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TRANSLATOR'S PREFACE.

Lobachevski was the first man ever to publish a non-Euclidean geom-

etry.

Of the immortal essay now first appearing in English Gauss said, "The

author has treated the matter with a master-hand and in the true geom-

eter's spirit. I think I ought to call your attention to this book, whose

perusal can not fail to give you the most vivid pleasure."

Clifford says, "It is quite simple, merely Euclid without the vicious

assumption, but the way things come out of one another is quite lovely."

* * * "What Vesalius was to Galen, what Copernicus was to Ptolemy,

that was Lobachevski to Euclid."

Says Sylvester, "In Quaternions the example has been given of Al-

gebra released from the yoke of the commutative principle of multipli-

cation—an emancipation somewhat akin to Lobachevski's of Geometry

from Euclid's noted empirical axiom."

Cayley says, "It is well known that Euclid's twelfth axiom, even in

Playfair's form of it, has been considered as needing demonstration;

and that Lobachevski constructed a perfectly consistent theory, where-

in this axiom was assumed not to hold good, or say a system of non-

Euclidean plane geometry. There is a like system of non-Euclidean solid

geometry."

GEORGE BRUCE HALSTED.
2407 San Marcos Street,

Austin, Texas.

May 1, 1891.



TRANSLATOR'S INTRODUCTION.

"Prove all things, hold fast that which is good," does not mean dem-

onstrate everything. From nothing assumed, nothing can be proved.

"Geometry without axioms," was a book which went through several

editions, and still has historical value. But now a volume with such a

title would, without opening it, be set down as simply the work of a

paradoxer.

The set of axioms far the most influential in the intellectual history

of the world was put together in Egypt; but really it owed nothing to

the Egyptian race, drew nothing from the boasted lore of Egypt's

priests.

The Papyrus of the Rhind, belonging to the British Museum, but

given to the world by the erudition of a German Egyptologist, Eisen-

lohr, and a German historian of mathematics, Cantor, gives us more

knowledge of the state of mathematics in ancient Egypt than all else

previously accessible to the modern world. Its whole testimony con-

firms with overwhelming force the position that Geometry as a science,

strict and self-conscious deductive reasoning, was created by the subtle

intellect of the same race whose bloom in art still overawes us in the

Venus of Milo, the Apollo Belvidere, the Laocoon.

In a geometry occur the most noted set of axioms, the geometry of

Euclid, a pure Greek, professor at the University of Alexandria.

Not only at its very birth did this typical product of the Greek genius

assume sway as ruler in the pure sciences, not only does its first efflor-

escence carry us through the splendid days of Theon and Hypatia, but

unlike the latter, fanatics can not murder it; that dismal flood, the dark

ages, can not drown it. Like the phoenix of its native Egypt, it rises

with the new birth of culture. An Anglo-Saxon, Adelard of Bath,

finds it clothed in Arabic vestments in the land of the Alhambra. Then

clothed in Latin, it and the new-born printing press confer honor on

each other. Finally back again in its original Greek, it is published

first in queenly. Basel, then in stately Oxford. The latest edition in

Greek is from I-eipsic's learned presses.

15]



6 THEORY OP PARALLELS.

How the first translation into our cut-and-thrust, survival-of-the-fittest

English was made from the Greek and Latin by Henricus Billingsly,

Lord Mayor of London, and published with a preface by .John Dee the

Magician, may be studied in the Library of our own Princeton, where
they have, by some strange chance, Billingsly's own copy of the Arabic-

Latin version of Campanus bound with the Editio Princeps in Greek
and enriched with his autograph emendations. Even to-day in the vast

system of examinations set by Cambridge, Oxford, and the British gov-

ernment, no proof will be accepted which infringes Euclid's order, a
sequence founded upon his set of axioms.

The American ideal is success. In twenty years the American maker
expects to be improved upon, superseded. The Greek ideal was per.

fection. The Greek Epic and Lyric poets, the Greek sculptors, remain
unmatched. The axioms of the Greek geometer remained unquestioned

for twenty centuries.

How and where doubt came to look toward them is of no ordinary

interest, for this doubt was epoch-making in the history of mind.

Among Euclid's axioms was one differing from the others in pro-

lixity, whose place fluctuates in the manuscripts, and which is not used
in Euclid's first twenty-seven propositions. Moreover it is only then

brought in to prove the inverse of one of these already demonstrated.

All this suggested, at Europe's renaissance, not a doubt of the axiom,

but the possibility of getting along without it, of deducing it from the

other axioms and the twenty-seven propositions already proved. Euclid

demonstrates things more axiomatic by far. He proves what every dog
knows, that any two sides of a triangle are together greater than the

third. Yet when he has perfectly proved that lines making with a

transversal equal alternate angles are parallel, in order to prove the in-

verse, that parallels cut by a transversal make equal alternate angles, he
brings in the unwieldly postulate or axiom:

" If a straight line meet two straight lines, so as to make the two in-

terior angles on the same side of it taken together less than two right

angles, these straight lines, being continually produced, shall at length

meet on that side on which are the angles which are less than two right

angles."

Do you wonder that succeeding geometers wished by demonstration

to push this unwieldly thing from the set of fundamental axioms.
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Numerous and desperate were the attempts to deduce it from reason-

ings about the nature of the straight line and plane angle. In the

" Encyclopoedie der "Wissenschaften und Kunste; Von Ersch und Gru-

ber;" Leipzig, 1838; under "Parallel," Sohncke says that in mathe-

matics there is nothing over which so much has been spoken, written,

and striven, as over the theory of parallels, and all, so far (up to his

time), without reaching a definite result and decision.

Some acknowledged defeat by taking a new definition of parallels, as

for example the stupid one, "Parallel lines are everywhere equally dis-

tant," still given on page 33 of Schuyler's Geometry, which that author,

like many of his unfortunate prototypes, then attempts to identify with

Euclid's definition by pseudo-reasoning which tacitly assumes Euclid's

postulate, e. g. he says p. 35: "For, if not parallel, they are not every-

where equally distant; and since they lie in the same plane; must ap-

proach when produced one way or the other; and since straight lines

continue in the same direction, must continue to approach if produced

farther, and if sufficiently produced, must meet." This is nothing but

Euclid's assumption, diseased and contaminated by the introduction of

the indefinite term "direction."

How much better to have followed the third class of his predecessors

who honestly assume a new axiom differing from Euclid's in form if

not in essence. Of these the best is that called Playfair's; "Two lines

which intersect can not both be parallel to the same line."

The German article mentioned is followed by a carefully prepared

list of ninety-two authors on the subject. In English an account of

like attempts was given by Perronet Thompson, Cambridge, 1833, and

is brought up to date in the charming volume, "Euclid and his Modern

Rivals," by C. L. Dodgson, late Mathematical Lecturer of Christ Church,

Oxford, the Lewis Carroll, author of Alice in Wonderland.

All this shows how ready the world was for the extraordinary flaming-

forth of genius from different parts of the world which was at once to

overturn, explain, and remake not only all this subject but as conse-

quence all philosophy, all ken-lore. As was the case with the dis-

covery of the Conservation of .Energy, the independent irruptions

of genius, whether in Russia, Hungary, Germany, or even in Canada

gave everywhere the same results.

At first these results were not fully understood even by the brightest



8 THEORY OF PARALLELS.

intellects. Thirty years after the publication of the book he mentions,

we see the brilliant Clifford writing from Trinity College, Cambridge,

April 2, 1870, "Several new ideas have come to me lately: First I

have procured Lobachevski, "Etudes Geometriques sur la Theorie

des Parallels' - - - a small tract of which Gauss, therein quoted,

says
: L'auteur a traits la matiere en main de maitre et avec le veritable

esprit geometrique. Je crois devoir appeler votre attention sur ce livre,

dont la lecture ne peut manquer de vous causer le plus vif plaisir.'"

Then says Clifford: "It is quite simple, merely Euclid without the

vicious assumption, but the way the things come out of one another is

quite lovely."

The first axiom doubted is called a "vicious assumption," soon no
man sees more clearly than Clifford that all are assumptions and none
vicious. He had been reading the French translation by Houel, pub-

lished in 1866, of a little book of 61 pages published in 1840 in Berlin

under the title Geometrische Untersuchungen zur Theorie der Parallel-

linien by Nicolas Lobachevski (1793-1856), the first public expression

of whose discoveries, however, dates back to a discourse at Kasan on

February 12, 1826.

Under this commonplace title who would have suspected the dis-

covery of a new space in which to hold our universe and ourselves.

A new kind of universal space ; the idea is a hard one. To name it,

all the space in which we think the world and stars live and move and
have their being was ceded to Euclid as his by right of pre-emption,

description, and occupancy ; then the new space and its quick-following

fellows could be called Non-Euclidean.

Gauss in a letter to Schumacher, dated Nov. 28, 1846, mentions that

as far back as 1792 he had started on this path to a new universe.

Again he says: "La geometrie non-euclidienne ne renferme en elle

rien de contradictoire, quoique, a premiere vue, beaucoup de ses resul-

tats aieu-Tair de paradoxes. Ces contradictions apparents doivent etre

regardees comme l'effet d'une illusion, due a l'habitude que nous avons

prise de bonne heure de considerer la geometrie euclidienne comme
rigoureuse."

But here we see in the last word the same imperfection of view as in

Clifford's letter. The perception has not yet come that though the non-

Euclidean geometry is rigorous, Euclid is not one whit less so.



TRANSLATOR'S INTRODUCTION. V

A former friend of Gauss at Goettingen was the Hungarian Wolfgang

Bolyai. His principal work, published by subscription, has the follow-

ing title:

Tentamen Juventutem studiosam in elementa Matheseos purae, ele-

mentaris ac sublimioris, methodo intuitiva, evidentiaque huic propria, in-

troducendi. Tomus Primus, 1832; Secundus, 1833. 8vo. Maros-Va-

sarhelyini.

In the first volume with special numbering, appeared the celebrated

Appendix of his son John Bolyai with the following title

:

APPENDIX.

Scientiam spatii absolute veram exhibens : a veritate aut falsitate

Axiomatis XI Euclidei (a priori hand unquam decidenda) independen-

tem. Auctore Johanne Bolyai de eadem, Geometrarum in Exercitu

Caesareo Regio Austriaco Castrensium Capitaneo. (26 pages of text).

This marvellous Appendix has been translated into French, Italian,

English and German.

In the title of Wolfgang Bolyai's last work, the only one he com-

posed in German (88 pages of text, 1851), occurs the following:

"und da die Frage, ob zwey von der dritten geschnittene Oeraden,

wenn die summe der inneren Winkel nicht=2R, sich schneiden oder

nicht? niemand auf der Erde ohne ein Axiom (wie Euclid das XI)

aufzustellen, beantworten wird; die davon unabhsngige Geometrie

abzusondern; und eine auf die Ja-Antwort, andere auf das Nein so zu

bauen, dass die Formeln der letzen, auf ein Wink auch in der ersten

giiltig seyen."

The author mentions Lobachevski's Geometrische TJntersuchungen,

Berlin, 1840, and compares it with the work of his son John Bolyai,

"au sujet duquel il dit: 'Quelques exemplaires de l'ouvrage publie ici

ont §t6 envoyes a cette epoque a Vienne, a Berlin, a Goettingue. . . De

Goettingue le geant mathematique, [Gauss] qui du sommet des hauteurs

embrasse du meme regard les astres et la profondeur des abimes, a ecrit

qu'il Stait ravi de voir execute le travail qu'il avait commence pour le

laisser apres lui dans ses papiers.'
""

In fact this first of the Non-Euclidean geometries accepts all of Eu-

clid's axioms but the last, which it flatly denies and replaces by its con-

tradictory, that the sum of the interior angles made on the same side of
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a transversal by two straight lines may be less than a straight angle
without the lines meeting. A perfectly consistent and elegant geometry
then follows, in which the sum of the angles of a triangle is always less

than a straight angle, and not every triangle has its vertices concyclic.
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In geometry I find certain imperfections which I hold to be the rea-

son why this science, apart from transition into analytics, can as yet

make no advance from that state in which it has come to us from Euclid.

As belonging to these imperfections, I consider the obscurity in the

fundamental concepts of the geometrical magnitudes and in the manner

and method of representing the measuring of these magnitudes, and

finally the momentous gap in the theory of parallels, to fill which all ef-

forts of mathematicians have been so far in vain.

For this theory Legendre's endeavors have done nothing, since he

was forced to leave the only rigid way to turn into a side path and take

refuge in auxiliary theorems which he illogically strove to exhibit as

necessary axioms. My first essay on the foundations of geometry I pub-

lished in the Kasan Messenger for the year 1829. In the hope of having

satisfied all requirements, I undertook hereupon a treatment of the whole

of this science, and published my work in separate parts in the " Ge.

lehrten Schriften der Unwersitcet Kasan 11

for the years 1836, 1837, 1838,

under the title "New Elements of Geometry, with a complete Theory

of Parallels." The extent of this work perhaps hindered my country-

men from following such a subject, which since Legendre had lost its

interest. Yet I am of the opinion that the Theory of Parallels should

not lose its claim to the attention of geometers, and therefore I aim to

give here the substance of my investigations, remarking beforehand that

contrary to the opinion of Legendre, all other imperfections— for ex-

ample, the definition of a straight line—show themselves foreign here

and without any real influence on the theory of parallels.

In order not to fatigue my reader with the multitude of those theo-

rems whose proofs present no difficulties, I prefix here only those of

which a knowledge is necessary for what follows.

1. A straight line fits upon itself in all its positions. By this I mean

that during the revolution of the surface containing it the straight line

does not change its place if it goes through two unmoving points in the

surface: (i. e., if we turn the surface containing it about two points of

the line, the line does not move.)
[ii]
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2. Two straight lines can not intersect in two points.

3. A straight line sufficiently produced both ways must go out

beyond all bounds, and in such way cuts a bounded plain into two parts.

4. Two straight lines perpendicular to a third never intersect, how
far soever they be produced.

5. A straight line always cuts another in going from one side of it

over to the other side: (t. e., one straight line must cut another if it

has points on both sides of it.)

6. Vertical angles, where the sides of one are productions of the

sides of the other, are equal. This holds of plane rectilineal angles

among themselves, as also of plane surface angles : (i. e., dihedral angles.)

7. Two straight lines can not intersect, if a third cuts them at the

same angle.

8. In a rectilineal triangle equal sides lie opposite equal angles, and
inversely.

9. In a rectilineal triangle, a greater side lies opposite a greater

angle. In a right-angled triangle the hypothenuse is greater than either

of the other sides, and the two angles adjacent to it are acute.

10. Rectilineal triangles are congruent if they have a side and two

angles equal, or two sides and the included angle equal, or two sides and

the angle opposite the greater equal, or three sides equal.

11. A straight line which stands at right angles upon two other

straight lines not in one plane with it is perpendicular to all straight

lines drawn through the common intersection point in the plane of those

two.

12. The intersection of a sphere with a plane is a circle.

13. A straight line at right angles to the intersection of two per-

pendicular planes, and in one, is perpendicular to the other.

14. In a spherical triangle equal sides He opposite equal angles, and

inversely.

15. Spherical triangles are congruent (or symmetrical) if they have

two sides and the included angle equal, or a side and the adjacent angles

equal.

From here follow the other theorems with their explanations and

proofs.



THEORY OF PARALLELS. 13

16. All straight lines which in a plane go out from a point can,

with reference to a given straight line in the same plane, be divided

into two classes— into cutting and not-cutting.

The boundary lines of the one and the other class of those lines will

be called parallel to the given line.

From the point A (Fig. 1) let fall upon the

line BC the perpendicular AD, to which again

draw the perpendicular AE.

In the right angle EAD either will all straight

lines which go out from the point A meet the .

line DC, as for example AF, or some of them,

like the perpendicular AE, will not meet the

line DC. In the uncertainty whether the per-

pendicular AE is the only line which does not

meet DC, we will assume it may be possible that

there are still other lines, for example AG, Fig. 1.

which do not cut DC, how far soever they may be prolonged. In pass-

ing over from the cutting lines, as AF, to the not-cutting lines, as AG,

we must come upon a line AH, parallel to DC, a boundary line, upon

one side of which all lines AG are such as do not meet the line DC,

while upon the other side every straight line AF cuts the line DC.

The angle HAD between the parallel HA and the perpendicularAD
is called the parallel angle (angle of parallelism), which we will here

designate by J] (p) for AD = p.

If IT (p) is a right angle, so will the prolongation AE' of the perpen-

dicular AE likewise be parallel to the prolongation DB of the line DC,

in addition to which we remark that in regard to the four right angles,

which are made at the point A by the perpendiculars AE and AD,

and their prolongations AE' and AD', every straight line which goes

out from the point A, either itself or at least its prolongation, lies in one

of the two right angles which are turned toward BC, so that except the

parallel EE' all others, if they are sufficiently produced both ways, must

intersect the line BC.

If IT (p) < -£ 7T, then upon the other side of AD, making the same

angle DAK = II (p) will he also a line AK, parallel to the prolongs

tion DB of the line DC, so that under this assumption we must also

make a distinction of sides in parallelism.
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All remaining lines or their prolongations within the two right angles

turned toward BC pertain to those that intersect, if they lie within the

angle HAK = 2 JJ (p) between the parallels; they pertain on the other

hand to the non-intersecting AG, if they lie upon the other sides of the

parallels AH and AK, in the opening of the two angles EAH = •£ x
— II (p), E'AK — \k — II (p), between the parallels and EE' the per-

pendicular to AD. Upon the other side of the perpendicular EE' will

in like manner the prolongations AH' and AK' of the parallels AH and

AK likewise be parallel to BC ; the remaining lines pertain, if in the

angle K'AH', to the intersecting, but if in the angles K'AE, H'AE'
to the non-intersecting.

In accordance with this, for the assumption 77 (p) = •£ tz. the lines can

be only intersecting or parallel; but if we assume that /7(p) < £ tt, then

we must allow two parallels, one on the one and one on the other side;

in addition we must distinguish the remaining lines into non-intersect-

ing and intersecting.

For both assumptions it serves as the mark of parallelism that the

line becomes intersecting for the smallest deviation toward the side

where lies the parallel, so that if AH is parallel to DC, every line AF
cuts DC, how small soever the angle HAF may be.



THEORY OF PARALLELS. 15

17. A straight line maintains the characteristic of parallelism at all its

points.

Given AB (Fig. 2) parallel to CD, to which latter AC is perpendic

ular. We will consider two points taken at random on the lineAB and

its production beyond the perpendicular.

Let the point E lie on that side of the perpendicular on which AB is

looked upon as parallel to CD.

Let fall from the point E a perpendicular EK on CD and so draw EP
that it falls within the angle BEK.

Connect the points A and F by a straight line, whose production then

(by Theorem 16) must cut CD somewhere in G. Thus we get a triangle

ACG, into which the line EF goes; now since this latter, from the con.

struction, can not cut AC, and can not cut AG or EK a second time

(Theorem 2), therefore it must meet CD somewhere at H (Theorem 3).

Now let E' be a point on the production of AB and E'K' perpendic-

ular to the production of the line CD; draw the line E'F' making so

small an angle AE'F' that it cuts AC somewhere in F' ; making the

same angle with AB, draw also from A the line AF, whose production

will cut CD in G (Theorem 16.)

Thus we get a triangle AGC, into which goes the production of the

line E'F'; since now this line can not cut AC a second time, and also

can not cut AG, since the angle BAG = BE'G', (Theorem 7), therefore

must it meet CD somewhere in G'.

Therefore from whatever Doints E and E' the lines EF and E'F' go

out, and however little they may diverge from the line AB, yet will

they always cut CD, to which AB is parallel.
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18. Two lines are always mutually parallel.

Let AC be a perpendicular on CD, to which AB is parallel

if we draw from C the line

CE making any acute angle

ECD with CD, and let fall

from A the perpendicular AF
upon CE, we obtain a right-

angled triangle ACF, inwhich

AC, being the hypothenuse,

is greater than the side AF
(Theorem 9.)

Make AG = AF, and slide FlG
- 3 -

the figure EFAB until AF coincides with AG, when AB and FE wU
take the position AK and GH, such that the angle BAK = FAC, con

sequently AK must cut the line DC somewhere in K (Theorem 1 6), thus

forming a triangle AKC, on one side of which the perpendicular GH
intersects the line AK in L (Theorem 3), and thus determines the dis-

tance AL of the intersection point of the lines AB and CE on the line

AB from the point A.

Hence it follows that CE will always intersect AB, how small soever

may be the angle ECD, consequently CD is parallel to AB (Theorem 16.)

19. In a rectilineal triangle the sum of the three angles can not he greater

than two right angles.

Suppose in the triangle ABC (Fig. 4) the sum of the three angles is

equal to n -f- a; then choose in case

of the inequality of the sides the

smallest BC, halve it in D, draw

from A through D the line AD
and make the prolongation of it,

DE, equal to AD, then join the

point E to the point C by the
Fig. 4.

straight line EC. In the congruent triangles ADB and CDE, the angle

ABD = DCE. and BAD = DEC (Theorems 6 and 10); whence follows

that also in the triangle ACE the sum of the three angles must be equal

to jt -\- a! but also the smallest angle BAC (Theorem 9) of the triangle

ABC in passing over into the new triangle ACE has been cut up into

the two parts EAC and AEC. Continuing this process, continually
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halving the side opposite the smallest angle, we must finally attain to a

triangle in which the sum of the three angles is k -f-
a, but wherein are

two angles, each of which in absolute magnitude is less than %a; since

now, however, the third angle can not be greater than it, so must a be

either null or negative.

20. If in any rectilineal triangle the sum of the three angles is equal to

two right angles, so is this also the case for every other triangle.

If in the rectilineal triangle ABC (Fig. 5) the sum of the three angles

= jT, then must at least two of its angles, A B

and 0, be acute. Let fall from the vertex of

the third angle B upon the opposite side AC
the perpendicular p. This will cut the tri- A*

angle into two right-angled triangles, in each

of which the sum of the three angles must also be it, since it caD not in

either be greater than it, and in their combination not less than it.

So we obtain a right-angled triangle with the perpendicular sides p

and q, and from this a quadrilateral whose opposite sides are equal and

whose adjacent sides p and q are at right angles (Fig. 6.)

By repetition of this quadrilateral we can make another with sides

np and q, and finally a quadrilateral ABCD with sides at right angles

to each other, such that AB = np, AD = mq, DC = np, BC = mq, where

Fig

q q a q s
p P /

q /

P /
v /
p /
&L—± L 1 1

Fig. 6.

m and n are any whole numbers. Such a quadrilateral is divided by

the diagonal DB into two congruent right-angled triangles, BAD and

BCD, in each of which the sum of the three angles = -.

The numbers n and m can be taken sufficiently great for the right-

angled triangle ABC (Fig. V) whose perpendicular sides AB = np, BC
= mq, to enclose within itself another given (right-angled) triangle BDE
as soon as the right-angles fit each other.

2— par.
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Drawing the line DC, we obtain right-angled triangles of which every

successive two have a side in common.

The triangle ABC is formed by the union of the two triangles ACD
and DCB, in neither of which can the sum of the angles be greater than

arj consequently it must be equal to n, in order that the sum in the

compound triangle may be equal to n.

La the same way the triangle BDC consists of the two triangles DEC
and DBE, consequently must in DBE the sum of the three angles be

equal to n, and in general this must be true for every triangle, since

each can be cut into two right-angled triangles.

From this it follows that only two hypotheses are allowable: Either

is the sum of the three angles in all rectilineal triangles equal to tt, or

this sum is in all less than jr.

21» From a given point we can always draw a straight line that shall

make with a given straight line an angle as small as we choose.

Let fall from the given point A (Fig. 8) upon the given line BC the

Fig 8,

perpendicular AB ; take upon BC at random the point D, draw the line

AD; make DE = AD, and draw AE.
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In the right-angled triangle ABD let the angle ADB = a; then must

in the isosceles triangle ADE the angleAED be either £a or less (Theo-

rems 8 and 20). Continuing thus we finally attain to such an angle,

AEB, as is less than any given angle.

22. If two perpendiculars to the same straight line are parallel to each

other, then the sum of the three angles in a rectilineal triangle is equal to two

right angles.

Let the lines AB and CD (Fig. 9) be parallel to each other and per-

pendicular to AC.

Draw from A the lines AE
and AF to the points E and F,

which are taken on the line CD
at any distances FC > EC from

the point C.

Suppose in the right-angled tri-

angle ACE the sum of the three angles is equal to tz — a, in the tri-

angle AEF equal to tz —
ft,

then must it in triangle ACF equal tz — a
—

ft,
where a and

ft
can not be negative.

Further, let the angle BAF = a, AFC = b, so is a+ ft
= a — b; now

by revolving the line AF away from the perpendicularAC we can make

the angle a between AF and the parallel AB as small as we choose; so

also can we lessen the angle b, consequently the two angles a and
ft

can have no other magnitude than a = and ft=0.
It follows that in all rectilineal triangles the sum of the three angles

is either tz and at the same time also the parallel angle U (p) = \ tz for

every line p, or for all triangles this sum is < tz and at the same time

also /7(p) < £ tz.

The first assumption serves as foundation for the ordinary geometry and

plane trigonometry.

The second assumption can likewise be admitted without leading to

any contradiction in the results, and founds a new geometric science,

to which I have given the name Imaginary Geometry, and which I in-

tend here to expound as far as the development of the equations be-

tween the sides and angles of the rectilineal and spherical triangle.

23. For every given angle a there is a line p such that II (p) = a.

Let AB and AC (Fig. 10) be two straight lines which at the inter.

section point A make the acute angle a; take at random on AB a point
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B'; from this point drop B'A' at right angles to AC; make A"A" =
AA'; erect at A" the perpendicular A^B"; and so continue until a per-

Fig. 10

pendicular CD is attained, which no longer intersects AB. This must

of necessity happen, for if in the triangle AA'B' the sum of all three

angles is equal to 7: — a, then in the triangle AB' A" it equals -k — 2a,

m triangle AA"B" less than ^ — 2a (Theorem 20), and so forth, until

it finally becomes negative and thereby shows the impossibility of con-

structing the triangle.

The perpendicular CD may be the very one nearer than which to the

point A all others cut AB; at least in the passing over from those that

cut to -those not cutting such a perpendicular FG must exist.

Draw now from the point F the line FH, which makes with FG the

acute angle HFG, on that side where lies the point A. From any point

H of the line FH let fall upon AC the perpendicular HK, whose pro-

longation consequently must cut AB somewhere in B, and so makes a

triangle AKB, into which the prolongation of the line FH enters, and

therefore must meet the hypothenuse AB somewhere in M. Since the

angle GFH is arbitrary and can be taken as small as we wish, therefore

FG is parallel to AB and AF= p. (Theorems 16 and 18.)

One easily sees that with the lessening of p the angle a increases, while,

for p = 0, it approaches the value fat; with the growth of p the angle

a decreases, while it continually approaches zero for p =00 .

Since we are wholly at liberty to choose what angle we will under
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stand by the symbol Tl (p) when the line p is expressed by a negative

number, so we will assume

/7(p)+/7(-p)=;r,
an equation which shall hold for all values of p, positive as well as neg-

ative, and for p= 0.

24. The farther parallel lines are prolonged on the side of their paral-

lelism, the more they approach one another.

If to the line AB (Fig. 11) two perpendiculars AC= BD are erected

and their end-points C and D joined by

a straight line, then will the quadrilat-

eral CABD have two right angles at

A and B, but two acute angles at C
and D (Theorem 22) which are equal

to one another, as we can easily see

by thinking the quadrilateral super-

imposed upon itself so that the line BD falls upon AC and AC upon

BD.

Halve AB and erect at the mid-point E the line EF perpendicular to

AB. This line must also be perpendicular to CE, since the quadrilat-

erals CAEF and FDBE fit one another if we so place one on the other

hat the line EF remains in the same position. Hence the line CD can

not be parallel to AB, but the parallel to AB for the point C, namely

CG, must incline toward AB (Theorem 16) and cut from the perpendic-

ular BD a part BG < CA.

Since C is a random point in the line CG, it follows that CG itself

nears AB the more the farther it is prolonged.
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25. Two straight lines which are parallel to a third are also parallel to

each other.

Fig. 12.

We will first assume that the three lines AB, CD, EF (Fig. 12) lie in

one plane. If two of them in order, AB and CD, are parallel to the

outmost one, EF, so are AB and CD parallel to each other. In order

to prove this, let fall from any point A of the outer line AB upon the

other outer line FE, the perpendicular AE, which will cut the middle

line CD in some point C (Theorem 3), at an angle DCE < |-7r on the

side toward EF, the parallel to CD (Theorem 22).

A perpendicular AG- let fall upon CD from the same point, A, must

fall within the opening of the acute angle ACG (Theorem 9); every

other line AH from A drawn within the angle BAC must cut EF, the

parallel to AB, somewhere in H, how small soever the angle BAH may

be; consequently will CD in the triangle AEH cut the line AH some-

where in K, since it is impossible that it should meet EF. IfAH from

the point A went out within the angle CAG, then must it cut the pro-

longation of CD between the points C and G in the triangle CAG.

Hence follows thatAB and CD are parallel (Theorems 16 and 18).

"Were both the outer lines AB and EF assumed parallel to the middle

line CD, so would every line AK from the point A, drawn within the

angle BAE, cut the line CD somewhere in the point K, how small soever

the angle BAK might be.

Upon the prolongation of AK take at random a point L and join it
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with C by the line CL, which must cut EF somewhere in M, thus mak-

ing a triangle MCE.

The prolongation of the line AL within the triangle MCE can cut

neither AC nor CM a second time, consequently it must meet EF some*

where in H; therefore AB and EF are mutually parallel.

c 1^-

Fig. 13.

Now let the parallels AB and CD (Fig. 13) lie in two planes whose

intersection line is EF. From a random point E of this latter let

fall a perpendicular EA upon one of the two parallels, e. g., upon AB,

then from A, the foot of the perpendicular EA, let fall a new perpen-

dicular AC upon the other parallel CD and join the end-points E and C
of the two perpendiculars by the line EC. The angle BAC must be

acute (Theorem 22), consequently a perpendicular CG- from C let fall

upon AB meets it in the point G- upon that side of CA on which the

lines AB and CD are considered as parallel.

Every line EH [in the plane FEAB], however little it diverges from

EF, pertains with the line EC to a plane which must cut the plane of

the two parallels AB and CD along some line CH. This latter line cuts

AB somewhere, and in fact in the very point H which is common to all

three planes, through which necessarily also the line EH goes; conse-

quently EF is parallel to AB.

In the same way we may show the parallelism of EF and CD.

Therefore the hypothesis that a line EF is parallel to one of two other

parallels, AB and CD, is the same as considering EF as the intersection

of two planes in which two parallels, AB, CD, lie.

Consequently two lines are parallel to one another if they are parallel

to a third line, though the three be not co-planar.

The last theorem can be thus expressed:

Three planes intersect in lines which are all parallel to each other if the

parallelism of two is presupposed.
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26. Triangles standing opposite to one another on the sphere are equiva-

lent in surface.

By opposite triangles we here understand such as are made on both

sides of the center by the intersections of the sphere with planes; in such

triangles, therefore, the sides and angles are in contrary order.

In the opposite triangles ABC and A'B'C (Fig. 14, where one of

them must be looked upon as represented turned about), we have the

sidesAB= A'B', BC= B'C, CA= C'A', and the corresponding angles

b'

A

Fig. 14.

at the points A, B, C are likewise equal to those in the other triangle at

th points A', B', C.

Through the three points A, B, C, suppose a plane passed, and upon

it from the center of the sphere a perpendicular dropped whose pro-

longations both ways cut both opposite triangles in the points D and D'

of the sphere. The distances of the first D from the points ABC, in

arcs of great circles on the sphere, must be equal (Theorem 12) as well

to each other as also to the distances D'A', D'B', D'C, on the other

triangle (Theorem 6), consequently the isosceles triangles about the points

D and D' in the two spherical triangles ABC and A'B'C' are congruent.

In order to judge of the equivalence of any two surfaces in general,

I take the following theorem as fundamental:

Two surfaces are equivalent when they arise from the mating or separating

of equalparts.

27. A three-sided solid aqgle equals the half sum of the surface angles

(ess a right-angle.

In the spherical triangle ABC (Fig. 15), where each side < jr, desig-

nate the angles by A, B, C; prolong the side AB so that a whole circle

ABA'B'A is produced; this divides the sphere into two equal parts.
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In that half in which is the triangle ABC, prolong now the other two

sides through their common intersection point C until they meet the

circle in A' and B'.

c
Fig. 15.

In this way the hemisphere is divided into four triangles, ABO, ACB',

B'CA', A'CB, whose size may be designated by P, X, Y, Z. It is evi.

dent that here P + X=B, P + Z= A.

The size of the spherical triangle Y equals that of the opposite triangle

ABC, having a side AB in common with the triangle P, and whose

third angle C lies at the end-point of the diameter of the sphere which

goes from C through the center D of the sphere (Theorem 26). Hence

it follows that

P -\- Y— C, and since P-|-X-j-Y-|-Z= 7r, therefore we have also

P=f(A+ B + C-;r).

We may attain to the same conclusion in another way, based solely

upon the theorem about the equivalence of surfaces given above. (Theo-

rem 26.)

In the spherical triangle ABC (Fig. 16), halve the sides AB and BC,

and through the mid-points D and

E draw a great circle; upon this let

fall from A, B, C the perpendiculars

AF, BH, and CG. If the perpendic- j^

ular from B falls at H between D and

E, then will of the triangles so made

BDH= AFD, and BHE= EGC (The- 4
*

orems 6 and 15), whence follows that Fig. 16.

the surface of the triangle ABC equals that of the quadrilateral AFGO
(Theorem 26).



26 THEORY OP PARALLELS.

If the point H coincides with the middle point B of the side BC (Fig.

^B 17), only two equal right-angled triangles, ADF
and BDE, are made, "by whose interchange the

equivalence of the surfaces of the triangle ABC
and the quadrilateral AFEC is established.

If, finally, the point H falls outside the triangle

ABC (Fig. 18), the perpendicular CG goes, in

Fig. 17. consequence, through the triangle, and so we go

over from the triangle ABC to the quadrilateral AFGC by adding the

triangle FAD= DBH, and then taking away the triangleCGE— EBH.
Supposing in the spherical quadrilateral AFGC a great circle passed

through the points A and G, as also through F and C, then will their

arcs between AG and FC equal one another (Theorem 15), consequently

also the triangles FAC and ACG be congruent (Theorem 15), and the

angle FAC equal the angle ACG.
Hence follows, that in all the preceding cases, the sum of all three

angles of the spherical triangle equals the sum of the two equal angles

in the quadrilateral which are not the right angles.

Therefore we can, for every spherical triangle, in which the sum of

the three angles is S, find a quadrilateral with equivalent surface, in

which are two right angles and two equal perpendicular sides, and

where the two other angles are each £S.
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Let now ABCD (Fig. 19) be the spherical quadrilateral, where the

sides AB = DC are perpendicular to BC, and the angles A and D
each £S.

f

Prolong the sides AD and BC until they cut one another in E, and

further beyond E, make DE= EF and let fall upon the prolongation

of BC the perpendicular FG. Bisect the whole arc BG and join the

mid-point H by great-circle-arcs with A and F.

The triangles EFG and DCE are congruent (Theorem 15), so FG=
DC = AB.

The triangles ABH and HGF are likewise congruent, since they are

right angled and have equal perpendicular sides, consequently AH and

AF pertain to one circle, the arc AHF= n, ADEF likewise= n, the

angle HAD= HFE= |S - BAH= £S - HFG= £S - HFE-EFG
— £S—HAD-7r+|S; consequently, angle HFE= |(S— 7r); or what

is the same, this equals the size of the lune AHFDA, which again is

equal to the quadrilateral ABCD, as we easily see if we pass over from

the one to the other by first adding the triangle EFG and then BAH
and thereupon taking away the triangles equal to them DCE and HFG.

Therefore £(S—n) is the size of the quadrilateral ABCD and at the

same time also that of the spherical triangle in which the sum of the

three aDgles is equal to S.
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28. If three planes cut each other in parallel lines, then the sum of the

three surface angles equals two right angles.

Let AA', BB' CC (Fig. 20) be three parallels made by the inter-

section of planes (Theorem 25). Take upon them at random three

A

Fig. 20.

points A, B, C, and suppose through these a plane passed, which con-

sequently will cut the planes of the parallels along the straight lines

AB, AC, and BC. Further, pass through the line AC and any point

D on the BB', another plane, whose intersection with the two planes of

the parallels AA' and BB', CC and BB' produces the two lines AD
and DC, and whose inclination to the third plane of the parallels AA'
and CC we will designate by w.

The angles between the three planes in which the parallels lie will

be designated by X, Y, Z, respectively at the lines AA', BB', CC;
finally call the linear angles BDC= a, ADC — b, ADB= c.

About A as center suppose a sphere described, upon which the inter-

sections of the straight lines AC, AD AA' with it determine a spherical

triangle, with the sides p, q, and r. Call its size a. Opposite the side

q lies the angle w, opposite r lies X, and consequently opposite p lies

the angle ^--j-2a—w—X, (Theorem 27).

In like manner CA, CD, CC cut a sphere about the center C, and

determine a triangle of size 8, with the sides p', q', r', and the angles, w
opposite q', Z opposite r', and consequently 7i-\-2j3—w—Z opposite p'.

Finally is determined by the intersection of a sphere about D with

the lines DA, DB, DC, a spherical triangle, whose sides are 1, m, n, and

the angles opposite them w-\-7t—
2ft,

w-J-X—2«, and Y. Consequently

its size «J= £(X-f-Y+Z—n)—a—ft+w.
Decreasing w lessens also the size of the triangles a and

ft,
so that

a-\-ft
—v> can be made smaller than any given number.
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In the triangle 3 can likewise the sides 1 and m be lessened even to

vanishing (Theorem 2 1), consequently the triangle 3 can be placed with

one of its sides 1 or m upon a great circle of the sphere as often as you

choose without thereby filling up the half of the sphere, hence 3 van-

ishes together with w; whence follows that necessarily we must have

X+Y+Z^JT
29. In a rectilineal triangle, the perpendiculars erected at the mid-points

of the sides either do not meet, or they all three cut each other in one point.

Having pre-supposed in the triangle ABC (Fig. 21), that the two per-

pendiculars ED and DF, which are erected upon the sides AB and BC
at their mid points E and F, intersect in the point D, then draw within

the angles of the triangle the lines DA, DB, DC.

In the congruent triangles ADE and BDE (Theorem 10), we have

AD— BD, thus follows also that BD— CD; the

triangle ADC is hence isosceles, consequently the

perpendicular dropped from the vertex D upon the

base AC falls upon G the mid point of the base.

The proof remains unchanged also in the case

when the intersection point D of the two perpen-

diculars ED and FD falls in the line AC itself, or

falls without the triangle. FlG- 21 -

In case we therefore pre-suppose that two of those perpendiculars do

not intersect, then also the third can not meet with them.

30. The perpendiculars which are erected upon the sides of a rectilineal

triangle at their mid-points, must all three he parallal to each other, so soon

as the parallelism of two of them is pre-supposed.

In the triangle ABC (Fig. 22) let the lines DE, FG, HK, be erected

perpendicular upon the sides at their mid-

points D, F, H. "We will in the first place

assume that the two perpendiculars DE and

FG are parallel, cutting the line AB in L
and M, and that the perpendicular HK lies

between them. "Within the angle BLE draw

from the point L, at random, a straight line

LG, which must cut FG somewhere in G, Fia. 22.

how small soever the angle of deviation GLE may be. (Theorem 16).
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Since in the triangle LGM the perpendicular HK can not meet with

MG (Theorem 29), therefore it must cut LG somewhere in P, whence

follows, that HK is parallel to DE (Theorem 1 6), and toMG (Theorems

18 and 25).

Put the side BC— 2a, AC= 2b, AB= 2c, and designate the an-

gles opposite these sides by A, B, C, then we have in the case just

considered

A= 77(b)—/7(c),

B= 77(a)—77(c),

C= /7(a)+/7(b),

as one may easily show with help of the lines AA', BB', CC, which

are drawn from the points A, B, C, parallel to the perpendicular HK
and consequently to both the other perpendiculars DE and FG (Theo-

rems 23 and 25).

Let now the two perpendiculars HK and FG be parallel, then can

the third DE not cut them (Theorem 29), hence is it either parallel to

them, or it cuts AA'.

The last assumption is not other than that the angle

C>77(a)+/7(b.)

If we lessen this angle, so that it becomes equal to 77(a) -f- 77(b),

while we in that way give the line AC the new position CQ, (Fig. 23),

and designate the size of the third side BQ by 2 c', then must the angle

CBQ at the point B, which is increased, in accordance with what is

proved above, be equal to

77(a)—77(c')> 77(a)—77(c),

whence follows c' >c (Theorem 23).

A

B
Fig. 23.

In the triangle ACQ are, however, the angles at A and Q equal,

hence in the triangle ABQ must the angle at Q be greater than that at

the point A, consequently is AB>BQ, (Theorem 9); that is c>c'.

31. We call boundary line (oricycle) that curve lying in a plane for

which all perpendiculars erected at the mid-points of chords are parallel to

each other.
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In conformity with this definition we can represent the generation of

a boundary line, if we draw to a given line AB (Fig. 24) from a given

Hi

Fig. 24.

point A in it, making different angles CAB= /7(a), chords AC= 2a;

the end C of such a chord will lie on the boundary line, whose points

we can thus gradually determine.

The perpendicular DE erected upon the chord AC at its mid-point D
will be parallel to the line AB, which we will call the Axis of the bound-

ary line. In like manner will also each perpendicular FG- erected at the

mid-point of any chord AH, be parallel to AB, consequently must this

peculiarity also pertain to every perpendicular KL in general which is

erected at the mid-point K of any chord CH, between whatever points

and H of the boundary line this may be drawn (Theorem 30). Such

perpendiculars must therefore likewise, without distinction from AB,

be called Axes of the boundary line.

32. A circle with continually increasing radius merges into the boundary

line.

Given AB (Fig. 25) a chord of the boundary line; draw from the

end-points A and B of the chord two axes

AC and BF, which consequently will

make with the chord two equal angles

BAC= ABF == a (Theorem 31).

Upon one of these axes AC, take any-

where the point E as center of a circle,

and draw the arc AF from the initial point

A of the axis AC to its intersection point

F with the other axis BF.

The radius of the circle, FE, corresponding to the point F will make

on the one side with the chord AF an angle AFE = A and on the
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other side with the axis BF, the angle EFD= y. It follows that the

angle between the two chords BAF= a—ft<ft+y
—a (Theorem 22);

whence follows, a—ft<$y-
Since now however the angle y approaches the limit zero, as well in

consequence of a moving of the center E in the direction AC, when F
remains unchanged, (Theorem 21), as also in consequence of an ap-

proach of F to B on the axis BF, when the center E remains in its

position (Theorem 22), so it follows, that with such a lessening of the

angle y, also the angle a

—

ft,
or the mutual inclination of the two chords

AB and AF, and hence also the distance of the point B on the bound-

ary line from the point F on the circle, tends to vanish.

Consequently one may also call the boundary-line a circle with in-

finitely great radius.

33. Let AA'= BB'= x (Figure 26), be two lines parallel toward

the side from A to A', which parallels serve *.

as axes for the two boundary arcs (arcs on

two boundary lines) AB=s, A'B' =s', then is

s' = se—

x

where e is independent of the arcs s, s' and of Fig. 26.

the straight line x, the distance of the arc s' from s.

In order to prove this, assume that the ratio of the arc s to s' is

equal to the ratio of the two whole numbers n and m.

Between the two axes AA', BB' draw yet a third axis CC, which

so cuts off from the arc AB a part AC= t and from the arc A'B' on

the same side, a part A'C= t'. Assume the ratio of t to s equal to

that of the whole numbers p and q, so that

n p
s= — s', t=— s.

m q

Divide now s by axes into nq equal parts, then will there be mq such

parts on s f and np on t.

However there correspond to these equal parts on s and t likewise

equal parts on s' and t', consequently we have

t s

Hence also wherever the two arcs t and V may be taken between the

two axes AA ; and BB ;
, the ratio of t to t' remains always the same, as
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long as the distance x between them remains the same. If we there-

fore for x= i, put s= es', then we must have for every x

s'= se~x
.

Since e is an unknown number only subjected to the condition 6>i,

and further the linear unit for x may be taken at will, therefore we may,

for the simplification of reckoning, so choose it that by e is to be un-

derstood the base of Napierian logarithms.

"We may here remark, that s'= for x= oo , hence not only does

the distance between two parallels decrease (Theorem 24), but with the

prolongation of the parallels toward the side of the parallelism this at

last wholly vanishes. Parallel lines have therefore the character of

asymptotes.

34. Boundary surface (orisphere) we call that surface which arises

from the revolution of the boundary line about one of its axes, which,

together with all other axes of the boundary-line, will be also an axis

of the boundary-surface.

A. chord is inclined at equal angles to such axes drawn through its end'

points, wheresoever these two end-points may be taken on the boundary-surface.

Let A, B, C, (Fig. 27), be three points on the boundary-surface;

Fig. 27.

AA', the axis of revolution, BB' and CC two other axes, hence AB
and AC chords to which the axes are inclined at equal angles A ;AB
= B'BA, A'AC =C'CA (Theorem 31.)
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Two axes BB', CC, drawn through the end-points of the third chord

BC, are likewise parallel and lie in one plane, (Theorem 25).

A perpendicular DD' erected at the mid-point D of the chord AB
and in the plane of the two parallels AA', BB', must be parallel to the

three axes AA', BB', CC, (Theorems 23 and 25); just such a perpen-

dicular EE ; upon the chord AC in the plane of the parallels AA'; CC
will be parallel to the three axes AA', BB', CC, and the perpendicular

DD'. Let now the angle between the plane in which the parallels AA'
and BB 7 lie, and the plane of the triangle ABC be designated by /7(a),

where a may be positive, negative or null. If a is positive, then erect

FD= a within the triangle ABC, and in its plane, perpendicular upon

the chord AB at its mid-point D.

Were a a negative number, then must FD= a be drawn outside the

triangle on the other side of the chord AB; when a=0, the point F
coincides with D.

In all cases arise two congruent right-angled trianglesAFD and DFB,
consequently we have FA= FB.

Erect now at F the line FF' perpendicular to the plane of the tri-

angle ABC.

Since the angle D'DF— /7(a), and DF=a, so FF' is parallel to

DD' and the line EE', with which also it lies in one plane perpendicu-

lar to the plane of the triangle ABC.

Suppose now in the plane of the parallels EE', FF' upon EF the per*

pendicular EK erected, then will this be also at right angles to the plane

of the triangle ABC, (Theorem 13), and to the line AE lying in this

plane, (Theorem 11); and consequently must AE, which is perpendicu-

lar to EK and EE', be also at the same time perpendicular to FE,

(Theorem 11). The triangles AEF and FEC are congruent, since they

are right-angled and have the sides about the right angles equal, hence is

AF= FC= FB.

A perpendicular from the vertex F of the isosceles triangle BFC let

fall upon the base BC, goes through its mid-point G; a plane passed

through this perpendicular FG and the line FF' must be perpendicular

to the plane of the triangle ABC, and cuts the plane of the parallels

BB', CC, along the line GG', which is likewise parallel to BB' and

CC, (Theorem 25); since now CG is at right angles to FG, and hence

at the same time also to GG', so consequently is the angle C'CG
= B'BG, (Theorem 23).
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Hence follows, that for the boundary-surface each of the axes may

be considered as axis of revolution.

Principal-plant we will call each plane passed through an axis of the

boundary surface.

Accordingly every Principal-plane cuts the boundary-surface in the

boundary line, while for another position of the cutting plane this in-

tersection is a circle.

Three principal planes whicn mutually cut each other, make with

each other angles whose sum is n, (Theorem 28).

These angles we will consider as angles in the boundary-triangle

whose sides are arcs of the boundary-line, which are made on the bound-

ary surface by the intersections with the three principal planes. Con-

sequently the same interdependence of the angles and sides pertains to

the boundary-triangles, that is proved in the ordinary geometry for the

rectilineal triangle.

35. In what follows, we will designate the size of a line by a letter

with an accent added, e. g. x\ in order to indicate that this has a rela.

tion to that of another line, which is represented by the same letter

without accent x, which relation is given by the equation

/7(x)+ #(*') = fr-

Let now ABC (Fig. 28) be a rectilineal right-angled triangle, where

the hypothenuse AB= c, the other sides AC= b, BC = a, and the

Fig. 28.

angles opposite them are

BAC= /7(a), ABC= Htf).
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At the point A erect the line AA' at right angles to the plane of the

triangle ABC, and from the points B and C draw BB' and CC parallel

to AA'.

The planes in which these three parallels lie make with each other

the angles: 11(a) at AA', a right angle at CC (Theorems 11 and 13),

consequently f[(a') at BB' (Theorem 28).

The intersections of the lines BA, BC, BB' with a sphere described

about the point B as center, determine a spherical triangle mnk, in which

the sides are mn= /7(c), kn= II
(ft),

mh— /7(a) and the opposite angles

are /7(b), /7(«'), $„.

Therefore we must, with the existence of a rectilineal triangle whose

sides are a, b, c and the opposite angles /7(a), II
(ft) fa, also admit the

existence of a spherical triangle (Fig. 29) with the sides /7(c), Tl
(ft),

/7(a) and the opposite angles /7(b), /7(a'), fa.

Fia. 29.

Of these two triangles, however, also inversely the existence of the

spherical triangle necessitates anew that of a rectilineal, which in con-

sequence, also can have the sides a, a',
ft,

and the oppsite angles /7(b'),

n(c), fa.

Hence we may pass over from a, b, c, a,
ft,

to b, a, c,
ft,

a, and also to a,

a',
ft,

b', c.

Suppose through the point A (Fig. 28) with AA' as axis, a bound-

ary-surface passed, which cuts the two other axes BB', CC, in B" and
C, and whose intersections with the planes the parallels form a bound-
ary-triangle, whose sides are B"C"=j9, C'A= ^ B"A= r, and the

angles opposite them /7(a), /7(a'), fa, and where consequently (Theo-

rem 34):

p= r sin /7(a), q= r cos 77(a).

Now break the connection of the three principal-planes along the line

BB', and turn them out from each other so that they with all the lines

lying in them come to lie in one plane, where consequently the arcs p,

q, r will unite to a single arc of a boundary-line, which goes through the
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point A and has AA ; for axis, in such a manner that (Fig. 30) on the

one side will lie, the arcs q and p, the side b of the triangle, which is

Fig. 30.

perpendicular to AA' at A, the axis CC going from the end of b par-

allel to AA' and through C* the union point of p and q, the side a per-

pendicular to CC at the point C, and from the end-point of a the axis

BB' parallel to AA' which goes through the end-point B" of the arc p.

On the other side of AA' will lie, the side c perpendicular to AA' at

the point A, and the axis BB' parallel to AA', and going through the

end-point B' of the arc r remote from the end point of b.

The size of the line CC* depends upon b, which dependence we will

express by CC* =/ (b).

In like manner we will have BB ff =/ (c).

If we describe, taking CC ' as axis, a new boundary line from the

point C to its intersection D with the axis BB' and designate the arc

CD by t, then is BD= f (a).

BB'= BD+DB" == BD+CC, consequently

/(c)=/(»)+/(b).

Moreover, we perceive, that (Theorem 83)

t=pe*W =r sin /7(a) e/<b )

.

If the perpendicular to the plane of the triangle ABC (Fig. 28) were

erected at B instead of at the point A, then would the lines c and r remain

the same, the arcs q and t would change to t and q, the straight lines a
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and b into b and a, and the angle J]
(
a) into H

(ft),
consequently we

would have

g-=rsin II
(ft)

eM,
whence follows by substituting the value of q,

cos 11(a) = sin II
(ft)

e«*\

and if we change a and
ft

into b' and c,

sin II (b)= sin U (c) e «a
>

;

further, by multiplication with e-Kb>

sin IJ (b) e/(b>= sin /7(c) e/<c>

Hence follows also

sin n (a) e'<»>= sin /7(b) e/W.

Since now, however, the straight lines a and b are independent of

one another, and moreover, for b=0, /(b)=0, /7(b)=^, so we have

for every straight line a

e _/(a) =sin Jj(&y
Therefore,

sin II (c)= sin /7(a) sin /7(b),

sin II
(ft)
= cos /7(a) sin /7(a).

Hence we obtain besides by mutation of the letters

sin /7(a)= cos II
(ft)

sin /7(b),

cos /7(b)= cos /7(c) cos /7(a),

cos /7(a)= cos /7(c) cos 77"
(j9).

If we designate in the right-angled spherical triangle (Fig. 29) the

sides /7(c), II
(ft),

/7(a), with the opposite angles /7(b), /7(a'), by the

letters a, b, c, A, B, then the obtained equations take on the form of

those which we know as proved in spherical trigonometry for the right*

angled triangle, namely,

sin a=sin c sin A,

sin b=sin c sin B,

cos A=cos a sin B,

cos B=cos b, sin A,

cos c=cos a, cos bj

from which equations we can pass over to those for all spherical tri*

angles in general.

Hence spherical trigonometry is not dependent upon whether in a
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rectilineal triangle the sum of the three angles is equal to two right

angles or not.

36. "We will now consider anew the right-angled rectilineal triangle

ABC (Fig. 31), in which the sides are a, b, c, and the opposite angles

JI{a), II (ftfcr.

Prolong the hypothenuse c through

the point B, and make BD=/3; at the

point D erect upon BD the perpendicu-

lar DD', which consequently will be

parallel to BB' , the prolongation of the

side a beyond the point B. Parallel to

J)jy from the point A draw AA', which

is at the same time also parallel to CB',

(Theorem 25), therefore is the angle

A'AD=/7(c+/3),

A'AC= 77 (b), consequently

/7(b)=/7(a)+//(c+#.
Fia 31

If from B we lay off y? on the hypoth-

enuse c, then at the end point D, (Fig.

32), within the triangle erect upon AB
the perpendicular DD', and from the

point A parallel to DD' draw AA', so

will BC with its prolongation CC be the

third parallel; then is, angle CAA'=/7
(b), DAA'=/7(c

—

ft),
consequentlyJT(c—

/?)=/7(a)+/7(b). The last equation is

then also still valid, when c=$ or c<^3.

If c=ft (Fig. 33), then the perpendicu-

ular AA' erected upon AB at the pointAFig. 32.
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is parallel to the side BC=a, with its prolongation, CO', consequently

-A o B

we have 77(a)+/7(b)=^, whilst also 77(c—$=-£;r, (Theorem 23).

If c<ft, then the end of
ft

falls beyond the point A at D (Fig. 34)

upon the prolongation of the hypothenuse AB. Here the perpendicu-

lar DD' erected upon AD, and the line AA' parallel to it from A, will

if likewise be parallel to the side BC=a,
with its prolongation CC\
Here we have the angle DAA'= 77

(ft
—c), consequently

Ji(a)+n(b) =7t-n{ft-c)=ii{c-ft),
(Theorem 23).

The combination of the two equations

found gives,

277(b)=77(c-/3)+77(c+/2),

277(a)- 77(c-/?)-77(c+/9),

whence follows

cos 77(b)_cos [ £77(c—ft)+$ 77(c+y9)]

cos 77(a) ~cos [ £77(c—ft)—£ 77(c+/2)]

Substituting here the value, (Theo-

rem 35)

cos 77(b)

Fig. 34. =cos77(c),

cos 77(a)

we have [tan£77 (c)]2=tan £77(c—ft)
tan £77 (c+/3).

Since here
ft

is an arbitrary number, as the angle II (ft)
at the one
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side of c may be chosen at will between the limits and ^rr, conse-

quently 8 between the limits and oo , so we may deduce by taking

consecutively ft=c, 2c, 3c, &c, that for every positive number n, [tan£

/7(c)] »=tan£/7(nc).

If we consider n as the ratio of two lines x and c, and assume that

cot£77(c)=ec
,

then we find for every line x in general, whether it be positive or nega-

tive, tan£77(x)=e—*

where e may be any arbitrary number, which is greater than unity,

since 77(x)=0 for x=oo .

Since the unit by which the lines are measured is arbitrary, so we

may also understand by e the base of the Napierian Logarithms.

37. Of the equations found above in Theorem 35 it is sufficient to

know the two following,

sin /7(c)=. sin /7 fa) sin /7(b)

sin77 (a)=sin 77(b) cos 77(/3),

applying the latter to both the sides a and b about the right angle, in

order irom the combination to deduce the remaining two of Theorem

35, without ambiguity of the algebraic sign, since here all angles are

acute.

In a similar manner we attain the two equations

(1.) tan 77(c)=sin 11(a) tan 77(a),

(2.) cos 77(a)=cos 77(c) cos II (/?).

We will now consider a rectilineal triangle whose sides are a, b, c,

(Fig. 35) and the opposite angles A, B, C.

If A and B are acute angles, then the

perpendicular p from the vertex of the

angle C falls within the triangle and cuts

the side c into two parts, x on the side of

the angle A and c—x on the side of the

Fia. 35. angle B. Thus arise two right-angled

triangles, for which we obtain, by
#
application of equation (1),

tan 77(a)=sin B tan 77(p),

tan 77(b)—sin A tan77 (p),
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which equations remain unchanged also when one of the angles, e.g. B,

is a right angle (Fig. 36) or and obtuse angle (Fig. 37).

c c

Fig. 36.

Therefore we have universally for every triangle

(3.) sin A tan /7(a)=sin B tan /7(b).

For a triangle with acute angles A, B, (Fig. 35) we have also (Equa-
tion 2),

cos /7(x)=cos A cos /7(b),

cos /7(c—x)=cos B cos /7(a)

which equations also relate to triangles, in which one of the angles A
or B is a right angle or an obtuse angle.

As example, for B=|tt (Fig. 36) we must take x=c, the first ©qua-

tion then goes over into that which we have found above as Equation 2,

the other, however, is self-sufficing.

For B>|tt (Fig. 37) the first equation remains unchanged, instead

of the second, however, we must write correspondingly

cos /7(x—c)=cos (tt— B) cos /7(a);

but we have cos /7(x— c) ==—cos /7(c— x)

(Theorem 23), and also cos (re—B)=—cos B.

If A is a right or an obtuse angle, then must c—x and x be put for

x and c— x, in order to carry back this case upon the preceding.

In order to eliminate x from both equations, we notice that (Theo-

rem 36)

cos/tfc-^-
l-[tan£/?(c-x)P

1—

€

go

i_j_e2x— 8c

1—[tan |/7(c)] 2 [cot £/7(x)]»
:

1 -f[tan £/7(c)]2[cot £/7(x)]»

cos /7(c)—cos/7(x)

1—cos /7(c)cos/7(x)
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If we substitute here the expression for cos /7(x), cos/7(c—x), weob-

tain

cob TT(c\
cos H(*) cos B-f-cos/7(b) cosA
l-fcos/7(a) cos/7(b) cosA cosB

whence follows

cos /7(a) cosB= cos ff(c)-cosA cos/7(b)
v '

]—cosAcos77(b) cos 77(c)

and finally

[sin /7(c)]*=[1—cosBcos /7(c) cos /7(a) ][1 -cosA cos /7(b) cos /7(c)]

In the same way we must also have

[sin /7(a) ]«=[1—cos C cos /7(a) cos /7(b)
] [1—cosB cos /7 (c) cos /7(a)]

[sin /7(b) ]«=[1—cosA cos /7 (b) cos /7(c)
]
[1—-cosC cos /7(a) cos /7(b)]

From these three equations we find

[8in/7(b)]2[sin/7(c)]2
ri _ „t

^/(a)]^ =[l-cosAcos /7(b)cos/7(c)p.

Hence follows without ambiguity of sign,

(5.) cosA cos /7(b) cos /7(c)
>* /7(b) sin Z7(c)_.

Lw v ' ' sm/7(a)

If we substitute here the value of sin /7(c) corresponding to equa-
tion (3.)

. „. . sinA „,
sm /7(c)=

. tan /7 (a) cos // (c)
sinC ' v '

then we obtain

cos /7(c)= cos /7(a) sinC _^smA sin /7(b)+cosA sin C cos/7 (a) cos /7(b);
but by substituting this expression for cos /7(c) in equation (4),

(6.) cotA sin C sin /7 (b)+cos C==
cos/y

(
b
)

cos /7(a)

By elimination of sin /7(b) with help of the equation (3) comes

cos /7(a) n cosA „
c"osl7(b)

C08C=1—sIuTT
81* 8in/7

(
a)'

In the meantime the equation (6) .gives by changing the letters,

COS 11 1 8i\

j^tt=cotB sin C sin JI (a)-i-cos C.
cos /7(b) v ' r
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From the last two equations follows,

,»\ a . t> ~ sin B sin C
(7.

)

cos A-4-cos B cosC——:
—„. .-

v J '

sin 77(a)

All four equations for the interdependence of the sides a, b, c, and

the opposite angles A, B, C, in the rectilineal triangle will therefore be,

[Equations (3), (5), (6), (7).]

'sin A tan 77(a) = sin B tan 77 (b),

sin 77(b) sin /7(c)

,
cos A cos 77(b) cos 77(c)H ^Jjjaj

= *'

(8.) / cos 77(b)
v

' Scot A sin C sin 77(b)+ cosC= v '

cosA -\- cos B cos C =

cos 77 (a)
'

sin B sin C
sin 77 (a)

If the sides a, b, c, of the triangle are very small, we may content our-

selves with the approximate determinations. (Theorem 36.)

cot 77(a) = a,

sin 77 (a) = 1 — £a*

cos 77 (a) = a,

and in like manner also for the other sides b and c.

The equations 8 pass over for such triangles into the following:

b sin A = a sin B,

a 2 =b 2
-f c 8 — 2bc cos A,

a sin (A -j- C) = b sin A,

cos A -f-
cos (B -j- C) = 0.

Of these equations the first two are assumed in the ordinary geom-

etry j the last two lead, with the help of the first, to the conclusion

A4-B + C=tt.

Therefore the imaginary geometry passes over into the ordinary, when

we suppose that the sides of a rectilineal triangle are very small.

I have, in the scientific bulletins of the University of Kasan, pub-

lished certain researches in regard to the measurement of curved lines,

of plane figures, of the surfaces and the volumes of solids, as well as in

relation to the application of imaginary geometry to analysis.

The equations (8) attain for themselves already a sufficient foundation

for considering the assumption of imaginary geometry as possible.

Hence there is no means, other than astronomical observations, to use
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for judging of the exactitude which pertains to the calculations of the

ordinary geometry.

This exactitude is very far-reaching, as I have shown in one of my
investigations, so that, for example, in triangles whose sides are attain-

able for our measurement, the sum of the three angles is not indeed dif:

•

ferent from two right-angles by the hundredth part of a second.

In addition, it is worthy of notice that the four equations (8) of

plane geometry pass over into the equations for spherical triangles, if

we put a ^/— 1, b y'— 1, c *J— 1, instead of the sides a, b, c; with this

change, however, we must also put

sin H(&) =v ' cos (a),

cos /7(a) = (/y/— 1) tan a,

tan II (a) =-.
sina^y— 1),

and similarly also for the sides b and c.

In this manner we pass over from equations (8) to the following:

sinA sin b = sin B sin a,

cosa = cos b cos c -j- sin b sin c cos A,

cotA sinC -j-cosC cosb = sinb cot a,

cosA = cos a sinB sin C — cos B cos 0.



TRANSLATOR'S APPENDIX.

ELLIPTIC GEOMETRY.

Gauss himself never published aught upon this fascinating subject,

Geometry Non-Euclidean; but when the most extraordinary pupil of

his long teaching life came to read his inaugural dissertation before the

Philosophical Faculty of the University of Goettingen, from the three

themes submitted it was the choice of Gauss which fixed upon the one

"Ueber die Hypothesen welche der Geometric zu Grunde liegen."

Gauss was then recognized as the most powerful mathematician in the

world. I wonder if he saw that here his pupil was already beyond him,

when in his sixth sentence Riemann says, " therefore space is only a

special case of a three-fold extensive magnitude," and continues:

" From this, however, it follows of necessity, that the propositions of

geometry can not be deduced from general magnitude-ideas, but that

those peculiarities through which space distinguishes itself from other

thinkable threefold extended magnitudes can only be gotten from ex-

perience. Hence arises the problem, to find the simplest facts from

which the metrical relations of space are determinable— a problem

which from the nature of the thing is not fully determinate; for there

may be obtained several systems of simple facts which suffice to deter-

mine the metrics of space; that of Euclid as weightiest is for the pres-

ent aim made fundamental. These facts are, as all facts, not necessary,

but only of empirical certainty; they are hypotheses. Therefore one

can investigate their probability, which, within the limits of observation,

of course is very great, and after this judge of the allowability of their

extension beyond the bounds of observation, as well on the side of the

immeasurably great as on the side of the immeasurably small."

Riemann extends the idea of curvature to spaces of three and more

dimensions. The curvature of the sphere is constant and positive, and

on it figures can freely move without deformation. The curvature of

the plane is constant and zero, and on it figures slide without stretching.

The curvature of the two-dimentional space of Lobachevski and

[47]
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Bolyai completes the group, being constant and negative, and in it fig-

ures can move without stretching or squeezing. As thus corresponding

to the sphere it is called the pseudo-sphere.

In the space in which we live, we suppose we can move without de-

formation. It would then, according to Riemann, be a special case of

a space of constant curvature. "We presume its curvature null. At

once the supposed fact that our space does not interfere to squeeze us

or stretch us when we move, is envisaged as a peculiar property of our

space. But is it not absurd to speak of space as interfering with any-

thing? If you think so, take a knife and a raw potato, and try to cut

it into a seven-edged solid.

Further on in this astonishing discourse comes the epoch-making idea,

that though space be unbounded, it is not therefore infinitely great.

Riemann says: "In the extension of space-constructions to the im-

measurably great, the unbounded is to be distinguished from the in-

finite; the first pertains to the relations of extension, the latter to the

size-relations.

"That our space is an unbounded three-fold extensive manifoldness, is

a hypothesis, which is applied in each apprehension of the outer world,

according to which, in each moment, the domain of actual perception is

filled out, and the possible places of a sought object constructed, and

which in these applications is continually confirmed. The unbounded-

ness of space possesses therefore a greater empirical certainty than any

outer experience. From this however the Infinity in no way follows.

Rather would space, if one presumes bodies independent of place, that

is ascribes to it a constant curvature, necessarily be finite so soon as this

curvature had ever so small a positive value. One would, by extend,

ing the beginnings of the geodesies lying in a surface-element, obtain

an unbounded surface with constant positive curvature, therefore a sur-

face which in a homaloidal three-fold extensive manifoldness would

take the form of a sphere, and so is finite."

Here we have for the first time in human thought the marvelous per-

ception that universal space may yet be only finite.

Assume that a straight line is uniquely determined by two points, but

take the contradictory of the axiom tjjaat a straight line is of infinite

size; then the straight line returns into itself, and two having inter-

sected get back to that intersection point.



BIBLIOGRAPHY.

A bibliography of non-Euclidean literature down to the year 1878

was given by Halsted, "American Journal of Mathematics," vols, i, ii,

containing 81 authors and 174 titles, and reprinted in the collected

works of Lobachevski (Kazan, 1886) giving 124 authors and 272 titles.

This was incorporated in Bonola's Bibliography of the Foundations of

Geometry (1899) reprinted (1902) at Kolozsvar in the Bolyai Memorial

Volume. In 1911 appeared the volume : Bibliography of Non-Euclidean

Geometry by Duncan M. Y. Sommerville ; London, Harrison and Sons.

The Introduction says: "The present work was begun about nine

years ago. It was intended as a continuation of Halsted's bibliography,

but it soon became evident that the growth of the subject rendered such

diffuse treatment practically impossible, and short abstracts of the

works would have to be dispensed with. The object is to produce as

far as possible a complete repository of the titles of all works from

the earliest times up to the present which deal with the extended

conception of space, and to form a guide to the literature in an easily

accessible form. It includes the theory of parallels, non-euclidean ge-

ometry, the foundations of geometry, and space of n dimensions."

In 1913 Teubner issued in two parts Paul Stackers important book:

Wolfgang und Johann Bolyai. Geometrische Untersuchungen. John com-

pares Lobachevski's researches with his own. The profound philosophic

import of non-euclidean geometry forms an integrant part of "The

Foundations of Science," by H. Poincarg; Vol. I of the series Science

and Education, The Science Fress, New York City, 1914. The Transac-

tions of the Royal Society of Canada, Vol. XII, Section III, contains

a striking Presidential Address by Alfred Baker on The Foundations

of Geometry. Of the cognate works issued by The Open Court Pub.

Co., we mention only Euclid's Parallel Postulate by Withers. Scores

of errors are pointed out in "Non-Euclidean Geometry in the Encyclo-

paedia Britannica," Science, May 10, 1912.

And now at last the theory of relativity has made non-euclidean

geometry a powerful machine for advance in physics.

Says Vladimir Varicak in a remarkable lecture, "Ueber die nicht-

[49]
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euklidische Interpretation der Relativtheorie," (Jahresber. D. Math.

Ver., 21, 103-127), '

I postulated that the phenomena happened in a Lobachevski space,

and reached by very simple geometric deduction the formulas of the

relativity theory. Assuming non-euclidean terminology, the formulas

of the relativity theory become not only essentially simplified, but

capable of a geometric interpretation wholly analogous to the inter-

pretation of the classic theory in the euclidean geometry. And this

analogy often goes so far, that the very wording of the theorems of

the classic theory may be left unchanged.


