to H;
therefore also,as Cis to 7, D to G,and £ to H,sois A to V.

Again, since £, A by multiplying #/ have made N, O
respectively,
therefore, as £ is to /A, so is N to O. [vir. 18]

But, as Eisto A, sois Cto Fand D to G;
therefore also, as Cisto F, D to G, and £ to H,so is A to
N and NV to O.

Again, since & by multiplying M has made O, and further
also by multiplying Z has made 5,
therefore, as M is to L, so is O to 5. [vi. 17]

But, as Misto L,sois C to /, D to G, and £ to H.

Therefore also, as Cis to 7, D to G, and £ to A, so not
only is O to B, but also 4 to V and N to O.

Therefore A, N, O, B are continuously proportional in the
aforesaid ratios of the sides.

I say that A also has to B the ratio triplicate of that which
the corresponding side has to the corresponding side, that is,
of the ratio which the number C has to F, or D to G, and
also £ to A.
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For, since 4, N, O, B are four numbers in continued

proportion,
therefore A4 has to B the ratio triplicate of that which 4 has
to V. [v. Def. 10]

But,as A4 is to N, so it was proved that C is to 7, D to G,
and also £ to A.

Therefore A4 also has to A the ratio triplicate of that which
the corresponding side has to the corresponding side, that is,
of the ratio which the number C has to 7, D to G, and also
Eto H. Q. E. D.

In other words, if @ : & : ¢=d : ¢: /] then there are two geometric means
between abe, def; and ade is to def in the triplicate ratio of a to d, or & to ¢,
or ¢ to /.

Eu::qid first takes the plane numbers aé, de (leaving out ¢, f) and forms
the product #4d. Thus, as in vi. 18,

ab, , de
=ea
are three terms in geometrical progression in the ratio of a to 4, or of 4 to e.
He next forms the products of ¢, f respectively into the mean 4.

Then abe, cbd, fbd, def
are in geometrical progression in the ratio of a to 4 etc.
For abcicbd=ab:bd=a:d
bd:fod=c:f } [vin. 17]
fod :def=bd :de=b:¢
And a:d=bie=c:f

The ratio of adc to def is the ratio triplicate of that of aéc to ¢bd, ie. of
that of a to 4 etc.

ProrosiTiON 20.
If one mean proportional number fall between two numbers,
the numbers will be similar plane numbers.
For let one mean proportional number C fall between the
two numbers A4, 7;
s I say that 4, B are similar plane numbers.
Let D, E, the least numbers of those which have the same

ratio with 4, C, be taken; [vin 33]
therefore 2 measures 4 the same number of times that £
measures C. [viL. 20]

10 Now, as many times as 2 measures 4, so many units let
there be in F;

therefore & by multiplying 2 has made 4,
so that A is plane, and D, F are its sides.



376 BOOK VIII [vi 20

Again, since [, E are the least of the numbers which have
15 the same ratio with C, 5,

therefore 2 measures C the same number of times that £

measures 5. [vin 20]
A—o o—
B E
o.._-..._—-—._——.—
F_
0—

As many times, then, as £ measures B, so many units let
there be in G;

2o therefore £ measures B according to the units in G;
therefore G by multiplying £ has made 5.

Therefore B is plane, and £, G are its sides.
Therefore 4, B are plane numbers.

I say next that they are also similar.
as  For, tsince / by multiplying D has made A4, and by
multiplying £ has made C,
therefore, as D is to £, so is A to C, that is, C to B. [vi. 17]
Again,t since £ by multiplying #, G has made C, B
respectively,
3o therefore, as ' is to G, so is C to B. [vir 17]
But,as Cisto B, sois Dto £ ;
therefore also, as D is to £, so is F to G.

And alternately, as D is to 7, so is £ to G. (v 13]
Therefore A, B are similar plane numbers; for their sides
35 are proportional. Q. E. D,

25. For, since F......27. C to B. The text has clearly suffered corruption here. It
is not necessary to infer from other facts that, as D is to £, so is A to C; for this is part of
the hypotheses (ll. 6, 7). Afnin. there is no explanation of the statement (1. 25) that # by
multiplying £ has made C. It is the statement and explanation of this latter fact which are
alone wanted ; after which the proof proceeds as in 1. 28. We might therefore substitute for
11. 25—28 the following.

**For, since £ measures C the same number of times that D measures A [l. 8], that is,
according to the units in & [l. 10, therefore & by multiplying £ has made C.

And, since £ by multiplying 7, G,” etc. etc.

This proposition is the converse of viiL. 18. If 4, ¢, 4 are in geometrical
progression, a, 4 are “similar plane numbers.”

Let a : 8 be the ratio a : ¢ (and therefore also the ratio ¢ : 4) in its lowest

s.

Then [vi1. 20]
a=ma, c¢=mf, where m is some integer,
¢=na, b=nP, where n is some integer.
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Thus a, 4 are both products of two factors, i.e. plane.

Again, a:B=a:c=c:b
=m:mn [vir. 18]
Therefore, alternately, a:m=8:n, [vir. 13]

and hence ma, nB are simtlar plane numbers.
[Our notation makes the second part still more obvious, for ¢=mp = 7a.]

ProrosiTiON 21.
If two mean proportional numbers fall between two numbers,
the numbers are similar solid numbers.

For let two mean Eroportional numbers C, D fall between
the two numbers A4, 7 ;

I say that 4, B are similar solid numbers.

A— E—
B F—
c ]
n—_ H—
N— K—
o— L=
M—

For let three numbers £, F, G, the least of those which
have the same ratio with 4, C, D, be taken; [vi. 33 or v 2]
therefore the extremes of them £, G are prime to one another.

(v 3]

Now, since one mean proportional number # has fallen
between £, G,
therefore £, G are similar plane numbers. [ 20)

Let, then, /A, X be the sides of £, and L, M of G.

Therefore it is manifest from the theorem before this that
E, F, G are continuously proportional in the ratio of A to L
and that of X to M.

Now, since £, F, G are the least of the numbers which
have the same ratio with 4, C, D,
and the multitude of the numbers £, F, G is equal to the
multitude of the numbers 4, C, D,

therefore, ex aeguali, as E is to G, so is 4 to D. [vir 14]
But £, G are prime,
primes are also least, [vin 21]

and the least measure those which have the same ratio with
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them the same number of times, the greater the greater and
the less the less, that is, the antecedent the antecedent and the
consequent the consequent ; [vir. 20]
therefore £ measures A the same number of times that G
measures .

Now, as many times as £ measures 4, so many units let
there be in V.

Therefore V by multiplying £ has made 4.

But £ is the product of /7, K ;
therefore V' by multiplying the product of /, X has made 4.

Therefore A4 is solid, and A, K, NV are its sides.

Again, since £, F, G are the least of the numbers which
have the same ratio as C, D, B,
therefore £ measures C the same number of times that G
measures 5.

Now, as many times as £ measures C, so many units let
there be in O.

Therefore G measures B according to the units in O;
therefore O by multiplying G has made 5.

But G is the product of L, M ;
therefore O by multiplying the product of Z, M has made B.

Therefore B is solid, and L, M, O are its sides ;
therefore A, B are solid.

I say that they are also similar.

For since &V, O by multiplying £ have made 4, C,
therefore, as NV is to O, so is A to C, that is, £ to F. [vi. 18]

But, as £ isto F, sois A/ to L and K to M ;
therefore also, as A is to L, so is K to M and N to O.

And A, K, N are the sides of 4, and O, L, M the sides
of 5.

Therefore A4, B are similar solid numbers. . E. D.

The converse of viii. 19. If @, ¢, d, & are in geometrical progression, &, &
are “similar solid numbers.”
Let a, B3, y be the least numbers in the ratio of a, ¢, 4 (and therefore also

of ¢, 4, &). fvi 33 or vuL 2
Therefore a, y are prime to one another. [vim. 3
They are also “similar plane numbers.” [viL 20
Let a=mn, y=pq,

where min=p:q.
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Then, by the proof of viiL 20,
a:fB=m:p=n:q.
Now, ex aequali, a:d=a:y, [vin 14]
and, since a, y are prime to one another,
a=ra, d=ry, whererisan integer,

But a=mn:
therefore @ = »mn, and therefore a is “solid.”
Again, ex aequali, cib=a:y,
and therefore ¢=sa, b=sy, where sisan integer.
Thus 4 = spg, and & is therefore “solid.”
Now a:fB=a:c=ra:sa
=ris [vir 18]
And, from above, a:fB=m:p=n:q.
Therefore ris=m:p=n:gq,

and hence a, & are simitar solid numbers.

ProrosiTION 22.
If three numbers be in continued proportion, and the first
be square, the thivd will also be square.
Let 4, B, C be three numbers in continued proportion,
and let A4 the first be square ;
I say that C the third is also square.

For, since between A4, C there is one
mean proportional number, 5,
therefore 4, C are similar plane numbers. [vr. 20)
But A is square ;
therefore C is also square. Q. E. D.

A

(o]

A mere application of viIl. 2o to the particular case where one of the
“similar plane numbers” is square.

ProrosiTION 23.
If four numbers be in continued proportion, and the first be
cube, the fourth will also be cube.

Let 4, B, C, D be four numbers in continued proportion,
and let 4 be cube;
I say that D is also cube. :
For, since between A4, D there ¢
are two mean proportional numbers  p
B’ C)
therefore 4, D are similar solid numbers. [vim. 21]
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But A is cube;
therefore D is also cube.
Q. E. D.

A mere application of viIL 21 to the case where one of the *similar solid
numbers ” is a cube.

ProrosiTION 24,

If two numbers have to one another the ratio whick a square
number has to a squave number, and the first be square, the
second will also be square.

For let the two numbers 4, Z have to one another the
ratio which the square number C has
to the square number D, and let 4 be
square ;

I say that B is also square.

For, since C, D are square,

C, D are similar plane numbers.

Therefore one mean proportional number falls between
C. b [vim. 18]
And, as Cisto D, sois 4 to B;

therefore one mean proportional number falls between 4, B

A
B
[+]
D

also. [vin. 8]
And A4 is square;
therefore B is also square. [vin. 22]
Q. E. D.
Ifa:b=¢":d" and a is a square, then & is also a square.
For ¢* 4 have one mean proportional . [vi. 18]

Therefore a, 4, which are in the same ratio, have one mean proportional.

[vim. 8
And, since & is square, 4 must also be a square. [vi 22

ProrosiTiON 25,

If two numbers have to one another the ratio whick a cube
number has to a cube number, and the first be cube, the second
will also be cube. '

For let the two numbers 4, B2 have to one another the
ratio which the cube number C has to the cube number D,
and let 4 be cube;

I say that Z is also cube.
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For, since C, D are cube,
C, D are similar solid numbers.

Therefore two mean proportional numbers fall between
C, D. [van x9]
e E
_ F

coo@>»

And, as many numbers as fall between C, D in continued
proportion, so many will also fall between those which have
the same ratio with them; [vi. 8]
so that two mean proportional numbers fall between 4, B
also.

Let £, F so fall.

Since, then, the four numbers 4, £, F, B are in continued

proportion,

and A4 is cube,

therefore 2 is also cube. [vm. 23]

Q. E. D,

Ifa:b=¢: 4% and a is a cube, then 4 is also a cube.
For ¢* d* have two mean proportionals. [vim 19
Therefore a, 4 also have two mean proportionals. [vin. 8
And a is a cube:

therefore & is a cube. [vim 23]

ProrosiTIiON 26.

Similar plane numbers have to one another the ratio which
a square number has to a square number.
Let 4, B be similar plane numbers;
I say that 4 has to B the ratio which a square number has
to a square number,
A ;]
c
D E F

For, since 4, B are similar plane numbers,

therefore one mean proportional number falls between [A, B.]
viil. 18
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Let it so fall, and let it be C;

and let D, E, F, the least numbers of those which have the
same ratio with 4, C, B, be taken ; [vir 33 or viL. 2]

therefore the extremes of them [, F are square. [vu 2, Por.]
And since, as D is to F, sois A to B,
and D, F are square,

therefore 4 has to B the ratio which a square number has to
a square number.

Q. E. D.

If @, b are similar “plane numbers,” let ¢ be the mean proportional
between them. mu. 18
Take a, 8, y the smallest numbers in the ratio of 2,4 £. [viL 33 or viiL 2
Then a, y are squares, [vii 2, Por.

Therefore a, 4 are in the ratio of a square to a square.

ProrosiTion 27.
Simzlar solid numbers have to one another the ratio which
a cube number has to a cube number.

Let A4, B be similar solid numbers ;

I say that 4 has to B the ratio which a cube number has to
a cube number.

E— F— a H
For, since A, B are similar solid numbers,
therefore two mean proportional numbers fall between 4, 5.

[vin. 19]
Lot € Do fall. i

and let £, F, G, A, the least numbers of those which have

the same ratio with 4, C, D, B, and equal with them in

multitude, be taken; [vir. 33 or vu 2]

therefore the extremes of them £, /A are cube.  [vi. 2, Por.]
And, as Eisto H,sois A to B;

therefore A4 also has to Z the ratio which a cube number has
to a cube number.
Q. E. D,
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The same thing as vi.. 26 with cubes. It is proved in the same way
except that viiL 19 is used instead of vi 18,

The last note of an-Nairizi in which the name of Heron is mentioned is
on this proposition. Heron is there stated (p. 194—s, ed. Curtze) to have
added the two propositions that,

1. If two numbers have to one another the ratio of a square to a square, the
numbers are similar plane numbers ;

2. If two numbers have to one another the ratio of a cube to a cube, the numbers
are similar solid numbers.

The propositions are of course the converses of viiL. 26, 27 respectively.
They are easily proved.
(r) If a:b=c:14d%
then, since there is one mean proportional (¢Z) between ¢?, &°,

[vi 11 or 18]

there is also one mean proportional between a, &. [vim. 8]

Therefore g, & are similar plane numbers. [vin. 20]
(2) is similarly proved by the use of viiL 12 or 1y, ViiL 8, VIIL 2I.

The insertion by Heron of the first of the two propositions, the converse
of vin. 26, is perhaps an argument in favour of the correctness of the text of
IX. 10, though (as remarked in the-note on that proposition) it does not give
the easiest proof Cf. Heron’s extension of viI 3 tacitly assumed by Euclid
in vir. 33.
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ProPoOsITION 1.

If two similar plane numbers by multiplying one another
make some number, the product will be square.

Let A, B be two similar plane numbers, and let 4 by
multiplying B make C;

I say that C is square, :
For let 4 by multiplying itself
make D, o

Therefore D is square.
Since then 4 by multiplying itself has made D, and by
multiplying B has made C,
therefore, as 4 is to B, so is D to C. [vir. 17)
And, since A4, B are similar plane numbers,

therefore one mean proportional number falls between 4, 5.
[vim. 18]
But, if numbers fall between two numbers in continued
proportion, as many as fall between them, so many also fall
between those which have the same ratio ; [vin. 8]
so that one mean proportional number falls between D, C also.
And D is square ;
therefore C is also square. [vin. 22)
Q E. D.

The product of two similar plane numbers is a square.
Let a, & be two similar plane numbers.

Now a:b=a': ab [vin 17]
And between a, & there is one mean proportional. [vi 18

Therefore between a* : @b there is one mean proportional. [vi. 8

And a* is square ;

therefore aé is square. [viu. 22]
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ProrosiTioN 2.

If two numbers by multiplying one another make a square
number, they are similar plane numbers.

Let 4, B be two numbers, and let 4 by multiplying B
make the square number C;

I say that 4, B are similar plane
numbers.

A

B
For let 4 by multiplying itself ©
make D ; D
therefore D is square.

Now, since 4 by multiplying itself has made 2, and by
multiplying B has made C,

therefore, as A4 is to 2, so is D to C. [vi. 17]
And, since D is square, and C is so also,
therefore D, C are similar plane numbers.

Therefore one mean proportional number falls between
D, C [vin. 18]
And,as Disto C, sois 4 to B;

therefore one mean proportional number falls between A4, B

also. (v, 8]
But, if one mean proportional number fall between two
numbers, they are similar plane numbers ; [vi. 20]

therefore A, B are similar plane numbers.
Q. E. D,

If ab is a square number, @, 4 are similar plane numbers. (The converse
of 1x. 1.)

For a:b=a": av [vi 17]
And @’ ab being square numbers, and therefore similar plane numbers,
they have one mean proportional. [vin. 18]
Therefore a, 4 also have one mean proportional. [vin. 8]
whence a, & are similar plane numbers. [vi. 20]

ProrosiTiON 3.

If a cube number by multiplying itself make some number,
the product will be cube.

For let the cube number A by multiplying itself make 2 ;
I say that 2 is cube.
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For let C, the side of 4, be taken, and let C by multiplying
itself make 0.
It is then manifest that C by multiplying A—
D has made A4. 8
Now, since C by multiplying itself has ¢- p—
made D,
therefore C measures D according to the units in itself.
_,But further the unit also measures Caccording to the units
nit;
therefore, as the unit is to C, sois C to D. [vi1. Def. 20]
Again, since C by multiplying D has made 4,
therefore D measures A4 according to the units in C.
But the unit also measures C according to the units in it;
therefore, as the unit is to C, so is D to A.
But, as the unitis to C, sois C to D ;
therefore also, as the unit is to C, so is C to D, and D to A.
Therefore between the unit and the number 4 two mean
proportional numbers C, D have fallen in continued proportion.
Again, since A4 by multiplying itself has made 5,
therefore 4 measures B according to the units in itself.
But the unit also measures A4 according to the units in it;
therefore, as the unit is to 4, so is 4 to B. [vi1. Def. 20]
But between the unit and .4 two mean proportional numbers
have fallen;
therefore two mean proportional numbers will also fall between
A, B [ 8]
But, if two mean proportional numbers fall between two
numbers, and the first be cube, the second will also be cube.

[vim. 23
And A4 is cube; !
therefore B is also cube. Q. E. D,

The product of a* into itself, or 4. @, is a cube.

For 1:a=a:a4=a": a.

Therefore between 1 and & there are two mean proportionals.

Also 1:a°=a": 0. a’,

‘Therefore two mean proportionals fall between «® and a*. a* viL 8]
(It is true that viir 8 is only enunciated of two pairs of numbers, but the
proof is equally valid if one number of one pair is unity.)

And &* is a cube number:

therefore a*. & is also cube. [vur. 23]
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ProrosITION 4.

If a cube number by multiplying a cube number make some
number, the product will be cube.

For let the cube number 4 by multiplying the cube number
B make C;

I say that C is cube. A
For let 4 by multiplying B

itself make D ; c—

therefore D is cube. [rx. 3] o

And, since 4 by multiply-
ing itself has made D, and by multiplying B has made C
therefore, as 4 is to B, sois D to C. [vie 17)
And, since A4, B are cube numbers,
A, B are similar solid numbers.

Therefore two mean proportional numbers fall between

A B; [vim. 19]
so that two mean proportional numbers will fall between D,
C also. [vri 8]
And D is cube;
therefore C is also cube [vum. 23)
Q. E. D.
The product of two cubes, say @*. &, is a cube,
For a:f=a.a:a. 0 [vir 17]
And two mean proportionals fall between a% 4 which are similar solid
numbers. [vie. 19
Therefore two mean proportionals fall between &*. &%, @*. #° [vi. 8
Bat @*. @’ is a cube : [1x. 3
therefore a*. & is a cube. [vun. 23]

ProrosiTION 5.

If a cube number by multiplying any number make a cube
number, the multiplied number will also be cube.

For let the cube number 4 by multiplying any number B
make the cube number C;
I say that B is cube.

For let A4 by multiplying
itself make D ;

therefore D is cube.  [ix. 3]

o0 @ »
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Now, since 4 by multiplying itself has made 0, and by
multiplying B has made C,
therefore, as 4 is to B, sois D to C. [vi. 17]
And since D, C are cube,
they are similar solid numbers.
Therefore two mean proportional numbers fall between
D, C. [vin. 19]
And,as Disto C,sois A to B;

therefore two mean proportional numbers fall between 4, B

also. (vin. 8]
And A4 is cube;
therefore B is also cube. (v 23)

If the product @% is a cube number, & is cube.
By 1x. 3, the product 4*.4* is a cube.

And a@.a:a%b=a": b [vin 17]
The first two terms are cubes, and therefore “similar solids”; therefore
there are two mean proportionals between them. [vir 19
Therefore there are two mean proportionals between &, 4. [vim. 8
And 4° is a cube:
therefore & is a cube number. [vur 23]

ProrosiTIiON 6.

If a number by multiplying itself make a cube number, it
will itself also be cube.

For let the number 4 by multiplying itself make the cube
number 5 ;

I say that A4 is also cube. A
For let A by multiplying B make C. P I
Since, then, 4 by multiplying itself ©

has made B, and by multiplying B has

made C,

therefore C is cube.

And, since 4 by multiplying itself has made 25,

therefore 4 measures B according to the units in itself.

But the unit also measures 4 according to the units in it.
Therefore, as the unit is to 4, so is 4 to B.  [vi. Def. 20)
And, since 4 by multiplying B has made C,

therefore B measures C according to the units in A4,

But the unit also measures A4 according to the units in it.
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Therefore, as the unit is to 4, so is B to C.  [vi. Def. 20]
But, as the unit is to 4, sois 4 to B;
therefore also, as 4 is to B, so is 5 to C.
And, since B, C are cube,
they are similar solid numbers.
Therefore there are two mean proportional numbers
between B, C. [vim. 19]
And,as Bisto C, sois 4 to 5.
Therefore there are two mean proportional numbers

between A4, B also. [vn. 8]
And B is cube;
therefore A is also cube. [cf. v 23]
Q. E. D.
If a* 15 a cube number, « is also a cube.
For 1:a=a:a'=a":ad"
Now a?, a® are both cubes, and therefore “similar solids ”; therefore there
are two mean proportionals between them. [vimn. 19
Therefore there are two mean proportionals between a, @ [vin. 8
And a* is a cube :
therefore a is also a cube number. [vir. 23]

It will be noticed that the last step is not an exact quotation of the result
of viIL 23, because it is there the first of four terms which is known to be a
cube, and the Zast which is proved to be a cube; here the case is reversed.
But there is no difficulty. Without inverting the proportions, we have only
to refer to vuiL. 21 which proves that 4, ¢% having two mean proportionals
between them, are two similar solid numbers; whence, since ¢* is a cube,
a is also a cube.

ProposITION 7.

If a composite number by multiplying any number make
some number, the product will be solid.

For let the composite number 4 by multiplying any number
B make C;

I say that C is solid. ;

For,since 4is composite, ¢
it will be measured by some £
number. [viL Def. 13]

Let it be measured by D ;
and, as many times as £ measures 4, so many units let there
be in £.
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Siace then.2) measures A4 according to the units in £,
therefore £ by multiplying D has made A. [vir Def. 15)
And, since 4 by multiplying B has made C,
and A is the product of D, E,
therefore the product of D, £ by multiplying B has made C.
Therefore C is solid, and D, £, B are its sides.
Q. E. D.
Since. a composite number is the product of two factors, the result of

multiplying it by another number is to produce a “number which is the
product of three factors, i.e. a “solid number.”

ProrosiTiON §.

If as many numbers as we please beginning from an unit be
in continued proportion, the thivd from the unit will be square,
as will also those which successively leave out one; the fourth
will be cube, as will also all those which leave out two,; and the
seventh will be at once cube and square, as will also those which
leave out five.

Let there be as many numbers as we please, 4, B, C, D,

E, F, beginning from an unit and in con-
tinued proportion ; A-——
I say that B, the third from the unit, is .
square, as are also all those which leave
out one; C, the fourth, is cube, as are
also all those which leave out two; and
F, the seventh, is at once cube and
square, as are also all those which leave out five.

For since, as the unit is to 4, so is A to B,
therefore the unit measures the number 4 the same number
of times that 4 measures. 5. [vit. Def. 20)

But the unit measures the number 4 according to the
units in it;
therefore A also measures A according to the units in 4.

Therefore 4 by multiplying itself has made B ;
therefore B is square.

And, since B, C, D are in continued proportion, and B is
square,
therefore D is also square. [vim. 22)

c
D
E
F
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For the same reason
F is also square,
Similarly we can prove that all those which leave out one
are square,
[ say next that C, the fourth from the unit, is cube, as are
also all those which leave out two.
For since, as the unit is to A4, so is B to C,
therefore the unit measures the number 4 the same number
of times that B measures C.
, A]?m the unit measures the number 4 according to the units
in 4;
therefore 7 also measures C according to the units in A.
Therefore A4 by multiplying B has made C.
Since then 4 by multiplying itself has made B, and by
multiplying A has made C,
therefore C is cube.
And, since C, D, E, F are in continued proportion, and C
is cube,
therefore /' is also cube. [vin. 23]
But it was also proved square ;
therefore the seventh from the unit is both cube and square.
Similarly we can prove that all the numbers which leave

out five are also both cube and square.
Q. E. D.

If 1, a, a, a, ... be a geometrical progression, then a,, a,, 4, ... are
Ssquares;

@y, dg, @y, ... are cubes;
ag, @y, --. are both squares and cubes.

Since 1:a=a:da,,
a, =a*
And, since a3, ay, @, are in geometrical progression and a, (= 4”) is a square,
a, is a square. [vi. 22]
Similarly a, ag, ... are squares.
Next, 1:G=dy:u,
=a%; gy

whence a,=4% a cube number,
And, since ay, a,, a,, a, are in geometrical progression, and a, is a cube,
a, is a cube. [vin. 23]
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Similarly a,, a,,, ... are cubes.

Clearly then ay, a4, @3, ... are both squares and cubes.

The whole result is of course obvious if the geometrical progression is
written, with our notation, as

1, a, a*, @, a', ... a™

PROPOSITION 9.

If as many numbers as we please beginning from an unit be
in continued proportion, and the number after the unit be square,
all the rest will also be square. And, if the number after the
untt be cube, all the rest will also be cube.

Let there be as many numbers as we please, 4, 5, C, D,
E, F, beginning from an unit and in con-
tinued proportion, and let 4, the number A—
after the unit, be square ; B

I say that all the rest will also be square.

Now it has been proved that B, the ¢
third from the unit, is square, as are also F
all those which leave out one; [1x. 8]

I say that all the rest are also square.
For, since 4, B, C are in continued proportion,

and A4 is square,

therefore C is also square. [vin. 22]
Again, since B, C, D are in continued proportion,

and B is square,

D is also square. [vin. 22]
Similarly we can prove that all the rest are also square.

Next, let 4 be cube;
I say that all the rest are also cube.

Now it has been proved that C, the fourth from the unit,
is cube, as also are all those which leave out two; f1x. 8]

I say that all the rest are also cube.
For, since, as the unit is to 4, so is A to B,

therefore the unit measures 4 the same number of times as 4
measures 5.

But the unit measures A4 according to the units in it;
therefore A4 also measures B according to the units in itself;
therefore 4 by multiplying itself has made 5.
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And A is cube.
But, if a cube number by multiplying itself make some
number, the product is cube. [1x. 3]

Therefore B is also cube.
And, since the four numbers 4, B, C, D are in continued

proportion,

and A4 is cube,

D also is cube. [vin. 23]
For the same reason

E is also cube, and similarly all the rest are cube.
Q. E. D.

If 1, &%, a,, as, a,, ... are in geometrical progression, a,, a,, 4,, ... are all
squares ;
and, if 1, @, ay, a;, a,, ... are in geometrical progression, ay, aj, ... are all cubes.
(1) By ix. 8, a,, a,, ay, ... are all squares.
And, a*, a,, a, being in geometrical progression, and @* being a square,
a, is a square. [vin. 22]
For the same reason ay, a;, ... are all squares.

(z) By 1x. 8, a,, aq, ay, ... are all cubes.

Now 1:a*=a": a4,
Therefore a, = a*. &, which is a cube, by 1x. 3.
And, &, a,, a,, a, being in geometrical progression, and a* being cube,
a, is cube. [vun 23]

Similarly we prove that a, is cube, and so on.

The results are of course obvious in our notation, the series being
(1) 1@, a, ..a"
(2) 1,a%a"a" ...a"™

PRropPoSITION T10.

If as many numbers as we please beginning from an unit be
in continued proportion, and the number after the unit be not
square, neither will any other be square except the thivd from
the unit and all those whick leave out one. And, if the number
after the unil be not cube, neither will any other be cube except
the fourth from the unit and all those whick leave out two.

Let there be as many numbers as we please, 4, B, C, D,
E, F, beginning from an unit and in continued proportion,
and let 4, the number after the unit, not be square ;
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I say that neither will any other be square except the third
from the unit <and those which

leave out one>. i £
For, if possible, let C be square. B
But B is also square;  [ix. 8] -
[therefore B, C have to one another D
the ratio which a square number :

has to a square number].
And, as Bisto C,sois 4 to B;

therefore 4, B have to one another the ratio which a square
number has to a square number ;

[so that A4, A are similar plane numbers]. [vur 26, converse]
And B is square ;

therefore A is also square :

which is contrary to the hypothesis.

Therefore C is not square,

Similarly we can prove that neither is any other of the
numbers square except the third from the unit and those which
leave out one.

Next, let 4 not be cube,

I say that neither will any other be cube except the fourth
from the unit and those which leave out two.

For, if possible, let D be cube.

Now C is also cube ; for it is fourth from the unit. [ix. 8]

And, as Cisto D, sois B to C;

therefore B also has to C the ratio which a cube has to a cube.
And Cis cube;

therefore B is also cube. [vi 25]
And since, as the unit is to 4, so is 4 to A,

and the unit measures 4 according to the units in it,

therefore A also measures 5 according to the units in itself ;

therefore 4 by multiplying itself has made the cube number 5.

But, if a number by multiplying itself make a cube number,
it is also itself cube. [1x. 6]
Therefore A4 is also cube :

which is contrary to the hypothesis.
Therefore D is not cube.
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Similarly we can prove that neither is any other of the
numbers cube except the fourth from the unit and those which
leave out two.

Q. E. D.

If 1, @, a,, a,, a,, ... be a geometrical progression, then (1), if a is nota
square, none of the terms will be square except a., a,, a4, ...;
and (2), if @ is not a cube, none of the terms will be cube except a3, a,, a, ....

With reference to the first part of the proof, viz. that which proves that, if
ay is a square, @ must be a square, Heiberg remarks that the words which
I have bracketed are perhaps spurious; for it is easier to use viil, 24 than
the converse of vul 26, and a use of viil. 24 would correspond better to the
use of ViIL 25 in the second part relating to cubes. I agree in this view and
have bracketed the words accordingly. g%e however note, p. 383, on
converses of viil. 26, 27 given by Heron.) It this change be made, the
proof runs as follows.

(1) If possible, let @, be square.
Now a,:a;=a:a,
But a, is a square. [1x. 8]
Therefore a is to a, in the ratio of a square to a square.
And 4, is square ;
therefore a is square [vi11. 24]: which is impossible.
(2) If possible, let 2, be a cube.

Now a,:a,=a,: a,
And g, is a cube. fix. 8]
Therefore a, is to @, in the ratio of a cube to a cube.
And a, is a cube:
therefore a, is a cube. [vin. 25]
But, since 1:a=a:day,
a;=a’
And, since @ is a cube,

a must be a cube [1x. 6]: which is impossible.

The propositions ViIL 24, 25 are here not quoted in their exact form in
that the first and second squares, or cubes, change places. But there is no
difficulty, since the method by which the theorems are proved shows that
either inference is equally correct.

ProrosiTION 11.

If as many numbers as we please beginning from an unit be
in continued proportion, the less measures the greater according
Lo some one of the numbers whick have place among the propor-
tional numbers.
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Let there be as many numbers as we please, B, C, D, E,
beginning from the unit 4 and in con-
tinued proportion ; A2l
I say that B, the least of the numbers B, e
C, D, E, measures £ according to some c

one of the numbers C, D. D
For since, as the unit 4 is to B, so E
is D to £,

therefore the unit 4 measures the number /B the same number
of times as /7 measures £ ;

therefore, alternately, the unit 4 measures D the same number
of times as 2 measures £, [vir. 15]

But the unit 4 measures D according to the units in it ;
therefore 2 also measures £ according to the units in D ;

so that 7 the less measures £ the greater according to some
number of those which have place among the proportional
numbers.—

PorisM. And it is manifest that, whatever place the
measuring number has, reckoned from the unit, the same
place also has the number according to which it measures,
reckoned from the number measured, in the direction of the
number before it.—

Q. E. D.

The proposition and the porism together assert that, if 1, 4, a,, ... a, be a
geometrical progression, 4, measures a, and gives the quotient a,_, ( <#).
Euclid only proves that a, =a. a,.,, as follows.
1:@=ay, : dy.
Therefore 1 measures @ the same number of times as a,., measures a,.
Hence 1.measures a,, the same number of times as 2 measures 4, ;

; [vin 15])
that is, Ay=0a. 0y
We can supply the proof of the porism as follows.
1:8=0ap: Gryy
A= Apyy § pygy
. Appe1 * Ay = Ay & Ay,
whence, ex aequali,
1:a, ,=a,: a,. [vin 14]

It follows, by the same argument as before, that
Qu=0y.0y_p.

With our notation, we have the theorem of indices that
a-{'l = a. - a"
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ProrosiTION 12,

If as many numbers as we please beginning from an unit be
in continued proportion, by however many prime numbers the
last is measured, the next to the unit will also be measured by
the same.

Let there be as many numbers as we please, 4, B, C, D,
beginning from an unit, and in continued proportion ;

I say that, by however many prime numbers 2 is measured,
A will also be measured by the same.

A— P
B G
c H
D

E—-

For let D be measured by any prime number £';
I say that £ measures A.
For suppose it does not ;

now £ is prime, and any prime number is prime to any which
it does not measure ; [vi. 29]

therefore £, 4 are prime to one another.
And, since £ measures [, let it measure it according to £,
therefore £ by multiplying 7 has made D.

Again, since 4 measures [ according to the units in C,
[1x. 11 and Por.]

therefore 4 by multiplying C has made D.
But, further, £ has also by multiplying # made D;
therefore the product of A4, C is equal to the product of £, /.

Therefore, as 4 is to £, so is F to C. [vin 19]
But 4, £ are prime,
primes are also least, [vu. 21]

and the least measure those which have the same ratio the
same number of times, the antecedent the antecedent and the
consequent the consequent ; [vr. 20]
therefore £ measures C.

Let it measure it according to & ;
therefore £ by multiplying G' has made C.

But, further, by the theorem before this,
A has also by multiplying B made C. [1x. 11 and Por.]
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Therefore the product of 4, B is equal to the product of
E, G.

Therefore, as 4 is to £, sois G to B. [vir. 19]
But 4, £ are prime,
primes are also least, [vin 21]

and the least numbers measure those which have the same
ratio with them the same number of times, the antecedent the
antecedent and the consequent the consequent : [vis. 20]

therefore £ measures 5.
Let it measure it according to / ;
therefore £ by multiplying /7 has made 5.
But further 4 has also by multiplying itself made 5 ;

[1x. 8]
therefore the product of £, A is equal to the square on A.
Therefore, as £ is to 4, sois A to H. [vm. 19]
But A4, £ are prime,
primes are also least, [vin 21]

and the least measure those which have the same ratio the
same number of times, the antecedent the antecedent and the
consequent the consequent ; [viL 20]
therefore £ measures A, as antecedent antecedent.

But, again, it also does not measure it :
which is impossible.

Therefore £, A are not prime to one another,

Therefore they are composite to one another.

But numbers composite to one another are measured by
some number. (viL Def. 14)

And, since £ is by hypothesis prime,
and the prime is not measured by any number other than itself,
therefore £ measures A4, £,
sa that £ measures 4.,

[But it also measures D ;
therefore £ measures 4, D.]

Similarly we can prove that, by however many prime
numbers 2 is measured, A4 will also be measured by the same.

Q. E. D,

If 1, a, a,, ... a, be a geometrical p ion, and a, be measured by any
prime number 2, @ will also be measured by p.
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For, if possible, suppose that # does not measure a} then, # being ptime,

2, a are prime to one another. Vil 29]
Suppose a,=m.p.
Now Gy =0 Ggts [1x. 11]
Therefore G.qg,=m.p,
and @:p=m: ay,. [viL 19]
Hence, a, # being prime to one another,
2 measures a,_,. [viL 20, 21]

By a repetition of the same process, we can prove that # measures a,-,
and therefore a,_;, and so on, and finally that p measures a.

But, by hypothesis, # does not measure @ : which is impossible.

Hence g, a are not prime to one another :

therefore they have some common factor. [vin. Def. 14]
But p is the only number which measures 2 ;
therefore p measures a.

Heiberg remarks that, as, in the &feois, Euclid sets himself to prove that
£ measures A, the words bracketed above are unnecessary and therefore

perhaps interpolated.

ProrosiTION 13.

If as many numbers as we please beginning from an unit be
in continued proportion, and the number after the unit be prime,
the greatest will not be measured by any except those which, have
a place among the proportional numbers.

Let there be as many numbers as we please, 4, B, C, D,
beginning from an unit and in continued proportion, and let 4,
the number after the unit, be prime ;

I say that D, the greatest of them, will not be measured by any
other number except 4, B, C.

Ao — R

F———Mm————

B
cC——— aQ
D

For, if possible, let it be measured by £, and let £ not be
the same with any of the numbers 4, B, C.

It is then manifest that £ is not prime.

For, if £ is prime and measures [,
it will also measure A [ix. 12], which is prime, though it is not
the same with it :
which is impossible.
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Therefore £ is not prime.

Therefore it is composite.

But any composite number is measured by some prime
number; [vin 31]
therefore £ is measured by some prime number.

I say next that it will not be measured by any other prime
except 4.

For, if £ is measured by another,

and £ measures D,
that other will also measure D ;

so that it will also measure A4 [ix. 12], which is prime, though
it is not the same with it :
which is impossible.

Therefore .4 measures £.

And, since £ measures D), let it measure it according to .

I say that / is not the same with any of the numbers
A, B, C.

For, if / is the same with one of the numbers 4, 7, C,
and measures 2 according to £,
therefore one of the numbers 4, 3, C also measures 2 according
to £.

But one of the numbers 4, B, C measures D according to
some one of the numbers 4, B, C; [1x. 11)

therefore £ is also the same with one of the numbers 4, B, C:
which is contrary to the hypothesis.

Therefore F is not the same as any one of the numbers
A. B, C

Similarly we can prove that / is measured by 4, by
proving again that # is not prime.

For, if it is, and measures D,

it will also measure A4 [1x. 12], which is prime, though it is not
the same with it :

which is impossible ;
therefore /" is not prime.

Therefore it is composite.
But any composite number is measured by some prime
number ; [vin 31]

therefore /" is measured by some prime number.
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I say next that it will not be measured by any other prime
except 4.

For, if any other prime number measures F,
and /& measures D,

that other will also measure D ;

so that it will also measure A4 [1x. 12], which is prime, though it
is not the same with it :

which is impossible.

Therefore A measures F.

And, since £ measures D according to £,
therefore £ by multiplying # has made D.

But, further, 4 has also by multiplying C made D ; [1x. 11]
therefore the product of A4, C is equal to the product of £, .

Therefore, proportionally, as 4 is to £, so is # to C.

[viL 19]
But 4 measures £;

therefore / also measures C.

Let it measure it according to G.

Similarly, then, we can prove that G is not the same with
any of the numbers 4, 5, and that it is measured by A.

And, since F measures C according to G

therefore 7 by multiplying G has made C.
But, further, 4 has also by multiplying Z made C; [1x. 11]
therefore the product of .4, B is equal to the product of 7, G.

Therefore, proportionally, as 4 is to /# sois G to 1{9 :
VIL 19
But A4 measures F';

therefore G also measures 5.

Let it measure it according to /4.

Similarly then we can prove that /A is not the same
with 4.

And, since G measures 5 according to /7,

therefore G' by multiplying /7 has made 2.

But further 4 has also by multiplying itself made B;[ ;
x. 8

therefore the product of /7, G is equal to the square on 4.
Therefore, as A is to A, so is A to G. [vi. 19]
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But 4 measures G ;

therefore A also measures 4, which is prime, though it is not
the same with it:

which is absurd.

Therefore D the greatest will not be measured by any
other number except 4, B, C.
Q. E. D.

If 1, a, a,, ... a, be a geometrical progression, and if & is prime, a, will not
be measured by any numbers except the preceding terms of the series.

If poss.lble. let a, be measured by &4 a number different from all the
preceding terms.

Now 4 cannot be prime, for, if it were, it would measure a. [1x. 12]

Therefore 4 is composite, and hence will be measured by seme prime
number [vi 31}, say 2.

Thus p must measure a, and therefore @ [1x. 12]; so that p cannot be
different from a, and & is not measured by any prime number except a.

Suppose that a,=b.c
Now ¢ cannot be identical with any of the terms a, a,, ... a,—,; for, if it
were, & would be identical with another of them: [1x. 11]

which is contrary to the hypothesis.

We car now prove (just as for 4) that ¢ cannot be prime and cannot be
measured by any prime number except a.

Since b.c=ay=a.a,,, [x. 11]

aib=c:a,,,
whence, since a measures 2,
£ measures d,_,.

Let Ay 1=¢.d.

We now prove in the same way that & is not identical with any of the terms

a, a, ... a,_s, is not prime, and is not measured by any prime except a, and
also that

d measures a,_,.

Proceeding in this way, we get a last factor, say 4 which measures @
though different from it:

which is absurd, since a is prime.

Thus the original supposition that a, can be measured by a number 4
different from all the terms a, a,, ... @,_, must be incorrect.
Therefore etc.

PRropPOSITION 14.

If a number be the least that is measured by prime numbers,
it will not be measured by any other prime number except those
originally measuring il.

For let the number A4 be the least that is measured by the
prime numbers 5, C, D;
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I say that 4 will not be measured by any other prime number
except B, C, D.
For, if possible, let it be measured by the prime number
g, and let £ not be the same with any one of the numbers
, G, D.

A ———— B—
E cC——
D

Now, since £ measures A, let it measure it according
to F;

therefore £ by multiplying # has made 4.

And A4 is measured by the prime numbers B, C, D.

But, if two numbers by multiplying one another make some
number, and any prime number measure the product, it will
also measure one of the original numbers ; [viL. 30]

therefore B, C, D will measure one of the numbers £, 7.
Now they will not measure £ ;
for £ is prime and not the same with any one of the numbers
B, C,D.
Therefore they will measure #, which is less than 4 :

which is impossible, for 4 is by hypothesis the least number
measured by B, C, D.
Therefore no prime number will measure A4 except

B, C, D.
Q. E. D.

In other words, a number can be resolved into prime factors in only

onc way.
Let a be the least number measured by each of the prime numbers

b, ¢, dy ...k
If possible, suppose that @ has a prime factor p different from 4, ¢, 4, ... &

Let a=p.m

Now &, ¢, d, ... k, measuring @, must measure one of the two factors g, m.
[viL 30]

They do not, by hypothesis, measure 2 ;
therefore they must measure m, a number less than a :
which is contrary to the hypothesis.

Therefore ¢ has no prime factors except 4, ¢, @, ... &
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ProrosITION 15.

If three numbers in continued proportion be the least of
those which have the same vatio with them, any two whalever
added together will be prime to the remaining number.

Let A4, B, C, three numbers in continued proportion, be
the least of those which have the same

ratio with them ; A—a B
I say that any two of the numbers ¢
A, B, C whatever added together are o—5—F

prime to the remaining number, namely
A, BtoC; B, Cto A; and further 4, C to B.
For let two numbers DE, EF, the least of those which
have the same ratio with 4, B, C, be taken. [vin. 2)
It is then manifest that £ by multiplying itself has made
A, and by multiplying £F has made B, and, further, £ by

multiplying itself has made C. [vir. 2]
Now, since DE, EF are least,

they are prime to one another. [vir. 22]
But, if two numbers be prime to one another,

their sum is also prime to each ; [vin. 28]

therefore DF is also prime to each of the. numbers DE, EF.
But further D £ is also prime to £F;
therefore DF, DE are prime to £F.
But, if two numbers be prime to any number,
their product is also prime to the other; [vi. 24]
so that the product of 7D, DE is prime to £F;
hence the product of #D, DE is also prime to the square

on EF. [vin 25]
But the product of /D, DE is the square on DE together
with the product of DE, EF; [1r. 3)

therefore the square on D £ together with the product of DE,
EF is prime to the square on £F.

And the square on DE is A4,
the product of DE, EF is B,
and the square on £Fis C;
therefore 4, B added together are prime to C.
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Similarly we can prove that B, C added together are
prime to A.

I say next that 4, C added together are also prime to 5.
For, since DF is prime to each of the numbers DE, EF,

the square on DF is also prime to the product of DE, EF.

[, 24, 25)
But the squares on DE, EF together with twice the pro-
duct of DE, EF are equal to the square on DF; [11. 4]

therefore the squares on DE, EF together with twice the
product of DE, EF are prime to the product of DE, EF.
Separando, the squares on DE, EF together with once
the product of DE, EF are prime to the product of DE, EF.
%herefore, separanda ain, the squares on DE, EF are
prime to the product of DE, EF,
And the square on DE is A,
the product of DE, EFis B,

and the square on £Fis C.
Therefore 4, C added together are prime to 5.
Q. E. D.

If @, 4, c be a geometrical progression in the least terms which have a
given common ratio, (5 +¢), (¢ + @), (a + ) are respectively prime to 4, 5, .
Let a : B be the common ratio in its lowest terms, so that the geometncal

progression is

o', aff, B [vim, 2]
Now, a, 8 being prime to one another,
a + 8 is prime to both « and B. [viL 28]
Therefore (a + B), a are both prime to B.
Hence (a+ B) a is prime to B, [vin 24]
and therefore to §°; [vin 25]
i.e. a'+af is prime to 7,
or a+ & is prime to ¢
Similarly, af} + B° is prime to a?,
or b + ¢ is prime to a.
Lastly, a + f8 being prime to both a and B,
(a+ B) is prime to af, [viL 24, 25]
or o® + B? + 2af8 is prime to af3:
whence o'+ 8 is prime to af.

The latter inference, made in two steps, may be proved by reductio ad
absurdum as Commandinus proves it.

If a® + B is not prime to af, let x measure them ;
therefore x measures o’ + 3* + 248 as wel]uaﬂ,

hence o'+ f + 2af8 and of are not prime to one another, which is contrary
to the hypothesis,



406 BOOK IX [1x. 16, 17

ProrosITION 16.

If two numbers be prime to one another, the second will not
be to any other number as the first is to the second.

For let the two numbers 4, B be prime to one another ;
I say that B is not to any other number as

A is to B. A oF
For, if possible, as 4 is to B, so let B be B 2

to C O
Now A, B are prime,

primes are also least, [vi. 21]

and the least numbers measure those which have the same
ratio the same number of times, the antecedent the antecedent
and the consequent the consequent ; [vin. 20]
therefore A measures B as antecedent antecedent.

But it also measures itself;
therefore 4 measures A4, B which are prime to one another :
which is absurd.

Therefore B will not be to C, as 4 is to B.

Q. E. D.

If a, 4 are prime to one another, they can have no integral third
proportional.

If possible, let a:b=6:x

Therefore [\m. 20, 21] @ measures 4 ; and a. 4 have the common measure
a, which is contrary to the hypothesis.

ProrosiTION 17.

If there be as many numbers as we please in continued
proportion, and the extvemes of them be prime to one another,
the last will not be to any other number as the first to the
second.

For let there be as many numbers as we please, 4, 5,C, D,
in continued proportion,
and let the extremes of them, A,
D, be prime to one another ; °
I say that D is not to any other
number as A is to B.

For, if possible, as A4 is to B, so let D be to £;
therefore, alternately, as 4 is to D, so is B to £. [vin 13]

A— B

E
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But 4, D are prime,
primes are also least, [vir 21]
and the least numbers measure those which have the same
ratio the same number of times, the antecedent the antecedent
and the consequent the consequent. [viL. 20]
Therefore 4 measures B.
And, as A is to B, so is B to C.
Therefore B also measures C;
so that 4 also measures C.
And since, as Bisto C,sois C to D,
and B measures C,
therefore C also measures D.
But 4 measured C;
so that A4 also measures .
But it also measures itself ;
therefore 4 measures A4, D which are prime to one another :
which is impossible.
Therefore D will not be to any other number as 4 is to 5.
Q. E. D.

If a, a,, ay, ... a, be a geometrical progression, and a, @, are prime to one
another, then a, a,, a, can have no integral fourth proportional.

For, if possible, let a:a,=a,:x

Therefore a:a,=a,:x,
and hence [VIL 20, 21] @ measures a,.

Therefore @, measures a;, [viL Def. 20]
and hence a measures a;, and therefore also ultimately a,.

Thus a, a, are both measured by a: which is contrary to the hypothesis.

ProrosiTioN 18.

Given two numbers, to investigate whether it is possible to
Sind a third proportional to them.

Let A4, 7 be the given two numbers, and let it be required
to investigate whether it is possible to find a third proportional
to them.

Now A, B are either prime to one another or not.

And, if they are prime to one another, it has been proved

that it is impossible to find a third proportional to them.
[1x. 16]
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Next, let 4, B not be prime to one another,
and let B2 by multiplying itself make C.
Then A either measures C or does not measure it.

A
B

D

c

First, let it measure it according to D ;
therefore 4 by multiplying D has made C.
But, further, B has also by multiplying itself made C;
therefore the product of 4, D is equal to the square on 5.
Therefore, as 4 is to B, so is B to D; [viL 19]

therefore a third proportional number 2 has been found to
A, B.

Next, let 4 not measure C;
I say that it is impossible to find a third proportional number
to 4, B.
For, if possible, let D, such third proportional, have been
found.
Therefore the product of A4, D is equal to the square on 5.
But the square on B is C;
therefore the product of 4, D is equal to C.
Hence A by multiplying D has made C;
therefore 4 measures C according to D.

But, by hypothesis, it also does not measure it :
which is absurd.

Therefore it is not possible to find a third proportional
number to A, B when A does not measure C. Q. E. D.

Given two numbers a, &, to find the condition that they may have an
integral third proportional.
(1) a, & must not be prime to one another. [1x. 16]
(2) a must measure &,
For, if a, &, ¢ be in continued proportion,
ac= 8.
Therefore @ measures #.
Condition (1) is included in condition (2) since, if #*=ma, a and é cannot
be prime to one another.
The result is of course easily seen if the three terms in continued
proportion be written
b b\*?
a a ; N a (;) .
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ProPOSITION 19.

Given three numbers, to investigate when it is possible to
Jfind a fourth proportional to them.

Let A, B, C be the given three numbers, and let it be
required to investigate when it is ,
possible to find a fourth proportional 4
to them. ¢

D
E

Now either they are not in con-
tinued proportion, and the extremes
of them are prime to one another ;
or they are in continued proportion, and the extremes of them
are not prime to one another ;
or they are not in continued proportion, nor are the extremes
of them prime to one another ;
or they are in continued proportion, and the extremes of them
are prime to one another.

If then A4, B, C are in continued proportion, and the
extremes of them 4, C are prime to one another,
it has been proved that it is impossible to find a fourth pro-
portional number to them. (1x. 17]

tNext, let 4, B, C not be in continued proportion, the
extremes being again prime to one another;

I say that in this case also it is impossible to find a fourth
proportional to them.

For, if possible, let D have been found, so that,

as A isto B, sois Cto D,
and let it be contrived that, as Bis to C, so is D to E.

Now, since, as A isto B, sois C to D,
and, as Bisto C, sois D to £,
therefore, ex aeguali, as A is to C, so is C to E. [viL 14]

But A4, C are prime,
primes are also least, [vin. 21)
and the least numbers measure those which have the same
ratio, the antecedent the antecedent and the consequent the
consequent. [viL 20]

Therefore 4 measures C as antecedent antecedent,
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But it also measures itself;
therefore 4 measures 4, C which are prime to one another :
which is impossible.

Therefore it is not possible to find a fourth proportional
to 4, B, C.t

Next, let 4, B, C be again in continued proportion,
but let 4, C not be prime to one another.

I say that it is possible to find a fourth proportional to
them.

For let 2 by multiplying C make D ;
therefore A4 either measures 2 or does not measure it.

First, let it measure it according to £ ;
therefore 4 by multiplying £ has made D.

But, further, 2 has also by multiplying C made D ;
gergfore the product of 4, £ is equal to the product of
therefore, proportionally, as A4 is to B, sois C to £; [vi. 1g]
therefore £ has been found a fourth proportional to 4, B, C.

Next, let 4 not measure [ ;

I say that it is impossible to find a fourth proportiona! number
to 4, B, C.

For, if possible, let £ have been found ;

therefore the product of 4, £ is equal to the product of 5, C.

[viL 19]

But the product »f B, Cis D ;
therefore the product of 4, £ is also equal to D.

Therefore A by multiplying £ has made 0O ;
therefore 4 measures D according to £,
so that 4 measures D.

But it also does not measure it:
which is absurd.

Therefore it is not possible to find a fourth proportional
number to 4, B, C when A does not measure D.

Next, let 4, B, C not be in continued proportion, nor the
extremes prime to one another.

And let B by multiplying C make D.

Similarly then it can be proved that, if 4 measures D,
it is possible to find a fourth proportional to them, but, if it
does not measure it, impossible. Q. E. D.
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Given three numbers &, 4, ¢, to find the condition that they may have an
integral fourth proportional.

The Greek text of part of this proposition is hopelessly corrupt. Accord-
ing to it Euclid takes four cases.

(1) a, 4, ¢ not in continued proportion, and g, ¢ prime to one another.

(2) a, &, ¢ in continued proportion, and &, ¢ not prime to one another.

(3) a, 4, ¢ not in continued proportion, and a, ¢ not prime to one another.
(4) a, &, ¢ in continued proportion, and a, ¢ prime to one another.

(4) is the case dealt with in 1X. 17, where it is shown that on hypothesis
(4) a fourth proportional cannot be found.

The text now takes case (1) and asserts that a fourth proportional cannot
be found in this case either. We have only to think of 4, 6, 9 in order to see
that there is something wrong here. The supposed proof is also wrong. If
possible, says the text, let 4 be a fourth proportional to a, &, ¢, and let e
be taken such that

bic=d:e
Then, ex aeguali, ATE=C &
whence @ measures ¢ : [vin 2o, 21]
which is impossible, since a, ¢ are prime to one another.
But this does not prove that a fourth proportional & cannot be found ; it
only proves that, if 4 is a fourth proportional, no integer ¢ can be found to
satisfy the equation
bie=d:e

Indeed it is obvious from 1X. 16 that in the equation
aic=c:e

¢ cannot be integral.

The cases (2) and (3) are correctly given, the first in full, and the other as
a case to be proved “similarly” to it.

These two cases really give all that is necessary.

Let the product 4¢ be taken.

Then, if @ measures d¢, suppose bc=ad ;

therefore a:b=c:d,
and 4 is a fourth proportional.

But, if a does mof measure bs, no fourth proportional can be found.
For, if x were a fourth proportional, ax would be equal to 4 and a would
measure Jc.

The sufficient condition in any case for the possibility of finding a fourth
proportional to a, &, ¢ is that a should measure éc.

Theon appears to have corrected the proof by leaving out the incorrect
portion which 1 have included between daggers and the last case (3) dealt
with in the last lines. Also, in accordance with this arrangement, he does not
distinguish four cases at the beginning but only two. * Either 4, B, C are
in continued proportion and the extremes of them 4, C are prime to one
another; or not” Then, instead of introducing case (2) by the words
“Next let 4, B, C...to find a fourth proportional to them,” immediately
following the second dagger above, Theon merely says “But, if not,” [ie.
if it is not the case that a, J, ¢ are in G.P. and @, ¢ prime to one another] “let
B by multiplying C make D,” and so on.
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August adopts Theon’s form of the proof. Hei does not feel able to
do this, in view of the superiority of the authority for the text as given above
(P); he therefore retains the latter without any attempt to emend it.

ProrosiTION 20.

Prime numbers ave move than any assigned multitude of
prime numbers.
Let A4, B, C be the assigned prime numbers ;

I say that there are more
prime numbers than 4, B, C. A—

For let the least number B— a
measured by 4, B, C be c¢— i
taken, E .

and let it be DE;
let the unit DF be added to DE.
Then EF is either prime or not.
First, let it be prime;
then the prime numbers 4, B, C, EF have been found which
are more than 4, B, C.
Next, let £F not be prime ;
therefore it is measured by some prime number. [vir. 31]
Let it be measured by the prime number G.
I say that G is not the same with any of the numbers
A, B, C.
For, if possible, let it be so.
Now 4, B, C measure DE ;
therefore G also will measure DE.

But it also measures £F.
Therefore G, being a number, will measure the remainder,

the unit DF:
which is absurd.

Therefore G is not the same with any one of the numbers
A, B, C.

And by hypothesis it is prime.

Therefore the prime numbers 4, B, C, G have been found

which are more than the assigned multitude of 4, B, C.
Q. E. D.
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We have here the important proposition that tke number of prime numbers
15 infinite.

The proof will be seen to be the same as that given in our algebraical
text-books. Let a, 4, ¢, ... £ be any prime numbers.

Take the product abc ... 2 and add unity.

Then (aéc ... & + 1) is either a prime number or not a prime number.

(1) If it /&5, we have added another prime number to those given.

(2) If it is o4, it must be measured by some prime number [vi1. 31}, say 2.

Now g cannot be identical with any of the prime numbers g, 4, ¢, ... 4.

For, if it is, it will divide alc ... £
Therefore, since it divides (aéc...’% + 1) also, it will measure the difference,
or unity :
which is impossible.

Therefore in any case we have obtained one fresh prime number.

And the process can be carried on to any extent.

ProrosiTION 21.

If as many even numbers as we please be added together,
the whole is even.

For let as many even numbers as we please, 45, BC, CD,
DE, be added together ;

I say that the whole 42 A_B8 * o _E
is even,

For, since each of the uumbers A8, BC, CD, DE is even,
it has a half part ; [viL Def. 6]

so that the whole 4 £ also has a half part.

But an even number is that which is divisible into two
equal parts; [id.]
therefore A is even.

Q. E. D.

In this and the following propositions up to 1X. 34 inclusive we have a
number of theorems about odd, even, “even-times even” and * even-times
odd” numbers respectively. They are all simple and require no explanation
in order to enable them to be followed easily.

ProrosiTION 22.

If as many odd numbers as we please be added together, and
their multitude be even, the whole will be even.

For let as many odd numbers as we please, 45, BC, CD,
DE, even in multitude, be added together ;
I say that the whole 4 £ is even.
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For, since each of the numbers 458, BC, CD, DE is odd,
if an unit be subtracted from each, each of the remamders w:l!

be even ; [vir. Def. 7]
so that the sum of them will be even. [1x. 21]

Ay Qg 8

But the multitude of the units is also even.
Therefore the whole 4 £ is also even. [1x. 21]
Q. E. D.

ProrosiTION 23.

If as many odd numbers as we please be added together,
and their multitude be odd, the whole will also be odd.

For let as many odd numbers as we please, 48, BC, CD,
the multitude of which is odd,

be added together ; s e 4 £
I say that the whole 4D is : '
also odd.
Let the unit D be subtracted from CD;
therefore the remainder CE is even. [vir. Def. 7]
But CA is also even ; [1x. 22]
therefore the whole 4 £ is also even. [1x. 21]
And DE is an unit.
Therefore AD is odd. [vir. Def. 7]
Q E. D

3. Literally “let there be as many numbers as we please, of which /e/ the multitude be
odd.” This form, natural in Greek, is awkward in English.

PRroOPOSITION 24.

If from an even number an even number be subtracted, the
remainder will be even.

For from the even number 48 let the even number BC
be subtracted :
I say that the remainder CA4 is even. A c B

For, since AB is even, it has a half
part. [vi1. Def. 6]
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For the same reason BC also has a half part ;

so that the remainder [CA also has a half part, and] AC is
therefore even.

Q. E. D.

ProrosITION 25.

If from an even number an odd number be subtracted, the
remainder will be odd.

For from the even number 45 let the odd number ZC be
subtracted ;
I say that the remainder CA isodd. cD B

For let the unit CD be sub-
tracted from BC;

therefore DA is even. [vir. Def. 7]
But A7 is also even;
therefore the remainder 4D is also even. [1x. 24]
And CD is an unit;
therefore CA is odd. [vir. Def. 7]
Q. E. D.

ProrosiTioN 26.

If from an odd number an odd number be subtracted, the
remainder will be even.

For from the odd number 42 let the odd number ZC be
subtracted ;

[ say that the remainder CA is even. A c o8B

For, since A8 is odd, let the unit
BD be subtracted ;

therefore the remainder 4D is even. [vir. Def. 7]
For the same reason CD is also even; [viL. Def. 7]
so that the remainder CA4 is also even. [1x. 24]

Q. E. D,
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ProrosiTION 27.
If from an odd number an even number be subtvacted, the
remainder will be odd,
For from the odd number 45 let the even number BC be
subtracted ;
I say that the remainder C4 is odd.

Let the unit 4D be subtracted ; a9 ¢ ?
therefore DA is even. [vir. Def. 7]
But BC is also even;
therefore the remainder CD is even. [1x. 24)
Therefore CA is odd. [viL Def. 7]
Q. E. D.

ProrosiTION 28.
If an odd number by multiplying an even number make
some number, the product will be even.

For let the odd number 4 by multiplying the even number
B make C;

I say that C is even. ;—
For, since 4 by multiplying B has ¢
made C,
therefore C is made up of as many numbers equal to 7 as
there are units in 4. [viL. Def. 15)

And B is even;
therefore C is made up of even numbers.

But, if as many even numbers as we please be added
together, the whole is even. [1x. 21]

Therefore C is even.
Q. E. D.

PROPOSITION 29.

If an odd number by multiplying an odd number make
some number, the product will be odd.

For let the odd number 4 by multiplying the odd number
B make C;
I say that C is odd. A

For, since 4 by multiplying 2 has 2
made C,
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therefore C is made up of as many numbers equal to B as
there are units in 4. [vr. Def. 15)
And each of the numbers 4, B is odd ;

therefore C is made up of odd numbers the multitude of which
is odd.
Thus C is odd. [rx. 23]
Q E. D.

ProrosiTION 30.
If an odd number measure an even number, it will also

measure the half of il.

For let the odd number 4 measure the even number 5 ;
I say that it will also measure the half

of it. A—
For, since 4 measures 25, ]
let it measure it according to C; c——

I say that C is not odd.

For, if possible, let it be so.

Then, since A measures & according to C,
therefore 4 by multiplying C has made 5.

Therefore B is made up of odd numbers the multitude
of which is odd.

Therefore B is odd : [1x. 23]
which is absurd, for by hypothesis it is even,

Therefore C is not odd ;
therefore C is even.

Thus A4 measures B an even number of times.

For this reason then it also measures the half of it.

Q. E. D.

ProrosiTION 31.

If an odd number be prime to any number, it will also be
prime to the double of it.

For let the odd number A4 be prime to any number 5,
and let C be double of B;
I salg that A4 is prime to C.
or, if they are not prime
to one another, some number
will measure them.

A
B
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Let a number measure them, and let it be D.
Now A4 is odd ;

therefore D is also odd.
And since D which is odd measures C,
and C is even,
therefore [ D] will measure the half of C also. [1x. 30]
But B is half of C;
therefore D measures 5.
But it also measures A4 ;
therefore D measures 4, B which are prime to one another :
which is impossible.
Therefore A cannot but be prime to C.
Therefore A, C are prime to one another.
Q. E. D.

ProrosiTION 32.

Eack of the numbers whick are continually doubled beginning
JSrom a dyad is even-times even only.

For let as many numbers as we please, B, C, D, have been
continually doubled beginning
from the dyad 4 ;

I say that B, C, D are even-
times even only.
Now that each of the

numbers B, C, D is even-times even is manifest; for it is
doubled from a dyad.

I say that it is also even-times even only.
For let an unit be set out.
Since then as many numbers as we please beginning from
an unit are in continued proportion,
and the number A4 after the unit is prime,
therefore D, the greatest of the numbers 4, B, C, D, will not
be measured by any other number except 4, B, C. [1x. 13]
And each of the numbers 4, B, C is even;
therefore D is even-times even only. [viL Def. 8]

Similarly we can prove that each of the numbers B, Cis
even-times even only.

o0 m>

Q. E, D.
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See the notes on vii. Deff. 8 to 11 for a discussion of the difficulties
shown by Iamblichus to be involved by the Euclidean definitions of “even-
times even,” *even-times odd” and “odd-times even.”

ProrosiTION 33.
If a number have its half odd, it is even-times odd only.
For let the number A have its half odd ;

I say that A is even-times odd only.
Now that it is even-times odd is AT
manifest; for the half of it, being odd,
measures it an even number of times. [vi. Def. 9]
I say next that it is also even-times odd only.
For, if A4 is even-times even also,
it will be measured by an even number according to an even
number ; [vir. Def. 8]
so that the half of it will also be measured by an even number
though it is odd :
which is absurd.
Therefore A is even-times odd only. Q. E. D.

ProrosITION 34.

If a number neither be one of those whick are continually
doubled from a dyad, nor have its half odd, it is both even-
times even and even-times odd.

For let the number A neither be one of those doubled
from a dyad, nor have its half odd;

I say that 4 is both even-times even A
and even-times odd.

Now that A4 is even-times even is manifest ;
for it has not its half odd. [vii. Def. 8]

I say next that it is also even-times odd.

For, if we bisect 4, then bisect its half, and do this con-
tinually, we shall come upon some odd number which will
measure 4 according to an even number.

For, if not, we shall come upon a dyad,
and 4 will be among those which are doubled from a dyad :
which is contrary to the hypothesis.
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Thus A is even-times odd.

But it was also proved even-times even.

Therefore A is bcth even-times even and even-times odd.
Q. E. D.

ProrosiTION 35.

If as many numbers as we please be in continued proportion,
and there be subtracted from the second and the last numbers
ual to the first, then, as the excess of the second is to the
;(rst, so will the excess of the last be to all those before it.

Let there be as many numbers as we please in continued
roportion, 4, BC, D, EF,

ginning from A as least, A—
and let there be subtracted B§C
from BC and £/F the numbers D——
BG, FH, each equal to 4 ; E s W

I say that, as GC is to 4, so
is EA to A, BC, D.
For let FK be made equal to BC, and 7L equal to D.
Then, since X is equal to BC,
and of these the part 7/ is equal to the part BG,
therefore the remainder X is equal to the remainder GC.
And since, as £F is to D, sois D to BC, and BC to A4,
while D is equal to FL, BC to FK, and A to FH,
therefore, as £Fis to FL, sois LF to FK, and FK to FH.
Separando, as EL is to LF, so is LK to FK, and KH
to FH. [vi. 11, 13)
Therefore also, as one of the antecedents is to one of the
consequents, so are all the antecedents to all the consequents;
[vi. 12
therefore, as KA is to FH, so are EL, LK, KH to LF?
FK, HF.

But X/ is equal to CG, FH to A, and LF, FK, HF to
D, BC, A4;
therefore, as CG is to A4, sois EH to D, BC, A.

Therefore, as the excess of the second is to the first, so is
the excess of the last to all those before it.
Q. E. D.
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This proposition is perhaps the most interesting in the arithmetical Books,
since it gives a method, and a very elegant one, of summing any series of
terms in geometrical progression.

Let a,, a,, ay,...a,, a,4; be a series of terms in geometrical progression.
Then Euclid’s proposition proves that

(Gpsr—a) i (@ + a3+ ... +a,)=(az—a) : a,

For clearness’ sake we will on this occasion use the fractional notation of
algebra to represent proportions.

Euclid’s method then comes to this.

Sinoe i‘-’.‘.ﬂ:.f.'..: ___=£’,

ay Ay ay
we have, separando,

Gpy)— @y _ Gy —Gp_y _ | 4
a, L » @
whence, since, as one of the antecedents is to one of the consequems, so is
the sum of all the antecedents to the sum of all the consequents,  [vir. 12]
e = -4
gt Gy ¥t ay ag !
which gives @, + @y + ... + a,, or S,.
If, to compare the result with that arrived at in algebraical text-books, we
write the series in the form

Gyody S0

a, ar, ar®...a”™"' (nterms),
ar"—-a _ar-a
P T s
a(™-1)

or Sy = 3
» r—1

we have

ProrosiTiON 36.

If as many numbers as we please beginning from an unit
be set out continuously in double proportion, until the sum of all
becomes prime, and if the sum multiplied into the last make
some number, the product will be perfect.

For let as many numbers as we please, 4, B, C, D,
beginning from an unit be set out in double proportion, until
the sum of all becomes prime,
let £ be equal to the sum, and let £ by multiplying 2
make FG;

I say that 7G is perfect.

For, however many A4, B, C, D are in multitude, let so
many £, HK, L, M be taken in double proportion beginning
from £ ;
therefore, ex aeguali, as A is to D, so is £ to M. [vir. 14]
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Therefore the product of £, D is equal to the product of
A M. [vir. 19]

And the product of £, D is FG;
therefore the product of 4, M is also FG.

Therefore 4 by multiplying M has made /G ;
therefore M/ measures /G according to the units in A4.

And A4 is a dyad;
therefore G is double of M,
—A B
c
D
L E
M
F 2 -a " N
P Q

But M, L, HK, E are continuously double of each other;

therefore £, AKX, L, M, FG are continuously proportional in
double proportion.

Now let there be subtracted from the second AKX and the
last G the numbers AN, FO, each equal to the first £;

therefore, as the excess of the second is to the first, so is the
excess of the last to all those before it. (1x. 35]

Therefore, as NK isto £, sois OG to M, L, KH, E.
And NX is equal to £;

therefore OG is also equal to M, L, HK, E.
But 7O is also equal to Z,
and £ is equal to 4, B, C, D and the unit.
Therefore the whole FG is equal to £, #K, L, M and
A, B, C, D and the unit;
and it is measured by them.

I say also that G will not be measured by any other
number except 4, B, C, D, E, HK, L, M and the unit.

For, if possible, let some number P measure FG,
and let 2 not be the same with any of the numbers 4, B, C,
D E HK, L, M,

And, as many times as 2 measures #G, so many units let
there be in Q;

therefore Q by multiplying P has made ~G.
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But, further, £ has also by multiplying D made FG;
therefore, as £ is to 0, so is P to D, [vir. 19)

And, since 4, B, C, D are continuously proportional
beginning from an unit,

therefore D will not be measured by any other number except
A, B, C. [x. 13]
And, by hypothesis, 2 is not the same with any of the
numbers A4, 3, i
therefore 2 will not measure D.
But,as Pisto D, sois £ to Q;

therefore neither does £ measure Q. [vir Def. 20]
And £ is prime;

and any prime number is prime to any number which it does

not measure, [viL 29]
Therefore E, Q are prime to one another.
But primes are also least, [viv. 21]

and the least numbers measure those which have the same
ratio the same number of times, the antecedent the antecedent
and the consequent the consequent ; [vir. 20]
and, as £isto Q, sois Pto D;
therefore £ measures P the same number of times that Q
measures [,

But D is not measured by any other number except
A, B, C;
therefore Q is the same with one of the numbers 4, B, C.

Let it be the same with 5.

And, however many B, C, D are in multitude, let so many
E, HK, L be taken beginning from £.

Now £, HK, L are in the same ratio with B, C, D;

therefore, ex aeguali, as B isto D, so is £ to L. [vi. 14]
Therefore the product of B, L is equal to the product of
D, E. [vi1. 19]

But the product of D, £ is equal to the product of Q, P;
therefore the product of Q, 2 is also equal to the product of
B, L.

Therefore, as Q is to B, sois L to P. [vir 19]

And Q is the same with 7 ;

therefore L is also the same with P
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which is impossible, for by hypothesis £ is not the same with
any of the numbers set out,

Therefore no number will measure 7G except 4, B, C,
D, E, HK, L, M and the unit.

And FG was proved equal to 4, B, C, D, E, HK, L, M
and the unit;
and a perfect number is that which is equal to its own parts ;

[viL Def. 22]
therefore /G is perfect.
Q. E. D.

If the sum of any number of terms of the series
T R LR
be prime, and the said sum be multiplied by the last term, the product will be
a “perfect” number, i.e. equal to the sum of all its factors.
Let 1 + 2+ 2°+... + 2" (= 5,) be prime;
then shall S, . 2" be “ perfect.”
Take (7 — 1) terms of the scries
Say 28y, 'Sy, .. 2*71S,,
These are then terras proportional to the terms
& alabise®y
Therefore, ex aequali,

2:21=5,:2"18,, [vii. 14]
or z.2"%5, =21, S, [viL 19]
(This is of course obvious algebraically, but Euclid’s notation requires him to

prove it.)

Now, by 1x. 35, we can sum the series S, + 2.5, + ... + 225,
and (25— S) : Sa=(2""S5s = S,) : (Sp+28,+ ... +2"7%S,).

Therefore S, + 25, + 2’5, + ... + 2"%5, =2""15, - §,,
or 2™ 1S, =8, + 25, + 225, + ... + 2715, + S,

=Sp+28 + ... +2" S+ (142427 + .+ 2T,

and 21§, is measured by every term of the right hand expression.

It is now necessary to prove that 2*7S, cannot have any factor except
those terms.

Suppose, if possible, that it has a factor x different from all of them,

and let 2"1S, =x . m.
Therefore Sim=x ;2" [vin 19]
Now 2""' can only be measured by the preceding terms of the series
O T i [1x. 13]

and x is different from all of these ;
therefore x does not measure 2*7},

so that S, does not measure . [v11. Def. 20]
And &, is prime; therefore it is prime to m. [vir. 29]
It follows I!:\"II. 20, 21] that

7 measures 2",
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Suppose that m=1a".
Now, ex aeguali, " * =8, 1S
Therefore T, 1S =" S, [vin. 19]
= x .m, from above.
Andm=2";
therefore x = 2"-"-15,, one of the terms of the series S,, 25,, 2*S,, ...2"%5,:
which contradicts the hypothesis.

There 2"-1.5, has no factors except
Suy 2.5y 2880y +oo 2*1S,, 1, 2, 2%, 00 2™

Theon of Smyrna and Nicomachus both define a “perfect” number and
give the law of its formation. Nicomachus gives four perfect numbers and no
more, namely 6, 28, 496, 8128. He says they are formed in * ordered”
fashion, there being one among the units (i.e. less than 10), one among the
tens (less than 100), one among the hundreds (less than 1000) and one among
the thousands (less than 10000); he adds that they terminate in 6 or 8
alternately. They do all terminate in 6 or 8, as can easily be proved by
means of the formula (2"—1) 2" (cf. Loria, Le scienze esatte nell’ antica
Grecia, pp. 840—1), but not alternately, for the fifth and sixth perfect numbers
both end in 6, and the seventh and eighth both end in 8. Iamblichus adds
a tentative suggestion that perhaps there may be, in like manner, one perfect
number among the *‘first myriads” (less than 10000%), one among the “second
myriads” (less than 10000%), and so on. This is, as we shall see, incorrect.

It is natural that the subject of perfect numbers should, ever since Euclid’s
time, have had a fascination for mathematicians. Fermat (1601—1655), in a
letter to Mersenne (Ewvres de Fermat, ed. Tannery and Henry, Vol. 1.,
1894, pp. 197 —9), enunciated three propositions which much facilitate the
investigation whether a given number of the form 2"-1 is prime or not. If
we write in one line the exponents 1, 2, 3, 4, etc. of the successive powers of
2 and underneath them respectively the numbers representing the correspond-
ing powers of 2 diminished by 1, thus,

, Bt YA ST G R | 8 9 10 11 .0

1 3 7 15 31 63 127 255 511 1023 2047..2"—1,
the following relations are found to subsist between the numbers in the first
line and those directly below them in the second line.

1. If the exponent is not a prime number, the corresponding number is
not a prime number either (since a*® — 1 is always divisible by a® — 1 as well
as by a¥-1).

2. If the exponent is a prime number, the corresponding number dimi-
nished by 1 is divisible by twice the exponent. I;(z"— 2)/z2n=(2""1—1)/n; so
that this is a special case of “ Fermat’s theorem ” that, if # is a prime number
and a is prime to g, then a*' is divisible by .]

3. If the exponent # is a prime number, the corresponding number is
only divisible by numbers of the form (2mn+1). If therefore the corre-
sponding number in the second line has no factors of this form, it has no
integral factor.

The first and third of these propositions are those which are specially
useful for the purpose in question. As usual, Fermat does not give his proofs
but merely adds: *“Voila trois fort belles propositions que jay trouvées et
prouvées non sans peine. Je les puis appeller les fondements de l'invention
des nombres parfaits.”
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I append a few details of discoveries of further perfect numbers after the
first four. The next are as follows :
fifth, 2" (2" -1)=33 550 336
sixth, 2" (27 —1)=8 589 869 056
seventh, 2" (2" — 1) = 137 438 691 328
eighth, 2% (2% —1)=2 305 843 008 139 952 128
ninth, 2% (2% —1)=12 658 455 991 569 831 744 654 692 615 953 842 176
tenth, 2%(2®-1).

It has further been proved that 2!”—1 is prime, and so is 2'"-1. Hence
2'% (2" 1) and 2'™(2'¥—1) are two more perfect numbers.

The fifth perfect number may have been known to Izmblichus, though he
does not give it; it was however known, with all its factors, in the fifteenth
century, as appears from a tract written in German which was discovered by
Curtze (Cod. lat. Monac. 14908). The first eight perfect numbers were
calculated by Jean Prestet (d. 1670). Fermat had stated, and Euler proved,
that 2"—1 is prime. The ninth perfect number was found by P. Seelhoff
(Zeitschrift fur Math. u. Physik, xxx1., 1886, pp. 174—8) and verified by
E. Lucas (Mathésis, vi., 1887, pp. 45—6). The tenth was discovered by
R. E. Powers (see Bulletin of the American Mathematical Society, XviIL, 1912,
p. 162). 2"—1 was proved to be prime by E. Fauquembergue and R. E.
Powers (1914), while Fauquembergue proved that 2'7—1 is prime.

There have been attempts, so far unsuccessful, to solve the question
whether there exist other “ perfect numbers” than those of Euclid, and, in
particular, perfect numbers which are odd. (Cf. several notes by Sylvester in
Comptes rendus, cv1., 1888 ; Catalan, “ Mélanges mathématiques” in Mém. de
la Soc. de Liége, 2° Série, Xv. ., 1888, pp. 205—17; C. Semm in Mathésis, vil.,
pp- 228—30 and v, pp. 92—93, 135; E. Cesdro in Markéss, vu,
PP. 245—6 ; E. Lucas in Mathésis, X., pp. 74—6).

For the detalled history of the whole subject see L. E. Dickson, History
of the Theory of Numbers, Vol. 1., 1919, pp. ili—iv, 3—33.



