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Preface

This is my record of a course called Geometriler, that is, Ge-
ometries (in the plural). We studied first projective geometry,
starting with Pappus of Alexandria as a source, but consid-
ering also Desargues’s Theorem (albeit not in the original);
then we turned to non-Euclidean or hyperbolic geometry, with
Lobachevski as a source. Students presented results at the
board as much as possible. Class was conducted in Turkish.
The Pappus text was in Turkish, as translated by me from
the Greek; the Lobachevski was in English, in the translation
by Halstead. A summary of the projective geometry that we
would cover is part of the record of the first day of class. Us-
ing Euclid’s theory of proportion as Pappus did, we proved
the Hexagon Theorem. From this we proved Desargues’s The-
orem. But this theorem could have been used to develop the
theory of proportion in the first place (provided we assumed
that, once a designated point at infinity was removed, the re-
maining points of a projective line were ordered).


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Introduction

In the mathematics department of MSGSÜ, the elective course
called Geometries (Geometriler, MAT ) has the following
description on the department website:

Euclidean Geometry and Coordinates. Introduction to
Affine, Projective, and Hyperbolic Geometries.

The recommended text is H.S.M. Coxeter, Introduction to Ge-
ometry (second edition), John Wiley & Sons []. I taught the
course in the fall semester of –. The present document is
my record of what happened. Briefly, we covered “only” pro-
jective and hyperbolic geometry, with little use of Coxeter’s
text.

The Geometries course had been last offered in the fall
semester of – by Özer Öztürk. I was then still at METU
in Ankara, but Özer and I were collaborating to translate the
 propositions of first book of Euclid’s Elements from Greek
into Turkish []. When I moved to Mimar Sinan in the follow-
ing year, Özer and I led the two sections of a new course for
incoming students, called Introduction to Euclidean Geome-
try (Öklid Geometrisine Giriş, MAT ). Here the students
themselves presented Euclid’s propositions at the board, in
the manner that I knew from my own alma mater, St John’s
College [].

See Appendix E., page , on referring to first-year students as
freshmen.





The Euclid course had three sections in the following year,
and four sections after that, for a total of about sixty students
each year. It is fortunate that we have been able to make the
sections of the Euclid course small, so that each student both
has more opportunities to go to the board and is less able
to hide in the back of the room. Being part of a “fine arts”
university, rather than a “technical” university, our department
has few service courses to teach; thus our teaching energies can
be focussed on our “own” students. (The METU mathematics
department taught calculus to just about every student at the
university; such is not the case at MSGSÜ.)

The language of instruction at METU was English. At Mi-
mar Sinan it is Turkish. This was one reason why it was desir-
able for me to move here: I would learn Turkish better. In the
Euclid course, the students would do most of the talking, to
ease my transition to using Turkish. This was the expectation,
at least. In the event, my spoken intervention in the class was
required from the beginning, in unexpected ways.

Meanwhile, in translating Euclid, I had broken the Greek
into phrases, which I translated quite literally into English;
Özer then rendered them in Turkish. Our first edition of Eu-
clid was in three parallel columns: English, Greek, and Turk-
ish. Later I removed the English tried to harmonize the Turk-
ish better with the Greek. Turkish nouns being declined like
Greek nouns, one can usually maintain Euclid’s word order in
Turkish. The result may not be good Turkish style. This is
not necessarily bad, since it should induce students to come
up with their own words for the mathematics.

Eventually I wrote up more than fifty exercises keyed to
Euclid. These were statements for which students should find
proofs, using just the propositions up to specified points in
the first book of the Elements. I led a section of the Euclid

Introduction 



course for four years. In the fifth year, I took a break. Given
in that year, the Geometries course was a chance to see how
the students had developed since their first year. I had them
go to the board again to present propositions.

We started the Geometries course with several propositions
from Book VII of the Collection of Pappus of Alexandria.
These are the propositions that establish what is now known
as Pappus’s Hexagon Theorem of projective geometry. I had
translated into Turkish the first nineteen of the thirty-eight
lemmas that Pappus gives as an aid for reading Euclid’s (now-
lost) Porisms. These lemmas are numbered consecutively with
Roman numerals. For translating, I used Hultsch’s edition []
of the Greek text until I was almost finished. Only then did I
learn about Jones’s edition and English translation []. Pro-
fessor Jones kindly made this available to me, and it helped
to clarify some points.

With the Turkish version of Pappus (which should be avail-
able through my webpage), I provided an introduction, some
of whose contents I would discuss on the first day of class. See
then my record of that day for more information.

After projective geometry, we turned to what is now called
hyperbolic geometry. We read Lobachevski in Halstead’s En-
glish translation of  [].

I attempted to write the following record of each day of class
in the present tense. I may sometimes have slipped into the
past tense, especially if I was actually writing much later than
the events described. Footnotes may be in the past tense.
Chapters are numbered according to the week of the semester.

Class met every week for two hours, on Tuesday mornings,
–. Each hour included a ten-minute break, in principle, so
that we were really in session –: and –:. Moreover,
students who arrived by mass transit (and this was all but one

 Geometries



of them) were never on time. Most courses in the department
meet three hours a week: so I had to remember not to expect
from my students the same amount of work as in one of those
courses.

Introduction 



Part I.

Projective Geometry





. September 

Though seven students are registered for my course, in the first
class only Verity and Lucky are present. Other departments
in our university seem not to bother holding class in the first
week; but ours does. Since Verity and Lucky are willing to
listen, I talk a lot to them about what we are going to do. I
give them printouts of the Pappus translation and arrange for
presentations next week as follows:

Verity: Lemma VIII;
Lucky: Lemma IV.
The remainder of this chapter, first drafted more than three
weeks after the class, is based more on the written notes that
I prepared for the day than on my memory of the day. It is
an overview of what will be covered in the course, as far as
projective geometry is concerned.

Suppose five points, A through E, fall on a straight line as in
Figure .a, and F is a random point not on the straight line.
Join FA, FB, and FC. Now let G be a random point on FA,
as in Figure .b, and join GD and GE. Supposing these two

The names are pseudonyms. In the underlying LATEX file, the name
of a student called Barış would be written as a command \Baris, which
might be defined so as to print a capitalized word such as “Peace” (which
happens to be what Barış means in Turkish).

I added this information about who was to present what after the
whole course is over. The information must be correct, since Verity and
Lucky did in fact present these propositions in the following week. How-
ever, it made no logical difference which of VIII and IV was presented
first.
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Figure .. The Complete Quadrangle Theorem set up

straight lines cross FB and FC at H and K respectively, join
HK as in Figure .. If this straight line crosses the original
straight line AB at L, then L depends only on the original five
points, not on F or G. This is a consequence of Lemma IV
in our text of Pappus. Let us call this result the Complete

Quadrangle Theorem. It is about how the straight line AB
crosses the six straight lines that pass through pairs of the four
points F , G, H , and K. Any such collection of four points,
no three of which are collinear, together with the six straight
lines that they determine, is called a complete quadrangle

(tam dörtgen). See also Figure . on page .
In Figure ., if it should turn out that HK ‖ AB, this

too happens independently of the choice of F or G. We shall
say in this case that the straight lines HK and AB intersect

I don’t think I actually defined this term in class today; but I would
do so in the following week, as recorded on page .

This result is basically Lemmas I and II of Pappus. By Lemma V,
under the assumption that C and D coincide, if L and A should coincide,
this always happens. Lemma VI and VII concern cases where GK ‖ AB,
that is, E is at infinity. I did not say this in class today.

 Geometries
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Figure .. The Complete Quadrangle Theorem

at infinity. We define the points of the projective plane

(projektif düzlem) to be:
• the points of the Euclidean plane, and
• points at infinity (sonsuzdaki noktalar), one for each

class of parallel straight lines.
The points at infinity compose the line at infinity (sonsuz-
daki doğru). Thus the projective plane respects two axioms:

) any two straight lines intersect at exactly one point,
) any two points lie on exactly one straight line.

The Complete Quadrangle Theorem can be understood as a
theorem about the projective plane.

Later, through the work of Lobachevski, we shall study
the hyperbolic plane (hiperbolik düzlem), where, through
a given point, more than one straight line will pass that never
intersects a given straight line, as in Figure ..

Meanwhile, after Pappus’s proof of the Complete Quadran-
gle Theorem, we are going to work through another proof,

. September  



bc

Figure .. Straight lines in the hyperbolic plane

using Desargues’s Theorem. Girard Desargues was a con-
temporary of Descartes. The theorem named for him is that
if, as in Figure ., the straight lines through corresponding
vertices of triangles ΑΒΓ and ∆ΕΖ meet at one point (namely
Η), then the points Θ, Κ, and Λ, where corresponding sides of
the triangles intersect, are on a straight line. This is true in
the projective plane: that is, some of the points Η, Θ, Κ, and
Λ can be at infinity.

We shall prove Desargues’s Theorem by using Pappus’s

Hexagon Theorem. This theorem is that if the vertices of a
hexagon lie alternately on two straight lines, then the points of
intersection of the three pairs of opposite sides of the hexagon
also lie on a straight line. Thus in Figure ., which shows
a hexagon ABCDEF , if ACE and BDF are straight, then
GHK is straight.

Pappus’s Theorem is Lemmas VIII, XII and XIII in our text.
Strictly, these cover only three of six cases of the theorem, since
the two straight lines on which the vertices of the hexagon lie

I vacillate between using Latin and Greek letters for points in dia-
grams. In the Pappus translation, I have retained Pappus’s Greek letters;
but students should not feel that using Greek letters is obligatory in their
own work. A possible modern practice is to use capital Latin letters for
points, Latin minuscules for straight lines, and capital Greek letters for
planes; but I am not following this practice.

 Geometries



bc
Α

bc
Β

bc
Γ

bc

bc

bc

∆

Ε

Ζ

bcΗ

bc

bc

bc

Θ

Κ

Λ

Figure .. Desargues’s Theorem

may be parallel or not, and none, one, or all three of the
pairs of opposite sides of the hexagon may be parallel. The
possibilities are tabulated in Figure . on page .

Lemma VIII is the case where the points of intersection of
two pairs of opposite sides of the hexagon are at infinity, that
is, the pairs are parallel, as in Figures . and . (pages  and
). The conclusion is that the third pair of opposite sides are
parallel. Pappus proves only the case where the two straight
lines on which the vertices of the hexagon lie alternately are
not parallel; the other case is easier. Pappus’s proof is based
on Propositions  and  of Book I of Euclid’s Elements:
namely, since two triangles ABC and ABD have a common
base AB as in Figure ., the triangles are equal if and only if
CD ‖ AB.

Pappus’s Lemmas XII and XIII are the case of the Hexagon
Theorem where two pairs of opposite sides intersect, as in Fig-
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Figure .. Pappus’s Hexagon Theorem

A B

C D

Figure .. Triangles on the same base

ure ., or in Figure . on page . The case where only one
pair of opposite sides are parallel, as in Figure . on page ,
is apparently not treated.

One may identify even more cases of Pappus’s Theorem, if
one considers different orderings of the vertices of the hexagon
on the two straight lines; but these orderings should not affect
the proofs.

Pappus’s proofs rely on Lemmas III, X, and XI. These in
turn require a theory of proportion. The key element of
this theory is Proposition  of Book VI of Euclid’s Elements:
if the straight line DE cuts the sides of triangle ABC as in
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Figure .. The Fundamental Theorem of Proportion

Figure ., then

DE ‖ BC ⇐⇒ AD : DB :: AE : EC. (.)

I propose to call this result the Fundamental Theorem of

Proportion. Here the expression AD : DB denotes a ra-

tio (oran), and AD : DB :: AE : EC denotes a propor-

tion (orantı). One may write the ratio in the modern form
of AD/DB, and the proportion as the equation AD/DB =
AE/EC. Familiar algebraic rules for manipulating such equa-
tions will apply. However, Euclid and Pappus never describe
two ratios as being equal, but only as the same.

We have not actually defined ratios and proportions. Can
we take the Fundamental Theorem, formulated in (.), as a
definition? To do this, we need to know that, in Figure .,
if the lengths AD, DB, AE, and EC are fixed, but the angle

I did not use this term in class that day. Apparently the theorem is
called Thales’s Theorem in Turkish [] and some other languages, as one
can tell from Wikipedia; but the name dates only from the th century
[]. The only historical justification for the name seems to be Plutarch’s
fanciful Dinner of the Seven Wise Men [].

. September  



A B

C

D

E

F

G

Figure .. Proportion and Desargues

BAC changes, then the parallelism (or lack of it) of BC and
DE will not change.

In Figure ., suppose we know BC ‖ DE and BF ‖ DG.
The Fundamental Theorem gives us

AB : BD :: AC : CE, AB : BD :: AF : FG. (.)

By noting that the ratio AB : BD is common to each of these
proportions, if we can conclude

AC : CE :: AF : FG, (.)

then the Fundamental Theorem gives us CF ‖ EG. Euclid’s
definition of proportion does entail that (.) implies (.).
But the Fundamental Theorem by itself does not: the theorem
alone (treated as a definition of proportion) does not entail the
property of transitivity that “sameness of ratio” ought to have.
However, if we know

BC ‖ DE & BF ‖ DG =⇒ CF ‖ EG, (.)

then transitivity of sameness of ratio follows from the Funda-
mental Theorem, even when used as a definition.
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The implication (.) is a special case of Desargues’s Theo-
rem. But we are going to prove this theorem by means of Pap-
pus’s Hexagon Theorem, which in turn will rely on the theory
of proportion embodied in the Fundamental Theorem. Thus
Pappus’s Theorem and the Fundamental Theorem of Propor-
tion are somehow equivalent.

The theory of proportion found in Books V and VI of Eu-
clid’s Elements relies on the so-called Archimedean Axiom.
This is that the difference between unequal finite straight lines
can be multiplied so as to exceed either of these lines. In fact
that axiom is not needed, but one can develop an adequate
theory of proportion, solely on the basis of Book I of the El-
ements. I did this in the first-year course Analytic Geometry
last semester, as follows.

Let a minuscule Latin letter denote a length, that is, the
class of finite straight lines that are equal to a given finite
straight line. A product a · b can denote an area, namely the
class of all plane figures that are equal to a rectangle of width
a and height b. Then we can define

a : b :: c : d ⇐⇒ a · d = b · c.
Since in class today I did not give a name to the Fundamental Theo-

rem, I just said Pappus’s Theorem was equivalent to the theory of propor-
tion. As noted earlier, the proof of Pappus’s Theorem needs, in addition
to proportion, a theory of areas, which requires the points on a straight
line (without the point at infinity) to be ordered, so that one can say
when two areas are being added rather than subtracted.

I did not go into the remainder of this chapter in class today. From
the Analytic Geometry class, I have extensive notes in Turkish. In that
class, I had hoped my Euclidean approach to things would make sense
to the students, who had just spent a semester reading Euclid. Probably
most students preferred to use what they had learned about proportion
in high school, however unjustified it was. I relied on this high-school
knowledge myself, in the Geometries class.
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Figure .. Proposition I. of Euclid’s Elements

If these lengths are as in Figure ., it follows from the El-
ements Proposition I. (and its converse, and I. and )
that a : b :: c : d if and only if, in the right triangles ABC and
CDE, the angles at A and C (respectively) are equal.

We pass to a third dimension, defining the volume a ·b ·c as
the class of solid figures equal to a rectangular parallelepiped

having dimensions a, b, and c. We can now define

a · b : c · d :: e : f ⇐⇒ a · b · f = c · d · e.

This allows us to derive from the proportion

a : b :: c : d

the additional proportions

a2 : b2 :: c2 : d2,

a2 + b2 : b2 :: c2 + d2 : d2.

If we know a2 + b2 = e2 and c2 + d2 = f 2, as in Figure .,
then we can conclude

See Appendix E. (page ) for why this word should be pro-
nounced with the stress on the antepenult.
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Figure .. Similar right triangles

e : b :: f : d.

Ultimately we obtain the Fundamental Theorem.
In present course, we shall also make use of a third dimen-

sion, but in a less algebraic, more geometric way. As noted,
we shall prove Pappus’s Lemma VIII using not proportions,
but areas. By projecting from one plane onto another that
is not parallel to it, we transform some parallel straight lines
into intersecting straight lines, and vice versa. This will give
us the remaining cases of the Hexagon Theorem.

With three applications of the Hexagon Theorem, we can
prove Desargues’s Theorem as sketched in Figures . and
., using in turn the hexagons ΑΒΗΜ∆Γ, Γ∆ΖΕΗΜ, and
ΓΜ∆ΠΝΞ. This gives us (.), as noted, and hence the Funda-
mental Theorem of Proportion.
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Figure .. Proof of Desargues’s Theorem: first steps
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Figure .. Proof of Desargues’s Theorem: last steps
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Lemma XII Lemma XIII

Figure .. Cases of the Hexagon Theorem
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. October 

Present are Verity, Eve, Sparkle, Charity, and Lucky, though
some of them are late. Verity is at the board as I enter, trying
to get ready to present Lemma VIII. She is confused about
something.

As on page , Lemma VIII is that if the vertices of a
hexagon are alternately on two intersecting straight lines, and
two pairs of opposite sides are parallel, then the third pair are
parallel.

Verity uses a diagram much as in Figure .a, which is from
the text. We are given the hexagon ΒΓΗΕ∆Ζ, whose vertices
lie alternately on straight lines intersecting at Α. It is assumed
that

ΒΓ ‖ ∆Ε, ΒΖ ‖ ΕΗ. (.)

We are to prove
ΓΗ ‖ ∆Ζ.

Verity observes that triangle ΒΖΕ cannot be equal to ΑΒΖ as
the text says (because of my transcription mistake). She pro-
poses ΒΖΕ = ΒΗΕ. She tries to justify this by noting that
ΒΖ ‖ ΕΗ. She has not remembered properly Proposition I.
from Euclid mentioned on page , perhaps because the par-
allel straight lines are vertical in her figure, not horizontal as
in Euclid’s. (I do not use the proposition number in class; I
do not even remember it.)

Eve supports Verity’s mistake. I go to the board to draw
a diagram as in Figure ., to bring out the error. Drawing
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Figure .. Lemma VIII

the parallels vertically, rather than horizontally as in Euclid’s
diagram, has caused confusion. Eventually the matter is un-
derstood.

Lemma VIII uses also the converse of I., which is I.. I
observe in effect that we use I. twice, and I. once. For the
argument in short is as follows (where all three-letter combi-
nations are triangles, not angles):

) ∆ΒΕ = ∆ΓΕ, [Elements I., since ΒΓ ‖ ∆Ε]

) ΑΒΕ = Γ∆Α, [add ∆ΑΕ]
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Figure .. Elements I., misremembered

) ΒΖΕ = ΒΖΗ, [Elements I., since ΒΖ ‖ ΕΗ]

) ΑΒΕ = ΑΗΖ, [subtract ΑΒΖ]

) ΑΓ∆ = ΑΗΖ, [steps  and ]

) Γ∆Η = ΓΖΗ, [add ΑΓΗ]

) ΓΗ ‖ ∆Ζ. [Elements I.]

I indicate that there are other cases of the theorem, depend-
ing on the relative positions of the points on the two straight
lines ΒΑΗ and ΖΑΓ. I sketch some of the possibilities, though
I do not make a systematic presentation in class. However,
every possible configuration can be labelled as in one of the
four diagrams of Figure .. That is, Lemma VIII is really
four theorems about the hexagon ΒΓΗΕ∆Ζ, whose vertices lie
alternately on straight lines intersecting at Α, and where (.)
holds; or else the lemma is one theorem whose proof has four
parts, corresponding respectively to the following situations:

a) Α lies between exactly one of the pairs of parallels,
b) Α lies between both pairs of parallels,
c) the hexagon ΒΓΗΕ∆Ζ lies between two of the opposite

sides that are given as parallel,
d) the hexagon ΒΓΗΕ∆Ζ lies between the opposite sides that
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are not given as parallel.
For all four diagrams, the equations in the proofs are the same,
but the ways that they are obtained differ, as follows:

case (a) case (b) case (c) case (d)
add subtract add add

subtract subtract subtract from add
add subtract subtract subtract from

To obtain different patterns, one can respectively apply the
permutations

a) (Β ∆)(Γ Ε),
b) (Γ Ζ)(∆ Η),
c) (Β Η)(Ε Ζ), (Γ Ζ)(∆ Η), (Γ Η)(∆ Ζ),
d) (Γ Ζ)(∆ Η).

However, if one wants to keep Pappus’s triangles exactly, one
cannot avoid “subtracting from.”

Lucky is to present Lemma IV (discussed on page ),
which is that if, in Figure .,

ΑΖ · ΒΓ : ΑΒ · ΓΖ :: ΑΖ · ∆Ε : Α∆ · ΕΖ, (.)

then Θ, Η, and Ζ are in a straight line. Lucky generally has the
appearance of an ambitious student. He is organizing seminars
for the student mathematics club in our department. However,
today, he writes on the board what is in the text, without un-
derstanding it. He does not understand that some of Pappus’s
manipulations are entirely formal, with no need to refer to the
diagram; but Lucky keeps looking up at, and referring to, his
diagram. Again with my intervention, we get things straight-
ened out. By alternation of (.), we obtain

ΑΖ · ΒΓ : ΑΖ · ∆Ε :: ΑΒ · ΓΖ : Α∆ · ΕΖ.

. October  



Α

Β
Γ

∆
Ε

Ζ

ΗΘ

Κ

Λ

Μ
Ν

Ξ

Figure .. Lemma IV

For the left-hand member we have

ΑΖ · ΒΓ : ΑΖ · ∆Ε :: ΒΓ : ∆Ε

:: ΒΓ : ΚΝ & ΚΝ : ΚΜ & ΚΜ : ∆Ε;

and for the right,

ΑΒ · ΓΖ : Α∆ · ΕΖ :: ΒΑ : Α∆ & ΓΖ : ΖΕ.

Assuming ΚΜ is drawn parallel to ΑΖ, we have

ΝΚ : ΚΜ :: ΒΑ : Α∆.

Eliminating this common ratio from either side of the original
proportion, and reversing the order of the members, we obtain

ΓΖ : ΖΕ :: ΒΓ : ΚΝ & ΚΜ : ∆Ε,
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Figure .. Lemma from Lemma IV

and therefore, by the Fundamental Theorem of Proportion
applied to each ratio in the compound,

ΓΖ : ΖΕ :: ΘΓ : ΚΘ & ΚΗ : ΗΕ. (.)

Pappus says now that ΘΗΖ is indeed straight, which seems
premature, since he is going to have to argue this out. He
may be alluding to the lemma whose diagram is in Figure ..
Here ΕΞ ‖ ΘΓ, and ΘΗ is extended to Ξ. Then from (.) we
have

ΓΖ : ΖΕ :: ΘΓ : ΚΘ & ΚΘ : ΕΞ

:: ΘΓ : ΕΞ.

By the Fundamental Theorem again, the points Θ, Ξ, and Ζ

must be collinear, and therefore the same is true for Θ, Η, and
Ζ.

I shall later give the converses of this lemma and Lemma
IV itself as exercises; see page . Meanwhile, in class today,
I explain the lemma in terms of the complete quadrangle,

as described on page  and as shown in Figure .a. I used
the term tam dörtkenarlı in the introduction to the translation
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Figure .. “Complete” figures

of Pappus; but the term should be tam dörtgen. The former
term should be used for the complete quadrilateral, which
consists of four straight lines, no three concurrent, together
with the six points in which pairs of the straight lines intersect,
as in Figure .b. But then a complete quadrilateral is just
what we turned out to be considering in Figure ..

Lemma IV is that, if a straight line cuts the sides

ΛΚ, ΛΘ, ΚΘ, ΛΗ, ΚΗ, ΘΗ

of a complete quadrangle at the points Α, Β, Γ, ∆, Ε, Ζ respec-
tively so that (.) holds, and if, as in Figure ., the same
straight line cuts the sides

ΤΣ, ΤΡ, ΣΡ, ΤΠ, ΣΠ

of another complete quadrangle also at Α, Β, Γ, ∆, Ε, then it
must cut ΣΤ at Ζ. By reversing the steps of the argument,
one shows that (.) must hold anyway. Thus we obtain the
Complete Quadrangle Theorem.

In the break I made a printout of the text for the newcomers.
At the end of class, I make the assignments:
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Figure .. The Complete Quadrangle Theorem

Lemma III: Sparkle;
Lemma X: Eve;
Lemma XI: Charity.
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. October 

In response to the October  Ankara Bombing, labor unions
called a general strike for the following three days, the last
of these being today. Students and teachers have joined the
strike. Students of our university have arranged to hold a
forum in our building in Bomonti at  a.m. It is suspected
that, before this, they will make noise and otherwise ensure
that no classes can be held.

I go to the classroom anyway. The disgusting crime in
Ankara would seem to mean that more education is needed,
not less. I mean liberal education though, not technical ed-
ucation. In any case, spending time doing mathematics—or
just learning anything—may aid a person who is in mourning.

Eve wrote me yesterday, to ask if class would be held, since
she had heard that many classes were being cancelled. I wrote
back that I would be in class, and I thought everybody should
go somewhere, be it to class, to the forum, or to some other
demonstration. The slaughter in Ankara should not be treated
as an opportunity for a holiday. When Sparkle wrote me a
similar question, I forwarded to her my reply to Eve.

I hope that the remaining three students understand that, in
a real strike, one does not ask permission from one’s employer.
Of course we teachers are not our students’ employers; neither
are the students our employers. The Turkish state employs
us.
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. October 

Only Sparkle is present at the start of class, and she asks me
about one step in the proof of Lemma III, namely

ΕΖ : ΖΗ :: ΕΘ : ΘΜ =⇒ ΘΕ · ΗΖ = ΕΖ · ΘΜ, (.)

that is, the step of deducing the equation from the proportion.
I sketch a diagram as in Figure ., where a : b :: c : d and
ad = bc. (See also page .)

Meanwhile, everybody else but Eve shows up; she will come
at about :. I recall Lemma VIII, but draw its diagram as
in Figure . (not Figure .a). We state the theorem as

ΑΒ ‖ ΕΖ & ΒΓ ‖ ∆Ε =⇒ Α∆ ‖ ΓΖ,

assuming ΑΓΕ and Β∆Ζ are straight. I observe that the state-
ment does not involve an intersection point of the two straight
lines. I leave it as an exercise to prove the theorem in case
ΑΓΕ and Β∆Ζ are parallel. (See page .)

What if ΒΓ and ∆Ε meet at a point Θ, as in Figure .?
After some thought, students agree that, as a result of Lemma
VIII, Α∆ and ΓΖ must intersect at a point Κ. I say that in this
case

ΘΚ ‖ ΑΒ.

Sparkle seems to think this is clear. I say we are going to
prove it using perspective. In Turkish this is perspektif or
görünge. The students have not seen the latter word, though
it is in Püsküllüoğlu’s Turkish dictionary []. I hold two pens
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Figure .. Cross multiplication
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Β

Γ
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∆

Figure .. Lemma VIII again

parallel, observing that they do not look parallel when pointed
towards my eye.

Now I invite Sparkle to present Lemma III. She draws
the diagram complete at the beginning, as in Figure ., then
presents the argument in numbered steps. She draws separate
diagrams to explain the first proportions, namely

ΕΖ : ΖΑ :: ΕΘ : ΘΛ,

ΑΖ : ΖΗ :: ΘΛ : ΘΜ;
(.)

and she writes out Pappus’s explanation, “because the two are
the same as ΘΚ : ΘΗ.” But she does not seem to understand
the explanation. The straight lines ΘΚ and ΘΗ are not in her
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Figure .. Another case of Pappus’s Theorem
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Figure .. Lemma III

supplementary diagrams until I invite her to add them. The
diagram ought to be as in Figure .; but when Sparkle draws
ΘΚ, she does not make it tall enough so that ΗΑ extends to
Κ.

Pappus’s argument is as follows. The straight lines ΘΕ and
Θ∆ cut the straight lines ΑΒ, ΓΑ, and ∆Α as in Figure .. The
diagram is completed by making

ΚΛ ‖ ΖΓΑ, ΛΜ ‖ ∆Α.
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Figure .. Lemma III, auxiliary diagram

Then the proportions (.) hold, so ex aequali, and by (.),

ΕΖ : ΖΗ :: ΕΘ : ΘΜ,

ΘΕ · ΗΖ = ΕΖ · ΘΜ.

Being equal, these areas have the same ratio to ΕΖ · ΘΗ, and
so

ΘΕ · ΗΖ : ΕΖ · ΘΗ :: ΕΖ · ΘΜ : ΕΖ · ΘΗ

:: ΘΜ : ΘΗ

:: ΛΘ : ΘΚ. (.)

When Sparkle reaches this point, I try so suggest that the
proof is really over: for the ratio ΛΘ : ΘΚ is independent of
the choice of the straight line through Θ that cuts the three
straight lines that pass through Α. In particular, we can con-
clude immediately

ΘΕ · ΗΖ : ΕΖ · ΘΗ :: ΘΒ · ∆Γ : ΒΓ · Θ∆,

which is the theorem.
However, Pappus does not conclude immediately, but pro-

ceeds strangely, and Sparkle wants to follow him, so I let her.
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Figure .. Lemma III, simplified

Then I draw a separate diagram, as in Figure ., to make my
point that the extra work is not needed. I say that the ratio

ΘΕ · ΗΖ : ΕΖ · ΘΗ

can be called the cross ratio (çapraz oran) of the points Θ,
Ε, Ζ, and Η. In stating Lemma III, Sparkle seemed to have
got the idea that the ratio was something special: at any rate,
she had learned it as the ratio of the product of the two outer
segments to the product of the whole with the inner segment.

Eve presents Lemma X after the break. First I ask her if
she has seen the error in the text: in the proportion

∆Θ · ΒΓ : ∆Θ · ΒΘ :: Γ∆ · ΘΝ : ∆Θ · ΒΘ,

the two underlined Θ should be Γ. She checks her handwritten
notes: her proportion is correct. But the proportion turns out
to be correct in the text that the students have. My own copy
is a printout of an earlier version, and I have not noted there
that I made the correction.

Meanwhile I ask Eve if she recognizes that her proposition
is the converse of Sparkle’s. She seems to do so, but I am
not sure how well, since the positioning of the lines is differ-
ent, as in Figure .. (On the other hand, I have forgotten
that, at the end of the proof, Pappus mentions its being a
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Figure .. Lemma X

converse to something earlier, and in the translation I have
named that something earlier as Lemma III.) In Lemma III,
the two straight lines cut the three straight lines on the same
side of their intersection point; in Lemma X, on opposite sides.
As Eve writes on the board, I try to sketch an alternative di-
agram, as in Figure ., next to hers, though this turns out to
be a distraction. I talk about the diagram after the demon-
stration, though I do not fill in all of the auxiliary straight
lines.

In Lemma X, the hypothesis is

Θ∆ · ΒΓ : ∆Γ · ΒΘ :: ΘΗ · ΖΕ : ΘΕ · ΖΗ. (.)

Pappus makes ΚΛ parallel to ΓΑ, and then extends ΑΒ and
Α∆ to meet ΚΛ at two points, which he writes as Κ and Λ,
though today we might say this is the wrong order. Then we
ensure ΛΜ ‖ Α∆ and ΚΝ ‖ ΑΒ, with ΕΘ extended to Μ, and
∆Θ to Ν. Now we repeat part of the proof of in Lemma III, at
least in the configuration of Figure ., with two of the three
concurrent straight lines interchanged. That is, using only the
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Figure .. Lemma X: an alternative configuration

part of the diagram shown in Figure .a, we have

∆Θ : ΘΝ :: ∆Γ : ΓΒ,

∆Θ · ΓΒ = ∆Γ · ΘΝ,

∆Θ · ΒΓ : ∆Γ · ΒΘ :: Γ∆ · ΘΝ : ∆Γ · ΒΘ

:: ΘΝ : ΘΒ

:: ΚΘ : ΘΛ.

Now we move to the part of the diagram shown in Figure .b,
where we have proportions corresponding to the last two:

ΚΘ : ΘΛ :: ΗΘ : ΘΜ

:: ΘΗ · ΖΕ : ΘΜ · ΖΕ.

In sum, we have shown

∆Θ · ΒΓ : ∆Γ · ΒΘ :: ΘΗ · ΖΕ : ΘΜ · ΖΕ.

But the left member already appears in (.). Hence the right
members of the two proportions are the same, that is,

ΘΗ · ΖΕ : ΘΕ · ΖΗ :: ΘΗ · ΖΕ : ΘΜ · ΖΕ,

. October  
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Figure .. Lemma III reconfigured
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Figure .. Lemma X: two halves of the proof

ΘΕ · ΖΗ = ΘΜ · ΖΕ,

ΘΜ : ΘΕ :: ΗΖ : ΖΕ.

Thus what we did in Figure .a, we have done in reverse
in Figure .b. It remains to draw the conclusion ΑΖ ‖ ΚΛ,
corresponding to the hypothesis ΑΓ ‖ ΚΛ. Pappus argues as
follows (the bracketed proportions replaced with a reference
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to addition and alternation):
[

ΘΜ + ΘΕ : ΘΕ :: ΗΖ + ΖΕ : ΖΕ,

ΜΕ : ΘΕ :: ΗΕ : ΖΕ,

]

ΜΕ : ΕΗ :: ΘΕ : ΕΖ,

ΛΕ : ΕΑ :: ΘΕ : ΕΖ,

and so ΑΖ ‖ ΚΛ, which means ΓΑΖ must be straight.
Charity will proceed next week with Lemma XI, as planned.

Following this, the assignments are
Lemma XII: Verity;
Lemma XIII: Lucky.

. October  



. October 

By email at  a.m., Lucky says he cannot come to class. At the
beginning of class, only Charity is present. I figure it is better
for me to present things to her—things that she might later
present to the others—than for her to present her proposition
to me.

So I start talking to Charity about perspective. But first I
assign, as an exercise, to show

AC · BD
AD · BC =

EG · FH
EH · FG ⇐⇒ AB · CD

AD ·BC =
EF ·GH
EH · FG, (.)

given that ABCD and EFGH are straight, as in Figure ..
The others can copy this from the board when they come in.
(See page .)

I proceed to draw something like Figures . and . again,
though using Latin letters, and without committing to whether
the bounding lines are parallel. Referring to Figure ., I say
that if ΑΒ ‖ ΕΖ, but ΒΓ and ΕΖ meet at Θ, then Α∆ and ΓΖ

must meet at a point Κ, and moreover ΘΚ ‖ ΑΒ.
To show why this follows, first I draw something like Figure

.. In the process, Verity and then Sparkle come in. The
projection (izdüşümü) of A onto the horizontal plane is B;
but C has no projection, or else the projection is the point
at infinity. Thus if two straight lines in the (approximately)
vertical plane meet at C, then their projections in horizontal
plane must be parallel. I sketch this “in perspective,” roughly
as in Figure .. (For the figure here, I use the pst-3dplot
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Figure .. Cross ratios

A

B
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Figure .. Perspective

extension to pstricks; but it does not provide the facility of
showing automatically when one surface is behind another.)

So now in Figure ., if AB and ED are parallel to the
horizon (ufuk), and we place G on the horizon, then the
projections of AB and ED onto the ground will be parallel,
as will those of BC and FE. Then the projections of AF and
CD must be parallel, by Lemma VIII, and so H must be on
the horizon: that is, in the original diagram, GH ‖ AB.

People seem to agree with this argument, though Charity
says it was not quite a proof. Indeed, it was not polished. I
had not planned to give it.

The time is about :. Eve has not shown up (and will
not show up). Charity suggests that we should take a break
before she presents Lemma XI, but others suggest that we
just continue. Charity is very excited. She first gives a four-
part outline. She will () state the theorem, () draw the
diagram, () give the proof, then () consider the other case
(which Pappus refers to at the end of his own proof; I think
this was her outline). Charity speaks while she writes, and
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Figure .. Parallel lines in perspective
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Figure .. Pappus’s Theorem in perspective

she looks at her classmates, demanding their attention and
agreement. She tells us that she will replace Γ with C, though
in the event she does not also replace ∆ with D. She writes
proportions as such, but also as fractions; and she says she
is going to do this. Charity’s is the most polished student
presentation that I remember seeing so far.

Charity writes what she will prove as

∆Ε · ΖΗ : ΕΖ · Η∆ :: ΓΒ : ΒΕ, (.)
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Figure .. Lemma XI

as in the text, and then as something like

ΓΒ

ΒΕ
=

∆Ε · ΖΗ

ΕΖ · Η∆
=

∆Ε

ΕΖ
· ΖΗ

Η∆

The diagram is in Figure .a. In establishing

ΓΑ : ΑΗ :: ΓΘ : ΖΗ, (.)

Charity draws a separate diagram, as in Figure .b. She
proceeds as Pappus does, though using fractional notation.
Thus (.) becomes

ΓΑ

ΑΗ
=

ΓΘ

ΖΗ
.

The next step is
ΓΑ

ΑΗ
=

Ε∆

∆Η
,

which is explained with reference to the “butterfly” (kelebek),
presumably the one whose wings are the triangles Α∆Η and
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Figure .. Lemma XI variations

ΓΕΗ. The two equations yield

ΓΘ

ΖΗ
=

Ε∆

∆Η
, ΓΘ · ∆Η = Ε∆ · ΖΗ,

and then
∆Ε · ΖΗ

∆Η · ΕΖ
=

ΓΘ · ∆Η

∆Η · ΕΖ
=

ΓΘ

ΕΖ
=

ΓΒ

ΒΕ
,

which is the desired result. Thus written, the reduction of the
ratio of products becomes transparent, at least to the modern
student. Charity gets Verity’s confirmation of the reduction.

Pappus observes that Α∆ can be drawn on the other side.
Charity thinks the diagram is as in Figure .a in this case.
The correct proportion in this case would be

∆Ε · ΖΗ : ∆Ζ · ΗΕ :: ΓΒ : ΓΕ, (.)

or else
∆Ε · ΖΗ : ∆Η · ΖΕ :: ΓΒ : ΒΕ,
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Figure .. Lemma XI as limiting case of Lemma III

but I am not sure Charity gets this, though she discusses it
with the others (mainly Verity, I think). Charity does recog-
nize that her proposition is somehow a special case of Lemma
III, proved by Sparkle; but I think this needs to be made
clearer, so I go to the board.

First I observe that Charity’s alternative diagram is just
the reverse of the original diagram; so (.) holds immedi-
ately. But perhaps what is meant is a diagram as in Figure
.b, where ∆ has moved to the other side, but Ε has not.
This diagram is just as Figure .a, as regards parallelism and
straightness. The order of points on given straight lines may
have changed, but the original proof never relied on this: it
did not use addition or subtraction. Thus (.) should still
hold.

To see Lemma XI as a special case (or a variant) of Lemma
III, we may draw the diagram as in Figure .. From Lemma
III we know

ΕΖ

ΖΗ
· Η∆

Ε∆
=

ΕΒ

ΒΓ
· ΓΜ

ΕΜ
.

In the limit as Μ goes to infinity, ΓΜ/ΕΜ goes to unity, since
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Figure .. Lemma XI, third case

this ratio is ΓΜ/(ΕΓ + ΓΜ), and

lim
n→∞

n

n+ 1
= 1.

Thus we obtain the result of Lemma XI. Charity says this is
a real proof. I suggest that in analysis such proofs are real,
because there is a precise definition of limit.

One may also observe, although I do not do it, that we
nearly proved Lemma XI by establishing (.) on page  in
proving Lemma III. More precisely, this gives us a third case
of Lemma XI, as in Figure .. Rewritten for this figure, (.)
becomes

ΓΕ : ΕΒ :: ΗΕ · Ζ∆ : Η∆ · ΖΕ,

ΓΒ : ΕΒ :: ΗΕ · Ζ∆ + Η∆ · ΖΕ : Η∆ · ΖΕ;

and the sum reduces as follows:

ΗΕ · Ζ∆ + Η∆ · ΖΕ

= ΗΕ · Ζ∆ + Η∆ · ΕΗ + Η∆ · Η∆ + Η∆ · ∆Ζ
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Figure .. Lemma XII

= (ΕΗ + Η∆) · Η∆ + (ΕΗ + Η∆) · ∆Ζ

= Ε∆ · ΗΖ.

But the auxiliary triangle used for the proof of Lemma XI is
different than for Lemma III.

I suggest taking a break now. It is about :. Verity
wants to start presenting Lemma XII though, so she can
finish for her : class. But she wants to write things on the
board before talking. I suggest she do this while the others
take a break. She writes the enunciation only, along with the
diagram, as in Figure .. She writes “Lemma XII” in red, the
enunciation in black, then “Proof” (Kanıt) in red again.

While waiting for the others, I confirm with Verity that she
will use Charity’s proposition. She does not seem to recognize
that she will also use Lemma X. When she writes out the proof,
indeed she makes the application of Lemma X as Pappus does,
but without justifying it. Disappointingly, she seems to think
it justifies itself, because it is in the text. She agrees that it is
an application of Lemma X when I point this out.
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Figure .. Steps of Lemma XII

This application is the third step of the proof, the first two
steps each being an application of Lemma XI. When Verity
recapitulates, she tries to clarify which triangles are used in
each of the first two steps; but then she is confused about
the cutting straight lines, though she has written the results
correctly before. I draw supplementary diagrams next to her
steps, as in Figure .. Thus Pappus’s argument is:

a) By Lemma XI,

∆Ζ : ΖΓ :: ΓΕ · ΗΘ : ΓΗ · ΘΕ. (.)

b) By Lemma XI again, inversion, and (.),

ΓΖ : Ζ∆ :: ∆Ε · ΛΚ : ∆Κ · ΛΕ,

∆Ζ : ΖΓ :: ∆Κ · ΛΕ : ∆Ε · ΛΚ,

ΓΕ · ΗΘ : ΓΗ · ΘΕ :: ∆Κ · ΛΕ : ∆Ε · ΚΛ.

c) By Lemma X then, ΗΜΚ is straight.
At the end of class, I note that Lucky (if he comes next

week) will prove Lemma XIII, which is Lemma XII in case
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ΑΒ and Γ∆ intersect. I observe that we can also prove this
by using perspective, and I ask Sparkle to do this for next
week. She expressed concern that only one new proposition
was expected; now she will present a second. She makes an
appointment to meet me next Monday at :. Now I learn
that the students do not recognize yarım, “half,” as an expres-
sion for half past twelve. Older people use it this way, and
dictionaries give this meaning; but the students think I am
saying yarın, “tomorrow.”

I say that everybody should think about how to prove both
lemmas, XII and XIII, using perspective.

. October  



. November 

Yesterday Sparkle visited my office as planned. But she did
not know what she was supposed to prepare for class. She
thought it had something to do with Lemma III, which she
had already presented, and not Lemma XIII. She noticed, and
became interested in, my cardboard parabola, situated with
the corresponding axial triangle and base of a cone, as in Fig-
ure .; so I tried to explain it:

The base of the axial triangle is a diameter of the base of the
cone. A plane cuts the cone at right angles to that diameter,
but parallel to a side of the axial triangle. Then the resulting
chord of the base of the cone is bisected by the diameter. The
square on one of the halves of the chord is equal to the product
of the segments of the diameter (Sparkle seems to accept this
readily). But one of those segments remains unchanged if we
cut the cone by a new plane parallel to the old base. Thus if
the segments of the diameter are a and y, while the half of the
chord is x, then

x2 = ay.

When I said I had taught this in Analytic Geometry (Analitik
Geometri, MAT ) last spring, Sparkle said she had not got
much out of the course when she had taken it, because of the
teacher that year (who is no longer in the department).

I had another cardboard model, as in Figure .: a card-
board rectangle, bisected, scored, and folded along a straight
line parallel to two sides, so that, after the folding, those sides
remain parallel, but the halves of one of the other sides be-





Figure .. Parabola in cardboard

come distinct intersecting straight lines. Between those two
halves, the figure of Lemma XIII is formed with thread, while
between the parallel sides, a corresponding figure of Lemma
XII is formed. From a point along the extension of the scored
line, the two figures appear as one. The unfolded cardboard is
as in Figure ., where the path of the thread is as in Figure
.. I had not decided whether to show this to Sparkle and the
rest of the class before Sparkle herself explained the depicted
result. But since she came to me, not having understood what
to do in the first place, I discussed the model with her. I was
not sure she felt this left her with much to say in class. I also
talked about how Lemma III had already proved a form of
Lemma XI.

Sparkle does not show up for class. Maybe she is sick. Lucky
has written an email to explain how he is still sick, taking
antibiotics, and so on. As last week, so today, Eve does not
make an appearance.

Charity and Verity do come. However, nobody is in class
at  a.m. On the board, I start writing the exercises that I
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Figure .. Pappus’s Theorem in thread and cardboard

want to assign:

. The remaining three cases of Lemma VIII, as in Figure
. on page .

. The fifth case of this lemma, where ΗΒ ‖ ΕΖ (I assigned
this before: see page ).

. The proof of the equivalence (.) on page .
. The converse of the lemma embedded in the proof of

Lemma IV, namely that in Figure . on page , if
(.) on page  holds, then ΘΗΖ is straight.

. The converse of Lemma IV itself.

Charity shows up at about :. I have brought the cardboard
model that I showed Sparkle, so I talk about this. I start
proving a simple application of Pappus’s Theorem (that is,
Lemmas VIII, XII, and XIII) to the figure of Lemma IV. The
result is in Coxeter [, pp. –]. First, referring to Figure
. on page , now adapted as Figure ., assuming that the
solid lines that look straight are straight, I observe that what
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Figure .. Plan for the cardboard Pappus’s Theorem

we know from the converse of Lemma IV is

ΑΖ · ΒΓ

ΑΒ · ΓΖ
=

ΑΖ · ∆Ε

Α∆ · ΕΖ
(.)

(which is (.) on page ), and this is the sameness of the
cross ratios of (Α,Β,Γ,Ζ) and (Α, ∆,Ε,Ζ). Here Β, Γ, and Ζ are
where three straight lines through Θ are cut; and ∆, Ε, and Ζ

are where three straight lines through Η are cut. This gives us
five straight lines in all, since the straight line through Θ and
Η passes through Ζ. The other four straight lines, in different
pairs, meet at Κ and Λ, and the straight line through these
passes through Α.

Verity shows up at some point during this.
For the application of Pappus’s Theorem, we observe that,

in Figure ., ΗΘΚΛ is a complete quadrangle, whose six sides

. November  



A
B
B

′

C
′

C
D

D
′ E

′ E F
F
′ A′ A F F ′

E ′

E
D

D
′
C
′
C
B
B
′
A

′

Figure .. Path of thread for Pappus’s Theorem

are cut by a straight line at Α, Β, Γ, ∆, Ε, and Ζ. These
points then compose a quadrangular set (the term is in Cox-
eter). We shall obtain another complete quadrangle yielding
the same quadrangular set. Let ΕΘ cut ΑΛ at Μ, and let ΖΘ

cut ΚΒ at Ν. Consider the hexagon ΗΛΚΒΕΘ, whose vertices
lie alternately on ΗΚ and ΛΘ, as in Figure .. The pairs of
opposite sides intersect at ∆, Μ, and Ν respectively, and so
these lie on a straight line. The new complete quadrangle is
thus ΘΚΜΝ.

I go on to derive Lemma III without auxiliary triangles. In
Figure ., where three straight lines through A are cut by a
straight line through B at C, D, and E, and the straight line
through B that is parallel to AD cuts AC and AE at F and
G respectively,

BF

BG
=
BF

BC
· BC
BG

=
DA

DC
· BC
BG

=
DA

BG
· BC
DC

=
DE · BC
BE ·DC .

I state Desargues’s Theorem (see page ), indicating that
we shall use Pappus’s Theorem to prove it. Then Desargues’s
Theorem will give us the Complete Quadrangle Theorem. It
will also allow us to make the Fundamental Theorem of Pro-
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Figure .. Pappus’s Theorem applied to Lemma IV

portion (page ) true by definition.

Desargues was a contemporary of Descartes, but his geom-
etry did not catch on as well as Descartes’s algebra. It is pos-
sible to make projective geometry algebraic. The Euclidean
plane can be modelled by R×R, so that points correspond to
ordered pairs (x, y). How do we add the points at infinity?

There is one point at infinity for each family of parallel lines.
Thus there is a point at infinity for each direction (yön) in the
plane. Also the ordinary points of the plane can correspond to
directions: if we take a point outside the plane, then a point
in the plane corresponds to the direction of the straight line
through that point and the point outside. Thus the points
of the projective plane can be understood as straight lines
through a point in space.
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Figure .. Pappus’s Theorem applied to Lemma IV

If we take a sphere with that point as center, then each point
of the projective plane becomes a pair of antipodal points on
the sphere. If we take just half of the sphere, then the or-
dinary points of the projective plane correspond to points of
the interior of the hemisphere; but points at infinity corre-
spond to pairs of opposite points on the bounding circle of the
hemisphere.

I have presented all of this informally. That is, it was un-
prepared. Evidently I was counting on Lucky and Sparkle to
show up.

I have brought a printout of Lobachevski (the  trans-
lation of Halsted appended to the Bonola book []). I want
to see how well the students can handle the English. Charity
seems more confident than Verity; but they both agree with
my suggestion that I can discuss propositions ahead of time
with the students who will present them.
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Figure .. Lemma III with no new triangle

They have asked about examinations. I say I do not want
to give a midterm exam, though I can do it. If I am not
going to give an exam, students must come to class and give
presentations. This is the preference of Verity and Charity.
They suggest that the students who do not show up should
just fail.

I make assignments from the exercises above (page ):
Charity is to do ; Verity, .
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. November 

I wake up early this morning as usual (around three or four
o’clock) and prepare three pages of notes, covering respectively

() Desargues’s Theorem,
() the dual of Pappus’s Theorem,
() the Complete Quadrilateral Theorem.

But I feel increasingly ill, and eventually I go back to bed. I ask
Ayşe to photograph the first page of my notes and send it to
the students. (First I consider sending all three pages.) The
students are asked to work through the proof of Desargues’s
Theorem and report back to me. I stay home.

My diagram is labelled as in Figure . (which is just Fig-
ure .a from page , relabelled); but the relative slopes of
some of the original straight lines are different, and so the con-
structed straight line GPQM in my notes lies at the top, not
at the left. The text of my notes reads as follows (translated
into English; the original is in Figure .).

Geometries, ..

Pappus, ∼

Desargues (Girard) –

Descartes (Rene) –

Ayşe’s mobile seems the most convenient device with the desired
capacity. It may be possible to send photographs with my own mobile,
but I have not figured out how to do it. I can however tether the mobile to
our laptop computer, and in this way I can in principle send photographs.
We currently have no other internet connection at home, besides our
mobiles.
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Figure .. Desargues’s Theorem, ..

Desargues’s Theorem.

Let AD, BE, and CF intersect at G.

Let intersect

• AB and DE at H,
• BC and EF at K,
• AC and DF at L.

We shall show that HKL is straight.

Let BC and DF intersect at M .

In the hexagon ACGMDB, AGD ve CMB are straight, and

• AC and MD intersect at L.
• Let CG and DB intersect at N ;
• let GM and BA intersect at P .

Then by Pappus’s Theorem, LNP is straight.

In the hexagon BDEFGM , BEG ve DFM are straight, and

• BD and FG intersect at N .
• Let DE and GM intersect at Q.
• EF and MB intersect at K.

Then NQK is straight.
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In the hexagon BMDQNP , BDN and MQP are straight.
Because BM and QN intersect at K (because NQK is
straight); MD and NP , at L (because LNP is straight); DQ
and PB, at H: KLH is straight.

Lucky sends me a report with four photographs of writing
on the whiteboards, along with a list of the four students in
attendence, each of whom, he says, has done some of the writ-
ing: Verity, Sparkle, Charity, and Lucky. The photographs,
cropped by me, are in Figures . and .. Apparently the
students have first copied out my notes exactly, even down to
the sloppy diagram (but not including the names and dates
of Pappus, Desargues, and Descartes). But then the students
have separated out the three hexagons, sketching each one
separately, and emphasizing the straight lines (which I had
not drawn) through the points of intersection of the pairs of
opposite sides.

Eve sends me an email saying she was in class too. I write
to Lucky that he has forgot Eve, according to her. He replies
that he listed everybody in attendence.

 Geometries



Figure .. Students’ notes: first board
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Figure .. Students’ notes: second, third, and fourth boards
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Figure .. My lecture notes
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. November 

Last Friday, a student found me who was registered for the
course, but who had never come to class. I shall call him
Hapless. He wanted to be given some special work to do so
that he could pass the course. I pointed out that the semester
was half over. I could not say that it was impossible to pass the
course at this point. A diligent student could do it. However,
having known Hapless from Euclid class, I was pretty sure he
was not that student.

Where had Hapless been all semester? I did not find out;
but students do sign up for courses that they do not intend to
work on, because there is no penalty for failing. They might
somehow be able to pass, and so they take the chance. Appar-
ently Hapless hoped this would be the case for my course. He
could not tell me what we were reading. He had not read the
course webpage. I told him to do this, and then talk to me.

I have not seen him since. He does not come to class today.
(Nor will he ever.)

Nobody is present at the beginning of class today. Charity
comes at maybe seven minutes past nine. Others trickle in
over the next half-hour. Eve does not come though: Sparkle
says she is seeing the dentist.

The students agree that Eve did not actually come last week.
Later, Eve will send me an apologetic email for the “misunder-
standing.”

I draw the figure for Desargues’s Theorem and try to show
how its converse is its dual. In Figure ., If the minuscule let-
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Figure .. Desargues’s Theorem and its converse

ters denote straight lines, and two such letters together denote
the intersection point of those straight lines, then Desargues’s
Theorem is that if AD, BE, and CF meet a common point,
then ad, be, and cf meet a common straight line. We get
the converse by interchanging points and straight lines. This
means the converse is the dual (dual) of the original theorem.

We have been using two axioms:
. Any two straight lines meet exactly one common point.
. Any two points meet exactly one common straight line.

Each of these is dual to the other. In class I do not actually
come up with a verb like “meet” here to describe both what a
straight line can do to a point and a point to a straight line.
I mostly talk out loud about duals. The students seem to get
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Figure .. The dual of Pappus’s Theorem

the idea.

I prove the dual of Pappus’s Theorem. The Theorem itself is
that if the vertices of a hexagon alternately meet two straight
lines, then the points met by the pairs of opposite sides meet
a common straight line. The dual then is that if the sides of
a hexagon alternately meet two points, then the straight lines
met by pairs of opposite vertices meet a common point. So, in
the hexagon ABCDEF , let AB, CD, and EF intersect at G,
and let BC, DE, and FA intersect at H , as in Figure .. If
the diagonals AD and BE meet at K, then the diagonal CF
also passes through K. For we can apply Pappus’s Theorem
itself to the hexagon ADGEBH , since AGB and DEH are
straight. Since AD and EB intersect at K, and DG and BH
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Figure .. The dual of Pappus’s Theorem, analytically

at C, and GE and HA at F , it follows that KCF is straight.
In case the points G and H are at infinity, we can work out

the dual of Pappus’s Theorem analytically. In Figure ., the
hexagon is hatched, though perhaps not so in class. Given
that (0, 0), (b, d) and (x, y) are collinear, and (a, 0), (b, c), and
(x, y) are collinear, we want to show (0, c), (a, d), and (x, y)
are collinear. That is, we want to show

d

b
=
y

x
&

c

b− a
=

y

x− a
=⇒ d− c

a
=
y − c

x
.

I leave this as an exercise. (Maybe I do all of this at the end
of class.)

I argue that the converse of Desargues’s Theorem must now
by true, since it follows from our two axioms and Pappus’s
Theorem, and the duals of these are also true, and the dual of
Desargues’s Theorem is its converse.

I now use that Theorem and its converse to prove the Com-
plete Quadrilateral Theorem. In Figure ., by the converse
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Figure .. The Complete Quadrangle Theorem

of Desargues’s Theorem applied to triangles GHL and MNQ,
since

• GH and MN meet at A,
• GL and MQ meet at D, and
• HL and NQ meet at E,

and ADE is straight, it follows that GM , HN , and LQ inter-
sect at a common point R (not drawn). Likewise, in triangles
GHK and MNP , since

• GH and MN meet at A,
• GK and MP meet at B, and
• HK and NP meet at C,
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and ABC is straight, it follows that KP passes through the
intersection point of GM and HN , which is R. So now we
know that HN , KP , and LQ intersect at R. Therefore, by
Desargues’s Theorem, the respective sides of triangles HKL
and NPQ intersect along a straight line. But HK and NP
intersect at C, and HL and NQ intersect at E; and KL in-
tersects CE at F ; therefore PQ must also intersect CE at
F .

I use for the argument the third page of my notes prepared
for last week, but it turns out to be in error. It starts by con-
sidering GKL and MPQ, but this does not work. Either I
worked through the argument then by just following the let-
ters, and not the diagram; or else I was copying from Coxeter,
and trying (but failing) to change his letters to mine.

The break occurs at some point. During the break, I print
out four copies of the Lobachevski. The original text is 
pages; these are printed two to a side on  sheets. I show the
students how I drill three holes through the sheets, thread the
holes, tie the thread, then fold the sheets to make a booklet. I
have forgotten to bring padding to put below the sheets being
drilled. I just use my own booklet, and am careful not to drill
into it, at least not too far. I have a little battery-powered
drill, with the thinnest bit I could find.

Three booklets remain to be made. Lucky takes up the drill;
Verity, the needle and thread. Lucky holds sheets across the
gap between the two tables on the dais. This method does
not appear to work very well, but I do not interfere. Lucky
also folds the sheets before drilling, whereas I folded only one
sheet, as a guide, before drilling. I think it is better do drill
and sew before folding all of the sheets; but I leave the students
to find their own way. Verity starts sewing one booklet from
the wrong side, and she thinks she has to cut the thread and
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start over. Here perhaps I do interfere, but Verity has asked
my advice. I pull the thread free, so that she can use it again.

When I entered graduate school in  and became one of
three teaching assistants for a calculus lecture, I was surprised
by the physical work that we had to do. Exam solutions were
written on four sheets, which we assistants had to clip together.
After the exam, we had to separate the pages, so that the
lecturer and assistants could each take home and grade the
same page from all of the students in the lecture. Finally, we
reassembled the sheets for return to the students.

In the previous year, working at a farm, I had been doing
repetitive physical labor, like pulling weeds or picking cucum-
bers. Now, in graduate school in mathematics, I still had to
contend with repetitive physical labor. It was something of a
shock, until I accepted that there was no work that used the
mind alone. So I am pleased that in my Geometries class, I
have given the students some small experience of the purely
bodily effort that goes into what they read.

Lobachevski begins his treatise with  propositions, stated
without proof. In class, we read some of these together. The
students seem to handle the English fine, especially Sparkle;
the others, at least, do not complain. I make assignments:
 Sparkle,
 Verity,
 Lucky,
 Charity.
(I think this is right; but next week Sparkle will have worked
on , not .) Charity seems relieved to think that we shall
not get to her proposition next week, because she has other
work to do.

After class, Lucky points out that he never got to present
Lemma XIII from Pappus, and he offers to present more of
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the Lobachevski instead. I suggest that he explain Theorem
.
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. November 

Sparkle shows up a few minutes past nine. A little later, Char-
ity comes. Apparently Lucky sends me an email around this
time, but I do not see it till later: there is an accident on the
road, and his bus is stuck in traffic. When I see him the next
day, he will say he came about half an hour late to the depart-
ment, and he did not want to interrupt the class. This makes
no sense: neither he nor anybody else has ever been reluctant
to enter late before.

In class, Sparkle and Charity teach me a new word: suisti-
mal. This means abuse, and they say the other students are
abusing my good nature. I point out that I have wanted to
use class participation in lieu of exams; but it seems this will
not work.

Meanwhile, Sparkle has studied Theorem , which Loba-
chevski enunciates as,

Two lines are always mutually parallel.

Sparkle has written out the English text with space between
the lines to make a Turkish translation. She makes remarks
about devrik cümle. This means “inverted sentence,” and I
know the term from Geoffrey Lewis. In his Turkish Gram-
mar [, XV , p. ], he describes the devrik cümle school
of Turkish writers, who feel free to play around with Turkish
word order, given that peasants (from the point of view of the
urban elite) do the same thing, and inflections still make the

See Appendix E., page .
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Figure .. Parallel lines without Euclid’s Fifth Postulate

syntax clear. From the point of view of Turkish, English sen-
tences are inverted, with qualifying phrases coming after the
words qualified, and not before. It has been Sparkle’s chal-
lenge to come to terms with this feature of the long sentences
of Lobachevski (in English translation).

Sparkle has not understood the point of her theorem, be-
cause she has not understood that parallelism has a new mean-
ing. She has not understood that we are doing a new geometry
now. Well, perhaps I have not made this crystal clear. I left
the students to read the Lobachevsky; but this may be harder
for them than for me to read Turkish.

I give the account of Theorem  that Lucky was supposed
to give. In Figure ., if the angles ABC and BCD are right,
then BA and CD do not meet, because if they did, a triangle
would be formed in which two angles are together equal to two
right angles. This is impossible, by Euclid’s Proposition I..
This proposition follows from I., that an exterior angle of a
triangle is greater than either of the opposite interior angles.
I repeat the proof, since the students do not well remember
Euclid from three years ago. I do note Lobachevski’s Theorem
: “Two straight lines cannot intersect, if a third cuts them
at the same angle.” (Lobachevski’s propositions are labelled
only with numbers; in class I generally call them propositions,
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önermeler ; but apparently he or his translator refers to them
as theorems.)

I repeat the Fifth Postulate: that if the angles ABC and
BCD were together less than two right angles, then BA and
CD would intersect when extended. We are now assuming
that this fails, so that some lines like BE also do not meet
CD when extended. There is a boundary line between the
lines through B that meet CD on the side of D and those
that do not. It is the boundary line that is called parallel to
CD.

Lobachevski just assumes that such a boundary line exists.
The students accept that it exists, and I do not question this;
it is not the most important issue now. Right now, we have
to observe that the definition of parallelism is not symmetric.
If BE is parallel to CD, it is not clear whether CD is parallel
to BE.

Sparkle goes to the board to present her proposition, but
she cannot present it cleanly. I need to help with a lot of the
translation. At the end I point out that she was supposed to
get my help before class. If there had been four other students
in class, what were they going to do during her presentation?
As it is, Charity does get involved in the work of understanding
the proposition.

In Figure ., angle ACD is right, and through A, AB is
drawn parallel to CD.

Sparkle is translating “line” as çizgi, which is correct for Eu-
clid; indeed, it is better than “line” as a translation for Euclid’s
γραμμή, since this and çizgi both mean something scratched,
while a line is something drawn or stretched. In Lobachevski,
“line” means straight line: doğru çizgi, or simply doğru.

We draw any line CE in the right angle ACD, and we want
to show that it meets AB. Drop to it the perpendicular AF . In
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Figure .. Theorem 

the right triangle ACF , the angle ACF is acute, so AF < AC
by Euclid I., or Lobachevski’s Theorem . So we can find
on AF the point G such that AG = AF .

Now Lobachevski “slides” EFAB so that it becomesHGAK.
The point is that angle BAK is made equal to angle FAC, so
AK may be assumed to cut CD at K, by Theorem , that
is, the definition of parallelism. Also GH is perpendicular to
AC, so it does not cut CD, by Theorem ; and therefore it
must cut GH at a point L, by Theorem .

As Lobachevski says now, AL must be the distance along
AB from A where CE cuts AB. So, on the assumption that
AB is parallel to CD, also CD must be parallel to AB.

Charity says she did not prepare , because she was study-
ing for an exam.

I observe that I want to cover Lobachevski’s Theorems
• –,
• the part of  (straight lines parallel to a third are par-

allel to one another) taking place in one plane,
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• –,
• .

These are the propositions about the plane, not space. We
could cover them all if the students were diligent, but I doubt
they will be.

Sparkle and Charity have asked to leave early to register
for “formation” (formasyon), the courses they need to take
to qualify to be teachers. But as class nears the end, they
prefer to sit and chat with me. They say this explicitly when
I suggest that they can leave. I ask where they live, and how
they get to the department. Sparkle is in Kağıthane and rides
a single bus to come, but it takes an hour and a half. A private
car would take twenty minutes, maybe half an hour. I suggest
that walking might be an option: one can walk a long way in
an hour and a half. Yes, but there are hills, it is pointed out.

Charity lives in a dormitory near by. Her family are from
Trabzon, but they live in Zonguldak now.

We talk about some cultural attractions in Istanbul, such
as Santralistanbul in Kağıthane. I mention having walked
to Piyale Paşa Camii, which I think is in the direction of
Kağıthane. It is not, but it was built by Mimar Sinan, and a
tour of the Mimar Sinan creations throughout the city can be
a worthwhile activity. The students have mentioned the high
entrance fees of Ayasofya and Topkapı (or of one of these,
at least); I point out that the mosques are free, as is Istan-
bul Modern, to us (at least it is free to Mimar Sinan teach-
ers ; I cannot affirm categorically that is free to students as
well, though I shall learn later that it is). When I mention
old churches, the students mention those along İstiklâl Cad-
desi. I explain that I mean Byzantine churches, like what is
now Kalenderhane Camii, which you see when you exit the
Vezneciler metro station.
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. December 

Verity saw me on Thursday and made some excuse for not
having been in class. Today, everybody will come to class,
eventually. First it is only Charity as usual. I ask her if she
knows anything about Alp Arslan, whose chivalrous treatment
of Emperor Romanus IV Diogenes, after the Battle of Manzik-
ert in , I have been reading about in Michael Attaleiates
[]. Looking at the Attaleiates book, with the original Greek
facing the English translation, Charity says her family used to
know Rumca, which I understand to mean Greek as spoken in
Turkey.

When Sparkle comes, she cannot explain what she proved
last week. Neither she nor Charity can say what the new
concept of parallelism is. So I go over it again. As I am doing
this, Verity arrives. She cannot present Theorem . There
seems to be confusion about what she is supposed to do. When
Eve comes, she is eager to present Theorem . I am about
to invite her to do so; but meanwhile, Lucky has come, and I
suggest that he present . He says something about  too,
but I think it is that he can present this after . This does
not make any sense at the moment, so I tell him just to do
Theorem .

Now it becomes clearer why he may have wanted to change
the order of the propositions. He asks me if he should write
the English of  on the board, or just the Turkish. I say just
the Turkish. He proceeds to start translating the English. But
he does not seem to understand what it means.
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Figure .. Theorem 

The proposition is that the angles of a triangle add up to no
more than two right angles. I ask the class: Don’t we already
know this from Euclid? Don’t we know that the angles of a
triangle are equal to two right angles? Yes, we do, they say.
But I observe that Euclid’s proofs require the Fifth Postulate.
(Writing later, I shall not be able to remember whether I re-
view the meaning of the Fifth Postulate now, or I already did
so in talking about parallelism earlier.)

Lucky proceeds to write out the assumption that the angles
of a triangle ABC add up to π + α. He does not seem to
understand that he is beginning a proof by contradiction. In
fact he does not seem to understand anything at all. For,
he asks me what “halve it [namely BC] in D” means, and
likewise for “prolongation” and “congruent.” Or perhaps he
is only wondering how to say things in Turkish. (“To halve”
is ikiye bölmek. “To prolong” is uzatmak, though I have no
ready translation for the noun “prolongation.” “Congruent”
is çakışan, though in Euclid, for bounded straight lines and
angles at least, it is simply eşit, equal.)

In Figure ., we bisect BC at D, we prolong AD to E so
that DE = AD, and we draw CE. The vertical angles ADB
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and EDC are equal.
At some point I explain that a “vertex” can be çokgenin

köşesi (the “corner” of a polygon) or koninin tepesi (the “peak”
of a cone). In Latin it can mean kafa I say, knocking on the
crown of my head; so “vertical angles” are kafa kafaya I say,
knocking my fists together. Sparkle says she will never forget
the meaning of “vertical” now. (Vertical angles in Turkish are
ters açılar, “opposite” angles.)

Vertical angles are equal, by Theorem . The triangles ABD
and ECD are now congruent, by Side Angle Side, which is part
of Theorem . Thus

∠BAD = ∠AEC, ∠ABC = ∠DCE,

and so the sum of the angles of triangle ACE is just the
sum of the angles of triangle ABC. I think this is clear from
the diagram; but Lucky is not trying to explain the claim in
terms of the diagram. In the diagram at hand—Lucky’s sec-
ond diagram, the first being on the other board, now raised
overhead—the straight line AC is not even drawn. Lucky fol-
lows Lobachevski in saying immediately that the sum of the
angles of triangle ACE is π + α; there is no recollection that
this is only because π+ α is the sum of the angles of triangle
ABC.

I ask for clarification. Verity speaks, and I invite her to
explain at the board. She gestures at and talks about whole
triangles; but I say we are concerned with angles. Ultimately
she makes a labelling as in Figure ., and she writes some-
thing like

a+ x+ b+ y = π+ α,

x+ y + b+ a = π+ α.
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Figure .. Theorem  with angles labelled

She writes α as a, and indeed the α in Lobachevski looks like
our a; but Lobachevski’s symbol is really an alpha, because
his Latin letters are always roman, that is, upright, so that
the first minuscule of the alphabet is not a, but a. My greater
concern is that the second equation is correct only because its
left member is equal to the left member of the first equation,
but Verity has not made this clear.

Lucky says he thought we had to do everything in the style
of Euclid, without equations like this. Verity too has said
something like this, as being the reason she did not immedi-
ately write the equations. I say any method can be used, if it
is correct.

Lucky does not understand how the proposition continues.
I just go to the board to lecture on this. BC was chosen as the
shortest side of triangle ABC, so the angle at A must be the
smallest, by Theorem  (which Lucky has cited; but then so
does Lobachevski himself). Call this angle β. Then the less—
call it γ—of the angles EAC and AEC is no greater than half
of β:

γ 6
β

2
.

If we do to triangle ACE what we did to ABC, we get a
triangle with an angle δ such that

δ 6
γ

2
6
β

4
.
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Figure .. The real number line

At each step, we get a triangle whose angles add up to π+ α,
but one of the angles has the upper bound β/2n. If n is large
enough, then

β

2n
< α,

which means in the next triangle, two angles add up to less
than α, and so one angle is greater than π, which is absurd.

Why can we make n large enough? Well, do the students
know the Archimedean property of the real numbers? Nobody
admits to it, even though the students confirm that they have
taken all four semesters of analysis that we require. I explain.
Every for every real number, there is a greater rational num-
ber, even a greater natural number. On the real number line as
in Figure ., the integers are unbounded. In logical jargon,

∀α
(

α ∈ R ⇒ ∃n (n ∈ N ∧ α < n)
)

.

(I do not worry about taking absolute values.)
In Theorem , we want 2n > β/α; we achieve this by letting

n > β/α. I do not talk about the assumption that angles (or
rather their measurements) are real numbers.

The time is about :. We take a break. Charity still can-
not present Theorem , because she has another exam. Last
week’s exam was the ALES: Akademik Personal ve Lisansüsü
Eğitimi Giriş Sınavı (“Academic Personel and Graduate Ed-
ucation Entrance Examination”), apparently a Turkish GRE.
It is a big deal, Charity says. Her exam this week is for some
other course in the department.
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Figure .. Theorem 

Eve presents Theorem  in a more polished style than
Lucky’s; but then the text is about half the length of that
of . Also Eve may know English better than Lucky; on
Facebook she claims to know French as well. In any case, she
goes through Lobachevski’s construction. In Figure ., the
angle at B is right, and DE = AD. Then the angles DEA
and DAE are equal, and therefore each is either half of angle
BDA, or less. But Eve cannot explain clearly why. She seems
to know that, in the added labelling of Figure ., α > 2β;
but this may be only because there is a proposition in Euclid
that the exterior angle is equal to the sum of the opposite
interior angles. Again, we no longer have all of Euclid, but as
Verity explains, we have that angle ADE is π− α, and so, by
Theorem  (Lobachevski cites , as well as  for the equality
of angles DAE and DEA),

π− α + 2β 6 π,

β 6
α

2
.

What next? Again Eve seems to have missed the point. It
is true that Lobachevski is imprecise. After finding that the
angle AED is “either 1

2
α or less,” he says,
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Figure .. Theorem  continued

Continuing thus we finally attain to such an angle, AEB, as
is less than any given angle.

The point is that, at the beginning, there is some given angle,
say γ. If α < γ, we are done. Otherwise, we find β, and if
β < γ, we are done. Otherwise, we proceed as in Figure .,
where EF = AE, so angle AFB is no greater than α/4, and
so on. As before, eventually we find a straight line passing
through A that meets BC in an angle that is less than the
angle given at the beginning.

Lobachevski does not draw an explicit conclusion from ,
and so I fail to observe it: If Π(p) < π/2 for some p, then there
is a right triangle with a leg of p having positive defect: for
one of the acute angles will be less than Π(p), while the other
can be as small as we like. See page .

I list the propositions that we either have done or want to
do. There are fifteen. Some students volunteer for particular
propositions in each section of five; the rest have to take what
is left. The list ends up as follows.

Originally I said the defect would be at least π/2−Π(p).
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

















 Verity
 Sparkle
 Lucky
 Charity
 Eve



















 Sparkle
 Eve
 Charity
 Lucky (only the plane part)
 Verity



















 Eve
 Lucky
 Verity
 Sparkle
 Charity

I say that in the remaining three weeks, we ought to be able
to cover this, if students will be properly prepared, meeting
me before class to clarify any difficulties. Verity arranges to
see me Friday afternoon.
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. December 

Verity did not come on Friday. I saw yer yesterday, and she
said she had had something else to do.

Only Charity and Verity come to class today. According
to Verity, Sparkle is too tired from working for another class.
She does not know about the others. In fact Sparkle will send
me an email saying, “Yesterday I was very tired, and today I
could not wake up.” Eve will write to say she is sick. I do not
hear about Lucky.

Verity presents , and Charity , with some understand-
ing. At least Verity can follow Theorem  step by step,
though without seeing the point. It is true that Lobachevski
is not quite clear. He enunciates the proposition as,

A straight line maintains the characteristic of parallelism at

all its points.

By definition, it is a line through a given point, in a given
direction, that is parallel to a given line that does not pass
through the given point. Verity is to prove that the parallel is
the parallel through any of its points.

Verity draws Lobachevski’s diagram, as in Figure ., and
proceeds with the argument. It would be better to construct
the diagram as needed. Also, there really should be two di-
agrams. Perhaps Lobachevski economizes with one, to save
printing costs. (This however will appear unlikely, since The-
orem  will have three diagrams; see page .)

But Lobachevski could be clearer in words. After the enun-
ciation quoted above, he says,





A
B

C
D

EE ′

FF ′

GG′HKK ′

Figure .. Theorem 

Given AB (Fig. [.]) parallel to CD, to which latter AC is
perpendicular. We will consider two points taken at random
on the line AB and its production beyond the perpendicular.

He does not emphasize that AB is the parallel through A to
CD. Perhaps he does not see the need, since he understands
AB not as the infinite straight line through A and B, but
as the line with these endpoints. But in this case he might
enunciate the proposition as something like, “Any segment of
a parallel or the extension of a parallel is still parallel.”

A further confusion arises from Lobachevski’s failure to ob-
serve that the “two points taken at random” are to be taken
on either side of the point A. The proof need not consider
the two points at once; it considers one point, in two possible
positions or cases.

In the first case, we should have Figure .. Despite the
lettering, first EK is dropped perpendicular to CD; then EF
is drawn in the angle BEK. The straight line AF , or rather its
“production” as Lobachevski says, “must cut CD somewhere in
G. Then EF , entering the triangle ACG, must exit, and the
exit point must be between K and G. Verity seems reasonably
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B

C
D

E

F

GHK

Figure .. Theorem , first case

A
B

C
D

E ′

FF ′

GG′K ′

Figure .. Theorem , second case

clear with this.
For the second case, the diagram must be considered anew,

as in Figure .. Here E ′K ′ is dropped perpendicular to “the
production of the line CD,” and then E ′F ′ is drawn,

making so small an angle AE′F ′ that it cuts AC somewhere
in F ′.

Really, E ′F ′ should be drawn at random in the angle AE ′K ′.
Then it must cut either K ′C or AC. If it cuts K ′C, we are
done. So we suppose it cuts AC at some point, which might
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as well be F ′. Lobachevski treats matters summarily, and I
doubt that the students quite see this.

It may be that working out the literal meaning of the English
is hard enough. But another approach would be to work out
the mathematics: to understand the enunciation of a proposi-
tion, then find one’s own proof, using the text for hints per-
haps, but without worrying about a precise translation. I have
tried to say that we care about the mathematics, not the En-
glish; but I have not suggested that students may look for their
own proofs.

Meanwhile, in the second case of Theorem , angle FAB is
made equal to F ′E ′A. the point F is not the same one used in
the first case; but again Lobachevski does not make this clear,
and therefore Verity may not fully understand it. Now E ′F ′

cannot meet AF , so it exits triangle AGC between C and G.
Charity presents Theorem , which Lobachevski enunci-

ates as,

If in any rectilineal triangle the sum of the three angles is

equal to two right angles, so is this also the case for every

other triangle.

The adjective “rectilineal” is confusing. I may propose doğru
kenarlı. The qualification could be dropped: the second tri-
angle in the enunciation is not qualified, but is presumably
rectilineal as well. (Likewise lines are now always straight,
but are sometimes redundantly called straight lines.)

Lobachevski’s diagrams, in Figure ., are misleading as
well: in .a, AB and BC need not be equal; in .b, AB
need not be the same multiple of p that AD is of q. It would
be sufficient to require the multiples to be the same; but the
text does not require this.

Charity herself is confused by the sentence,
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(a)
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qq q q
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(b)

Figure .. Theorem 

The numbers n and m can be taken sufficiently great for
the right-angled triangle ABC (Fig. [.]) whose perpen-
dicular sides AB = np, BC = mq, to enclose within itself
another given (right-angled) triangle BDE as soon as the
right-angles fit each other.

The last qualification in particular is confusing. The point is
that if the angles in the original triangle ABC of Figure .a
add up to π, then when we drop the perpendicular from the
largest angle (so that it cuts the opposite side) we get two
right triangles whose angles separately add up to π. One of
these, rotated and added to itself, yields a rectangle. Given
the right triangle BDE of Figure ., we can cover it with
the rectangles, one of them sharing one of its angles with the
right angle DBE.

Let me note finally that, having three different figures, The-
orem  tends to contradict my suggestion that, in Theorem
, Lobachevski combines two diagrams into one to save on
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E

Figure .. Theorem  still

printing costs.
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. December 

On Saturday, Sparkle sent me an email, asking to meet on
Monday. She was working on Theorem . She did not un-
derstand the expression, “by revolving the line AF away from
the perpendicular AC.” On Sunday, I saw the email and an-
swered, saying I was teaching in the morning, but could meet
at :. (Ayşe being in Ankara, I was teaching her course
as well as my other course.) On Monday, Sparkle saw me at
noon as I was going to lunch; then she found me again when I
came back. We went over Theorem . She told me that she
had missed the last class from having been tired out from the
housecleaning that she had had to do with her mother. She
lived alone with her mother; her parents were divorced.

At home I started writing up an account of the Poincaré half-
plane model of Lobachevskian geometry. At the beginning of
class, nobody else being present, I start writing some of it
on the board. Eventually Verity comes, then Sparkle, then
Charity (unusually late), and finally Lucky at around :. No
Eve. Meanwhile, I recall Euclid’s postulates:

. From a given point to a given point, one (and only one)
straight line can be drawn.

. Any straight line can be extended.
. With a given point as center, passing through any other

She may have mentioned a brother living elsewhere, but I am not
sure.

She must have been first, because I felt free to ask her whether her
full given name was written as two words; it was not.
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given point, a circle can be drawn.
. All right angles are equal to one another.
. If a straight line cuts two straight lines, making the in-

terior angles on the same side less then two right angles,
then the two straight lines intersect.

Lobachevskian geometry rejects the fifth postulate. In the
Poincaré half-plane model:

• The points are the points one one side of a given infinite
straight line in the Euclidean plane.

• The straight lines are
– straight lines perpendicular to the given straight

line, or
– arcs with center on the given straight line.

• The circles are the “real” circles.
• The right angles are the “real” right angles.

I indicate with a diagram that two arcs are at right angles if
the tangents at the point of intersection are at right angles. It
is necessary to show that the circles of the model have centers.
In Euclidean geometry, a chord of a circle passes through the
center if and only if the chord is at right angles to the circle.
Thus we have to show that, in the Poincaré model, all chords
of a circle have a common point of intersection. In Figure .,
the center of the circle is C, where

AB : AC :: AC : AD.

I say that I have a proof (which I do, using trigonometry), but
I want to find a simpler one. (In fact the trigonometric proof
will be the simplest that I can find; see page .)

In the Poincaré model, a horizontal straight line is not
straight, but is a “boundary line”: the perpendicular bisectors
of all of its chords are parallel to one another, as in Figure
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Figure .. Center of circle in Poincaré model

.. I ask whether there are any other boundary lines in the
Poincaré model. (There are: the “real” circles that are tangent
to the boundary line of the model.)

Sparkle’s presentation of Theorem  is reasonably clear
in detail. See Figure .. Sparkle draws triangle ACE sepa-
rately, indicating that its defect is α, as in Figure .. Then
she draws ACF separately as having defect β, before she cor-
rects herself and makes the triangle AEF .

In Figure ., we assume AB and CD are perpendicular
to AC, but are also parallel. If ACE is defective by α, then
AEF is defective by some β, so the defect of ACF is α + β.
But the defect is also a − b: Lobachevski does not spell out
why, but the reasoning may simply be that the defect is what
angle CAF lacks from being right, less angle AFC. In any
case, we can make a as small as we like, and so α can only be
0.

Thus there is a defectless triangle. Sparkle is not quite clear
on what this means. From , we know that if any triangle is
defective, all are defective. In , we show that if Π(p) = π/2
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Figure .. A boundary line in the Poincaré model

A
B

C
D

E F

a

b

Figure .. Theorem 

for some p, then there is a defectless triangle; but then all
triangles are defectless.

It is also the case that if Π(p) < π/2 for some p, then there
is a defective triangle. This is by Theorem , though I fail to
observe this in class. We henceforth assume Π(p) < π/2 for
some p, and therefore for all p.

In the absence of Eve (who will write to say she is still sick),
I prove Theorem , that every acute angle is Π(p) for some
p. Thus if we are given angle BAC as in Figure ., and some
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Figure .. Theorem  detail

perpendicular DE to AC cuts AB, then triangle ADE has a
positive defect α. If DF = AD, then triangle AFE has defect
2α, so AFG has greater defect, and so on. Eventually we find
a perpendicular, as CK, that does not cut AB. Then we may
assume CK is a boundary between perpendiculars that cut
AB and those that do not. Then CK must be parallel to AB,
for the perpendicular dropped from any inclined straight line
such as CL must cut AB, and then CL also cuts.

Charity has not prepared . She seems to think she needed
only be ready for next week; but Sparkle says this was not the
case. Lucky says he has not prepared , but can try to do it
anyway. I skip him for now and go to Verity for Theorem :

if two of the perpendicular bisectors of a triangle meet, then
they all meet at the same point. First she thinks the proposi-
tion is about medians, or in Turkish kenarortaylar (and it is
possible that, in talking to her about the proposition earlier, I
was confused about the meaning of this term). In the diagram
in the text, it is not clear that the lines drawn are not medians.
I draw a triangle with an obtuse angle, asking Verity to use
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Figure .. Theorem 

it; this brings out the confusion. Corrected, she is able to pro-
ceed. She seems unclear, though, about when the intersection
point lies outside the triangle. For example, she has a diagram
looking as in Figure ., where DG, EG, and FG are indeed
to be understood as perpendicular bisectors. Also confused is
Charity, who wonders when the point of intersection will lie
on a side of the triangle.

I observe that the proposition is really Euclidean.

Lucky has had ten or  minutes to study  in class, but
this turns out not to be enough. He draws the whole diagram
first. He does not seem to state clearly which lines are parallel
to which. I ask him to write it out. When he starts using
words, I suggest using symbols; then he does write correctly

. December  



A B

C

F

E D
G

Figure .. Theorem 

that we are first going to prove

AB ‖ EF & CD ‖ EF =⇒ AB ‖ CD.

He does not see the point of Lobachevski’s auxiliary lines, so
I go the board to explain, as time is running out. He says he
can finish next week.

It is understood that we shall finish next week. It seems
to be generally understood that students will seek me out
on Monday afternoon with questions about their propositions.
Charity may want to meet on Monday morning. I say it will
have to be at . She says she will email me if she wants to
meet.
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. December 

Nobody wrote me. I was in the office at  yesterday morning,
just in case. On Monday afternoon, after my other course, I
saw Sparkle and Lucky sitting with somebody else in the com-
mon area, so I went to see them briefly. A bit later, in my
office, Sparkle, Charity, and Verity came, though not simul-
taneously. They all seemed to go away, reasonably content,
though I was not necessarily content, particularly about what
Sparkle was working on: Theorem .

The point of  is to establish that, in a figure bounded by
boundary lines AB and A′B′ and their axes AA′ and BB′,
as in Figure .a, if CC ′ is another axis, and lengths are as
indicated, then

t′

t
=
s′

s
. (.)

First note that the figure exists because of Theorem , that a
boundary line is a circle of infinite radius, the axes being radii
of this circle. The claim is clear in case t/s is a rational number
p/q, since then we can divide the figure into q congruent strips
by means of new axes, and one of these will be CC ′. I think
Lobachevski confuses the matter by assuming also s/s′ is a
rational number n/m. He then divides AB into nq parts. It
follows that A′B′ contains mq of the same equal parts, and AC
contains np of them. Lobachevski observes this, but does not
seem to use it to conclude (.). he uses only the construction
of the equally spaced axes, except that they divide AB into
nq parts, not just q of them.
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Figure .. Theorem 

Lobachevski does not say that (.) holds generally by con-
tinuity. The proportion is clear from the Eudoxan definition
in Euclid, though Lobachevski does not allude to this, nor did
I in talking with Sparkle.

No argument is given for why s′/s depends exponentially on
x. I tried to suggest this dependence to Sparkle by pictures as
in Figure .b, where all six of the small quadrilaterals are
congruent.

This morning I finished working out in detail the proofs
of the remaining propositions that I hoped to cover: – and
. I also confirmed the formulas of  and  for the Poincaré
half-plane.

When I go to class, Charity is already there, continuing to
think about Theorem . Yesterday she left my office at the
point where Lobachevski was just about to obtain the formula

(

tan
Π(c)

2

)2

= tan
Π(c− β)

2
· tan Π(c+ β)

2
. (.)
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from

cosΠ(c) =
cos

(

1

2
Π(c− β) + 1

2
Π(c+ β)

)

cos
(

1

2
Π(c− β)− 1

2
Π(c + β)

) . (.)

Lobachevski does not give a derivation though. All I can see
to do is to write the latter formula as

cos ϑ =
cos(ϕ+ ψ)

cos(ϕ− ψ)
. (.)

Since

tan
ϑ

2
=

sinϑ

1 + cosϑ
=

1− cosϑ

sin ϑ
,

so that
(

tan
ϑ

2

)2

=
1 + cosϑ

1− cosϑ
,

we obtain at present

(

tan
ϑ

2

)2

=
cos(ϕ− ψ)− cos(ϕ+ ψ)

cos(ϕ− ψ) + cos(ϕ+ ψ)
=

sinϕ · sinψ
cosϕ · cosψ
= tanϕ · tanψ.

In my own notes I have worked this out by first expanding
(.) using the angle addition formula. In any case, Charity
has not seen where (.) comes from, so I show her my notes.

I have finally brought to class my two Escher books, for their
reproductions of Escher’s “Circle Limit” pictures. I have also
brought my slide rule.

Verity and Sparkle come. The latter says Eve and Lucky
are stuck in traffic. They are supposed to present  and 
respectively. I ask Verity to have a go at . She starts; but
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(b) AB ‖ CD & CD ‖
EF

Figure .. Theorem 

despite our discussion yesterday, she says she has not under-
stood the boundary line. Meanwhile Lucky has arrived, so I
suggest that he might explain it.

He first wants to present Theorem , which he could not
do properly last week. I let him try again, but he still has not
understood. Again he draws the whole diagram. He writes

∠DCE < π/2 Teorem ’den EF ‖ CD.

I let this go for a while, but then must come back to it.
Three straight lines AB, CD, and EF are given, in that

order. If two are parallel the third, then they will be shown
parallel to one another. In the first case, AB ‖ EF and CD ‖
EF , as in Figure .a, and we want to prove AB ‖ CD.
Though I do not check the English until later, what Lucky has
written comes from a misreading of the end of Lobachevski’s
sentence,

 Geometries



In order to prove this, let fall from any point A of the outer
line AB upon the other outer line FE, the perpendicular
AE, which will cut the middle line CD in some point C
(Theorem ), at an angle DCE < 1

2
π on the side toward

EF , the parallel to CD (Theorem ).

I shall not remember exactly how I tell Lucky just to stop. The
point that he apparently does not see is that when the perpen-
diculars AE and AG are dropped to EF and CD respectively,
then, since CD ‖ EF , the angle ECD must be acute, and so
the point G will be on the other side of C from D. Then a
straight line drawn out from A into the angle BAG will be on
one side or other of AC. If it is in angle CAG, then it must
cut GC. If it is in angle BAC, then (since AB ‖ EF ) it must
cut EF at a point H , and therefore it must cut CD at a point
K, or rather CD must cut it.

Now suppose AB ‖ CD and CD ‖ EF , as in Figure .b.
Then a straight line drawn from A in the angle BAE will cut
CD at a point K. I do not know why Lobachevski does not
appeal to Theorem  here in order to conclude that AK must
also cut EF . Instead he repeats the proof, extending AK to
L, then observing that CL must cut EF at a point M , so that
AL must cut EF also.

I do not spend time in class to clarify the proof of . I just
ask Lucky to go on to . He does not understand that either.
I observe that he was just hanging out yesterday afternoon
when I saw him. His classmates came to talk to me then, but
he did not. He suggests that he can study  and present it in
the next class. There is no next class, I say. He says he means
the next hour.

I mutter something about how this is all like a joke (şaka
gibi). I heard a few weeks ago that Lucky was having trou-

. December  



ble with his girlfriend. Also it seems his parents are recently
divorced. But if he finds no solace in mathematics when he
is troubled, then he should study something else. I wonder if
what really troubles him is that he is not as smart as he likes
to imagine himself to be.

I don’t know what to do. “What shall we do?” I ask (Ne
yapalım? ). Nobody makes a suggestion. Eventually I go to
write on the board the saying that I showed Sparkle yesterday,
when she whined a bit about some difficulty:

ΧΑΛΕΠΑ ΤΑ ΚΑΛΑ.

I invite her to say the translation:

Zordur güzeller.

Then I start talking about Escher, using the books that I have
brought. His pictures are beauties, though not hard to look
at; but some at least are based on the mathematics that we
are doing.

Eve has come in at some point. But the time is about :,
so I take a break, as if most students have not already taken
their personal breaks by arriving late.

Eve has written out a translation of Theorem , but
freely and cheerfully admits that she does not understand it.
In triangle ABC in Figure ., we consider the perpendicu-
lar bisectors DE, FG, and HK of the sides. First assuming
DE ‖ FG, we aim to prove HK ‖ DE. However, after the di-
agram (which is oriented oppositely and is drawn with straight
lines only in the text), HK ‖ DE is all that Eve writes on the
board. She cannot explain whether it is hypothesis or conclu-
sion. After some discussion, I am reduced to pointing out that
in most theorems, there is an hypothesis and a conclusion. I
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Figure .. Theorem 

wonder what the students have been learning in their other
classes, if they have never picked up this basic fact.

Somehow we work out that, on the hypothesis DE ‖ FG,
the conclusion HK ‖ DE is obvious, since by Theorem ,
HK cannot meet DE. After this conclusion, the text may
be confusing; for before explicitly turning to the converse,
Lobachevsky draws further conclusions. If the sides opposite
the points A, B, and C are respectively 2a, 2b, and 2c, and
the letters of the points designate the angles at those points,
then

A = Π(b)− Π(c), B = Π(a)− Π(c), C = Π(a) + Π(b).

Eve can work this out, with the help of the auxiliary lines AA′,
BB′, and CC ′, drawn parallel to the perpendicular bisectors,
or rather to HK in particular.

Now we assume HK ‖ FG. As before, if DE ∦ HK, then
as it cannot cut HK, it must cut AA′. In this case

B = Π(a)− Π(c), C > Π(a) + Π(b).

We use also the assumption that HK lies between DE and FG.
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Figure .. Theorem  continued

If we rotate CA about C into a position CQ as in Figure .,
so that ∠QCB = Π(a)+Π(b), then ∠QBC > Π(a)−Π(c). But
we now have a triangle QBC to which the earlier arguments
apply, so that, if QB = 2c′, then

Π(a)− Π(c′) > Π(a)−Π(c),

Π(c′) < Π(c),

c′ > c.

But AC = QC, and so AB > QB (see below), that is, c > c′.
Lobachevski stops abruptly here, leaving it to the reader to
note the contradiction. Eve copies some of this onto the board,

Namely that the perpendicular bisector of QB is parallel to the other
two.
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but not with any understanding that I can see. Since time is
running out, we move along anyway.

Meanwhile, let us note that Lobachevski considers the con-
figuration of Figure .a only, not .b. Since AC = QC,
we have

∠CAQ = ∠CQA,

and therefore ∠BAQ < ∠BQA, and so BA > BQ. According
to Lobachevski, this is by Theorem :

In a rectilineal triangle, a greater side lies opposite a greater
angle. In a right-angled triangle the hypothenuse is greater
than either of the other sides, and the two angles adjacent
to it are acute.

The first part of this is worded like Heath’s rendition of Eu-
clid’s I.:

In any triangle the greater side subtends the greater angle.

This means BA > BQ =⇒ ∠BAQ < ∠BQA, when what we
want is the converse, I..

In class, I ask Lucky if he can explain Theorem  now. He
says he doesn’t think so (zannetmiyorum); so I do it. Again
Lobachevski’s explanation is not as clear as I think it could
be. It starts with what is formally a definition, though it is
italicized as it enunciated a theorem:

We call boundary line (oricycle) that curve lying in a plane
for which all perpendiculars erected at the mid-points of
chords are parallel to each other.

Where the bizarre form “oricycle” comes from, I do not know.
The normal form in English would be horocycle, as if derived
from ὁροκύκλος; I point out some time that ὅρος is what is
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Figure .. Theorem : the horocycle

used in Euclid’s Elements for what we call definitions. In any
case, the theorem would be that the horocycle actually exists.
Given a straight line AB and two acute angles α and β, we
may draw AC and AH as in Figure ., so that

∠BAC = α = Π(a), AC = 2a,

∠BAH = β = Π(b), AH = 2b.

(Assuming α > β, I ask which of AC and AH will be greater,
but do not get the right answer at first.) The perpendicular
bisectors of AC and AH are parallel to AB; therefore, by
Theorem , the perpendicular bisector of CH is also parallel
to AB. Thus all such points as C and H fill out a curve, the
boundary line, the perpendicular bisector of whose every

See Appendix E. page .
I do not recall using the letters a and b here, but I think I did use

the Π. It is therefore possible that I wrote nonsense like Π(α); but in
that case, nobody corrected me.

 Geometries



bc

bc bc

bc

A

B

α

C

D

E

F

β γ

Figure .. Theorem 

chord is parallel to AB. All of these parallels are called axes

of the boundary line.

Verity now tries again with Theorem : that the bound-
ary line is, so to speak, a circle of infinite radius. She is able
to work it out pretty much as Lobachevski does, though she
is still a bit confused. At least she can think at the board and
correct herself. In Figure . then, the straight line AB is a
chord of a boundary line with axes AC and BD (Lobachevski
calls the latter BF ). The angles BAC and ABD have the
same value α. Lobachevski justifies this by a reference to The-
orem , though the fact is not made explicit there. It must
be understood that α = Π(a), where 2a is the length of AB.
If E is chosen at random on AC, then the circle with center E
passing through A cuts BD at a point F . Lobachevski has not
yet mentioned the point D, but has always used F . He does
not note explicitly that F must be on the indicated side of the
boundary line, and Verity does not worry about this (and I
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do not worry her about this). However, wherever F falls on
BD, the angle AFE or β will be less than α, and this means
∠FAC < ∠BAC, so the diagram is correct.

Lobachevski also does not make it quite clear that as the
center E moves away from A, so the point F moves towards
B. But when E moves away from A to E ′, then E ′F < E ′A,
by Theorem  as interpreted earlier (page ). This shows
that the circle through A having center E ′ lies outside that
with center E. Thus F must move towards B as E moves
away from A.

Lobachevski does note that as E moves, γ becomes smaller;
it becomes as small as we like, by Theorem . But then he
makes an obscure reference to :

. . . the angle γ approaches the limit 0, as well in consequence
of a moving of the center E in the direction AC, when F
remains unchanged, (Theorem ), as also in consequence of
an approach of F to B on the axis BF , when the center E
remains in its position (Theorem ) . . .

The point is that, by , γ approaches 0, even if F is fixed;
but as F moves towards B, γ only becomes smaller still. The-
orem  seems irrelevant. In any case, as Verity observes (but
Lobachevski does not explicitly), the sum of the angles in tri-
angle ABF is

α− β + α + (π − β − γ),

which is 2α− 2β − γ + π; since this is less than or equal to π,
we obtain

α− β 6
1

2
γ.

The intransitive and transitive forms of “to worry” would be different
in Turkish: merak etmek and merak ettirmek.
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Π(β
)

Figure .. Theorem , first case

Lobachevski himself says first α− β < β + γ −α, the inequal-
ity being strict by Theorem , which he cites, though the
strictness is not needed.

Time is running out. Sparkle goes through Theorem ,

reproducing Figure .b (page ) as I suggested.
I have told the students that the final examination will con-

cern the exercises that I gave out on November  (page ). I
told Verity last week that I would type them up and put them
on the web; this I have done, as I now make clear.

It is : or even later, and everybody else leaves; but
Charity is pumped up about Theorem , and she has no
class now, and there is no class in our room, so we stay on so
that she can present  to me. We are given triangle ABC as
in Figure .; the angle at C is right, and for some distances α
and β, the angles at A and B are Π(α) and Π(β) respectively.
The sides opposite A, B, and C are a, b, and c respectively.
One must be clear that a is not α, though both are distances.
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Π(β
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Figure .. Theorem  when β < c

AB is extended a distance β to D. Then the perpendicular
DD′ to AD is parallel to CB (which is in turn extended to
B′). If the parallel AA′ to BB′ is also drawn, then, considering
that AA′ is parallel to two different straight lines to which
perpendiculars are dropped from A, we have

Π(b) = Π(α) + Π(c+ β). (.)

We derive a related equation by measuring β along BA in the
other direction. There are three cases. If β < c, we have
Figure ., from which we can infer

Π(c− β) = Π(α) + Π(b). (.)

In case β = c, the diagram is as in Figure .a, and then

Π(α) + Π(b) =
1

2
π;

but now Π(c − β) = Π(0) = 1

2
π by definition; so again (.)

holds. Finally, if β > c, then as in Figure .b,

Π(β − c) + Π(b) + Π(α) = π,

 Geometries



A

A′

B

C ′

C

a

b

c

Π(b)

Π(
α)

Π(
β)

(a) case β = c

D

D′

B

C ′
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Figure .. Theorem  when β > c

so (.) still holds since π−Π(β−c) = Π(c−β) by definition.
I need to point out to Charity that it is by solving the system

of (.) and (.) that Lobachevski obtains

2Π(b) = Π(c− β) + Π(c+ β),

2Π(α) = Π(c− β)−Π(c + β).

This yields immediately

cosΠ(b)

cosΠ(α)
=

cos
(

1

2
Π(c− β) + 1

2
Π(c + β

)

cos
(

1

2
Π(c− β)− 1

2
Π(c + β)

) .

Now we use a result of Theorem  without proof, namely

cosΠ(b)

cosΠ(α)
= cosΠ(c).
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This is a standard result from spherical geometry, and 
shows that there is no change in this geometry when one elim-
inates Euclid’s fifth postulate. Now we have (.) on page
, from which we obtain (.), namely

(

tan
Π(c)

2

)2

= tan
Π(c− β)

2
· tan Π(c+ β)

2
,

as shown. Now Lobachevski proposes replacing β with c, 2c,
3c, and so forth. One can do this; that is, one can use induction
to obtain

(

tan
Π(c)

2

)n

= tan
Π(nc)

2
.

But it seems neater to me to rewrite (.) as

tan(Π(c)/2)

tan(Π(c− β)/2)
=

tan(Π(c + β)/2)

tan(Π(c)/2)
;

for since tan
(

Π(0)/2
)

= 1 (as Charity tells me), we have

(

tan
Π(c)

2

)n

=

n
∏

k=1

tan
(

Π(kc)/2
)

tan
(

Π
(

(k − 1)c
)

/2
) .

We can define the unit so that tan
(

Π(1)/2
)

= exp(−1); and
then

exp(−x) = tan
Π(x)

2
,

so Π(x) = 2 arctan exp(−x).
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A. Attendence

Verity Eve Sparkle Charity Lucky
 Sep  X X
 Oct  X X X X X
 Oct 
 Oct  X X X X X
 Oct  X X X
 Nov  X X
 Nov  X X X X
 Nov  X X X X
 Nov  X X

 Dec  X X X X X
 Dec  X X
 Dec  X X X X
 Dec  X X X X X

    

Here a student is counted if she or he showed up at all, even if
it was  minutes late. In the accounts of the days themselves,
I tried to give some indication of who was late; but I was not
systematic in keeping such records. In another year, I would
try to keep the class from being scheduled at  a.m., since this
is perhaps the worst time to need to be anywhere in Istanbul,
as far as traffic is concerned. However, presumably people do
manage to be where they should be then, if their livelihoods
depend on it. In any case, I ought to have a clear policy on
lateness.
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B. Final examination

The final examination was scheduled for :–:, Wednes-
day, January , . On the last day of class (page ), I
said that the exam would be based on the exercises that I had
announced.

B.. Preliminary meeting

Sparkle sent me an email on the day before the exam, asking
if she could meet me. Later in the day, she and Eve did come
to my office. Because of their questions, I inferred that, from
the exercise sheet, it was not clear that problems  and 
were based on Lemma IV of Pappus. I made this clear in
person. The students did not have Pappus with them, and I
did not have my paper copy; so we looked at the image on my
computer screen.

Problem  was the converse of Lemma IV, but much of the
proof could be the same. However, I was not prepared to go
through this with the students. I just worked out an argument
as follows.

In the given diagram (as in Figure B., but without HMN),
we are to show

AF ·BC
AB · CF =

AF ·DE
AD ·EF . (B.)

We note that AF is common to both sides. From Problem ,
we know

CF

FE
=
KC

HK
· HL
LE

(B.)
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Figure B.. Homework Problem 

The FE appears in the right member of (B.), while CF is
on the left. Thus, keeping AF , we shall manipulate the left
member of (B.) so as to obtain, as a factor, the right member
of (B.). We do this by first adding to the diagram HMN ,
which is parallel to AE. Then

AF · BC
AB · CF =

AF

CF
· BC
AB

=
AF

CF
· BC
HM

· HM
AB

=
AF

CF
· CK
KH

· HN
AD

=
AF

CF
· CK
KH

· HN
DE

· DE
AD

=
AF

CF
· CK
KH

· HL
LE

· DE
AD
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=
AF

CF
· CF
FE

· DE
AD

=
AF ·DE
AD · FE ,

as desired.

B.. The examination itself

The exam itself is indeed based on the exercises. It uses “ratio-
nal” notation, rather than fractional notation; but I note the
equivalence at the beginning (“instead of X : Y , one can write
X/Y or X

Y
”). Translated, the exam problems are as follows.

Only one diagram is supplied, and that for Problem .
Problem . Let ABCD and AEFG be straight, and let

BE ‖ DG, BF ‖ CG.

Show the parallelism CE ‖ DF .
Problem . Of the quadrilateral ABCD, let the sides AB

and DC meet at E; sides DA and CB, at F . Prove the
proportion

AE : EB :: AD : DF & FC : CB.

Problem . If ABCD is straight, the cross ratio of these
four points can be defined as the compound ratio

AC : CB & BD : DA or AB : BC & CD : DA.

Show the equivalence of these two definitions. That is,
supposing EFGH is straight, prove that the proportion

AC : CB & BD : DA :: EG : GF & FH : HE

B. Final examination 
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Figure B.. Exam Problem 

implies the proportion

AB : BC & CD : DA :: EF : FG & GH : HE,

and conversely.
Problem . In the diagram [in Figure B.], the lines that ap-

pear straight are straight, and

KL ‖ AE.
Show the proportion

AB : BC :: AD : DE.

B.. My solutions

My own solutions (prepared in Turkish before the exam) are
as follows.

 Geometries



A

B
E

C

GD

F

(a) Problem 

A
B

CD E

F

G

(b) Problem 

Figure B.. Diagrams for exam solutions

. In Figure B.a,

DBE = GBE, [because BE ‖ DG]

DAE = GBA, [adding ABE]

GBF = CBF, [because BF ‖ CG]

GBA = CAF, [adding ABF ]

DAE = CAF, [because DAE = GBA]

DCE = CEF, [removing CAE]

wherefore CE ‖ DF .
. In Figure B.b, let BG ‖ AD. Then

AE

EB
=
AD

GB
=
AD

DF
· DF
GB

=
AD

DF
· FC
CB

.

. Translating into fractional notation, we have

AC · BD
CB ·DA =

EG · FH
GF ·HE
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Figure B.. Solution for Problem 

⇐⇒ AC · BD
BC · AD =

EG · FH
FG · EH

⇐⇒ AC · BC + AC · CD
BC · AC +BC · CD =

EG · FG+ EG ·GH
FG · EG+ FG ·GH

⇐⇒ AC · CD − BC · CD
BC · AC +BC · CD =

EG ·GH − FG ·GH
FG · EG+ FG ·GH

⇐⇒ AB · CD
BC · AD =

EF ·GH
FG · EH .

. In Figure B., let HMN ‖ AE. Then

AB

BC
=

AB

HM
· HM
BC

=
AG

HG
· HK
KC

=
AD

HN
· HL
LE

=
AD

HN
· HN
DE

.

B.. Examination day

Before the exam, I see Charity in a classroom, working at the
whiteboard, apparently with Hapless. Hapless tries to enter
the exam, but I do not allow him. I point out that % atten-
dance was required, and anyway, he never come back to talk
to me as I had told him (page ).
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(b) Final

Figure B.. Sparkle’s diagram for Problem 

Verity tells me something I do not understand; it may be
about Lucky. I ask her if he is coming. She calls him and
reports that he is not coming.

So four students take the exam. There is initial confusion
about Problem : students do not recognize that the point A is
shared by the two straight lines. On Problem , Sparkle draws
a diagram as in Figure B.a, but does not see how DA and CB
can also cross. I indicate that these sides could be extended.
Her completed paper will have a diagram as in Figure B.b.

B.. Students’ solutions

Results are as follows.
Problem . Charity is quite correct. She makes one slip,

which need not be counted. Having shown ABG =
FAC, she shows AED = ABG and underlines it. Re-
calling that ABG = FAC, she repeats it and underlines
it, when evidently she means AED = FAC.
• Verity correctly establishes first BED = BEG, and
then ADE = BAG. But then she wrongly claims that

B. Final examination 
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Figure B.. Sparkle’s diagram for Problem 

ECG = BFD because BF ‖ CG.
• Sparkle’s diagram is as in Figure B. (without BG
drawn). Her first claim is that since BED and GED
have a common base, and BE ‖ GD, it follows that the
two triangles are equal. This is the same mistake that
Verity made originally (page ).
• Eve wrongly has the straight lines BG, CF , and DE
meeting at a common point M . But there are three
points to consider, as in Figure B.. Eve’s argument
would be correct, if M , N , and P were one. The argu-
ment can be corrected:

BDG = EDG,

BMD = EMG,

BFG = BFC,

FNG = BNC,

BMD − BNC = EMG− FNG,

CPD −MNP = EPF −MNP,
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Figure B.. Correction of Eve’s diagram for Problem 

CPD = EPF,

CFD = FED.

Problem . Eve has this correct (unless it matters that AD
and BC meet in the direction of D and C). The oth-
ers have not understood that the ampersand stands for
multiplication.
• Sparkle writes

AE

EB
=
AD

DF
ve

FC

CB
,

draws the diagram in Figure B.b as described, repeats
the verbal description of the intersections (changing the
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(a) Charity

A
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(b) Verity

Figure B.. Student diagrams for Problem 

imperative kesişsin to the declarative kesişir), but says
no more.
• As what is to be proved (because it is followed by
Kanıt “Proof”), Charity writes

AE

EB
=
AD

DF
&

AE

EB
=
FC

CB
,

and has a diagram as in Figure B.a. I translate what
she gives as a proof. The style is correct. It appears
Charity can write mathematics, which is something that
the best students at METU might not do well, even if
they ended up being research mathematicians. But the
mathematical content of her proof is almost completely
wrong; I see only one correct proportion:

From the point A, parallel to DE, let us produce the
straight line AG. Since AG ‖ CE (because AG is
parallel to the whole of DE), we obtain the equality
CE : AG :: EA : EB. Let us look at the triangle
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FDC. Since AG ‖ DC,

AG

DC
=

FD

DA
=

FC

GC
,

AG

DC
=

GB

BC
,

therefore
FD

DA
=

GB

BC
.

Since AG ‖ CE,

BG

BC

AE

BE
∥

∥

∥

FD

DA

AE

BE

I wonder if the observation about the “whole of DE”
shows the influence of Lobachevski.
• Verity writes few words, and her diagram, as in Figure
B.b, has no auxiliary lines. She starts with the enunci-
ation,

AE

EB
=
AD

DF
&

FC

CB
and proceeds immediately to write nonsense:

AE

EB
=
ED

EC
= k,

AD

DF
=
BC

FC
= ℓ diyelim

“let us say.” She never uses k or ℓ again. The next thing
she writes is
AE ·DF
EB ·DF =

ED ·DF
EC ·DF =⇒ AD · EF

DF · EB =
ED ·DF
EC ·DF ,

which might be said to have one correct feature: the
protasis would be correct, if the fractions set equal to k
were indeed equal to one another.
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Problem . Eve is mostly correct. At least she has the com-
putations correct, roughly as in my own solution. In-
deed, she quotes what I told her:

A

B
=
C

D
=⇒ A− B

B
=
C −D

D
.

I should think my own arrow would have been two-
headed. During the exam, she asks if she has to write
everything again for the converse. I draw the double-
headed arrow on the board and suggest that her steps
ought to be reversible. I think she does not really un-
derstand this, though she does write out her conclusion
with the double-headed arrow.
• As before, Verity and Sparkle misunderstand the am-
persand. Sparkle writes nothing new; Verity, nonsense.
Charity has nothing.

Problem . Eve draws the correct auxiliary straight line (hers
is called HST , where mine is HMN), and she writes
some correct proportions (as equations of fractions); but
then she says

AB

BC
=
AB

HS
· HS
BC

=
HT

DE
· HS
BC

=
HT

DE
· AD
HT

=
AD

DE
.

with two incorrect substitutions, although has already
written correctly

AB

HS
=
AD

HT
.
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• Sparkle extends LK to meet AG at a point T , and
she draws BZ parallel to DG, but she cannot make use
of these. She writes three correct proportions and two
incorrect proportions, but uses no compound ratios.
• Verity draws no auxiliary lines. Her words suggest
that she does not understand how KL is constructed.
She observes correctly HK/HC = KL/CE, but cannot
continue.
• Again Charity has nothing.

These results can be scored as follows (accompanied by atten-
dence figures as on page ):

    total
/
×

attendence
Verity . .  . . .

Eve .  . .  .
Sparkle . .  . . .
Charity  .   . .

Lucky — — — — — .
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C. Centers of hyperbolic circles

Here is the proof, referred to on page , for why the puta-
tive diameters of circles in the Poincaré half-plane model do
actually meet at one point.

In the Euclidean plane, on one side of a straight line AB,
let a circle with center C be drawn, as in figure C. or C..
Drop the perpendicular CA to AB. Let the straight line CD,
perpendicular to CA, cut the circle at D, and let the rectangle
ACDE be completed. Then DE is tangent to the circle. Let
the circle with center E passing through D cut AC at F . Then

EF = ED,

and the arc DF is at right angles to the circle.
Now let a random point G be taken on the circle. Let the

radius CG be drawn, and let GB, at right angles to this, cut
AB at B. Then GB is tangent to the circle, so the circle with
center B passing through G is at right angles to the original
circle. We shall prove that the new circle passes through F ,
that is,

BF = BG.

To this end, let the rectangle ABHK be drawn so that HK
passes through G. Make the following definitions:

CD = 1, AC = a, ∠DCG = ϑ.

Then

KG = cos ϑ, CK = sinϑ, BH = AK = AC + CK

= a+ sin ϑ.
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F

G H
K

Figure C.. Hyperbolic circle

Here ϑ and CK can be negative, but π/2 < ϑ < π/2, and KG
and BH are positive. Moreover,

|BG|
BH

=
|CG|
KG

=
1

cosϑ
,

wherefore

BG2 =
(a+ sin ϑ)2

cos2 ϑ
. (C.)

Moreover, BF 2 = AF 2 + AB2, where

AF 2 = EF 2 −AE2 = ED2 − CD2 = AC2 − CD2 = a2 − 1,

AB2 = KH2 = (KG+GH)2.

To calculate the latter we use

GH

BH
=
CK

KG
= tanϑ,
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E

F

G
H K

Figure C.. Hyperbolic circle

so that

AB2 =
(

cosϑ+ (a+ sin ϑ) · tanϑ
)2

=

(

cos2 ϑ+ (a + sinϑ) · sin ϑ
)2

cos2 ϑ
=

(1 + a · sinϑ)2
cos2 ϑ

,

wherefore

BF 2 = AF 2 + AB2 = a2 − 1 +
(1 + a · sinϑ)2

cos2 ϑ

=
a2 · cos2 ϑ− cos2 ϑ+ 1 + 2a · sinϑ+ a2 · sin2 ϑ

cos2 ϑ
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=
a2 + sin2 ϑ+ 2a · sinϑ

cos2 ϑ
,

which by (C.) is BG2. This completes the proof.
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D. Hyperbolic diagrams

In the diagrams in our text of Lobachevski, straight lines are
drawn as straight. This is reasonable; but it means that
straight lines supposed to be parallel will “obviously” meet
if extended. In the present notes, I have redrawn many of
Lobachevski’s figures in the Poincaré half-plane.

For me this activity has been something of a reversion to
childhood. At around the age of twelve, I plotted various
mathematical curves, first using the tables and equations in
the analytic geometry textbook [] that my mother had used
in college, and then using one of the scientific pocket calcu-
lators that were coming on the market. I noticed that, when
one measured angles in radians, the graph of the sine func-
tion was like y = x near the origin. On my own though, I
could not quite recognize then that the cosine function was
the derivative of the sine function.

Now I am returning to the plotting of mathematical curves,
but with somewhat more knowledge. However, my knowledge
of plotting with the aid of a computer extends only as far as the
use of pstricks. With this TEX package, figures such as .
on page  can be constructed by means of the computations
illustrated in Figure D.. In the usual coordinate grid, the
horocycle is chosen as unit circle centered at (1, 0), and the
boundary of the half-plane is the y-axis. If two points A and B
are chosen on the horocycle, with coordinates (1+cosα, sinα)
and (1+cosβ, sin β) respectively, then the arc centered on the
y-axis passing through A and B has center (0,− tan 1

2
(α+β)).
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bcd =
r2 − c2

2c

(1 + cosα, sinα)

(1 + cos β, sin β)

1

−c, where

c = tan
α + β

2







0

bc

r − c, where

r =
√

(sinα + c)2 + (1 + cosα)2

bc bc

bc

bc

bc

Figure D.. Computations in the Poincaré half-plane

Call this (0,−c). Then the radius of the arc is
√

(c+ sinα)2 + (1 + cosα)2.

Call this r. The arc centered on the y-axis, passing through
the origin, and orthogonal to the first arc, will have a center
(0, d). Then

(c+ d)2 = r2 + d2,

c2 + 2cd = r2,
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bc bc

bc

bc

bc

bc

bc

bc

bcbc

bc

√
3

−1

3

√
3

−1

4

−1

1

4
(3
√
3− 1)

−1

(−1

2
, 1
2

√
3)

(1− 1

2

√
3,
√
3− 3

2
)

(1−√
2,
√
3− 1)

1

1

Figure D.. Theorem  figure coordinates

d =
r2 − c2

2c
.

The construction of Figure . on page  led to curious
discovery. The points of the figure have the coordinates shown
in Figure D.. I found these as follows. I chose the boundary
of the half-plane to be the straight line given by x = 1. The
boundary line AB was the unit circle centered at the origin,
and its axis AC was the x-axis. The foot B of the other
axis was (1;π/3) in polar coordinates. This meant that the
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-1 0 1
-1

0

1

2

A

B

C

D

E

F

b

b

G

H

K

Figure D.. Theorem  figure construction

axis BD itself was drawn as a circle with center G having
coordinates (1,

√
3). This can all be seen in Figure D.. The

circle through A with center on the axis AC was drawn as
the real circle with center H having coordinates (−1

4
, 0). This

circle cut the axis BD at F .

But where was F ? I resorted to computing it by hand,
approximately, starting the lengths shown in Figure D.. I
used the rule that, in a triangle with sides measuring a, b, and
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F

G

H

√
3

3

4

1

2

√
17

Figure D.. Theorem  figure triangle

c respectively, the angle α subtended by a is given by

tan
1

2
α =

√

(a− b+ c)(a+ b− c)

(a + b+ c)(−a + b+ c)
.

The rule is given in the form

tan
1

2
α =

r

s− a
,

where

s =
1

2
(a+ b+ c), r =

√

(s− a)(s− b)(s− c)

s
,

in the handbook [], a book that in my youth I obtained from
a West Virginia junk shop, but now have obtained from my
father-in-law in Ankara. In any case, I ultimately found the
coordinates of F to be about (−0.41, 0.73).

This looked like (1 − √
2,
√
3 − 1), and so I completed the

diagram on the assumption that F had these coordinates. In
particular, the chord AF was drawn as a circle with center K
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(−0.5, 0.75)

(−0.3, 0.7)

Figure D.. Theorem  figure around F

(x, 0)(−1, 0)

(1−√
2,
√
3− 1)

r

r

Figure D.. Theorem  figure computations

having coordinates (1,−1). On this basis, the three lines that
come together at F are shown in Figure D.. However, let 2r
be the distance between (−1, 0) and (1 − √

2,
√
3 − 1), as in

Figure D.. Then

(2−√
2)(x+ 1) = 2r2 =

1

2

(

(2−√
2)2 + (

√
3− 1)2

)

=
1

2
(6− 4

√
2 + 4− 2

√
3)

= 5− 2
√
2−√

3,
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so

2(x+ 1) = (2 +
√
2)(5− 2

√
2−√

3)

= (10 +
√
2− 4− 2

√
3−√

6)

= 6 +
√
2− 2

√
3−√

6,

which is about 1.5006, but is not exactly the 1.5 that I took
it to be.
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E. Some words

E.. Etymology of “man”

I record here some etymological observations about what to
call the first-year students mentioned in the Introduction. The
observations have little relevance to the rest of this document;
but I did do the research while I was writing these notes, and
I do not want to lose it.

The traditional English term for a first-year student was
“freshman.” It was also a tradition that these students would
be male. Today, at Mimar Sinan, not only are some of our
mathematics students female: most of them are. Any one of
our first-year students may still be called a freshman, provided
the second component of this term is understood to mean sim-
ply a human being. This is the “prominent sense” of the word
man in Old English, the language spoken in England before
the Norman Invasion of  [, man, p. ].

In Old English, male and female specimens of the human
species were wer and w̄ıf respectively. Strictly, the latter word
was wif ; it is modern scholars who now mark the vowel with a
macron, indicating length [, §, p. ]. The marking may be
useful to show distinctions between words originally spelled
the same, such as gōd “good” and god “god.” The word w̄ıf
became “wife” in Modern English. Meanwhile, w̄ıf also be-
came part of the compound w̄ıfman, which was first masculine
in gender, then feminine [, woman, p. ]. The compound
became wimman in the tenth century, with the plural wim-
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men. We have retained the pronunciation of the plural for
today’s “women”; in the twelfth century, the singular wimman
became wumman, giving us today’s pronunciation of “woman”
[, woman, p. ].

The Old English wer is cognate with “virile” and is seen
in “werewolf.” The word “world” can be understood as com-
pounded from wer and “eld”; the latter is an archaic noun
meaning “age” in various senses, derived from the original form
of the adjective “old.” The James Brown song “It’s a Man’s
Man’s Man’s World” (credited also to Brown’s girlfriend Betty
Jean Newsome) is wilfully redundant; but even to say “man’s
world” is redundant, etymologically speaking,

I pick up the information about the James Brown song from
the Web, especially Wikipedia. Information about etymologies
might be considered as common knowledge, obtainable from
many dictionaries; I have indicated the dictionaries that I used
by citing the sources of specific points not found (or perhaps
not found as prominently) in other sources. I have also looked
at the OED [], used also in the next section.

E.. Pronunciation of “parallelepiped”

Used on page , the word “parallelepiped” was once “paral-
lelepipedon,” a direct transliteration of the Greek παραλλη-

λεπίπεδον. This is compounded of παράλληλ- “parallel” and
ἐπίπεδον “plane surface.” The latter Greek word is in turn com-
pounded of ἐπί “on” and πέδον “ground.” Thus, unlike the vowel
O in “parallelogram,” the second E in “parallelepiped(on)” is
not just a linking vowel. Ignorance of this fact has led to a
pronunciation of “parallelepiped” with the stress on the penul-
timate syllable. According to the Oxford English Dictionary
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[], the correct pronunciation puts the stress on the ante-
penult. In the sixth edition () of the Concise Oxford
Dictionary of Current English [], the etymologically correct
pronunciation is dominant. It is given, as for most entries in
that dictionary, by marking up the headword; the ignorant
pronunciation comes afterwards. Thus the entry begins:

părallĕlĕ′p̆ıpĕd (or -ep̄ı′p̆ıd).

In the ninth edition () of the COD [], where all pro-
nunciations are given by respelling the headword in the Inter-
national Phonetic Alphabet, the correct pronunciation takes
second place to the ignorant one:

parallelepiped /­par@lEl@"p2IpEd, par@lE"lEpIpEd/.

(For typesetting the IPA letters and diacriticals here, I have
used the tipa package.) I still prefer the pronunciation of
“parallelepiped” that is based on knowledge. There is no geo-
metrical figure called a “piped,” and this ought to be considered
by any mathematician faced with the task of pronouncing the
word “parallelepiped.” He or she might remember that the
letter sequence “epi” is seen also in words like “epimorphism,”
and there might be a reason for this. One ought to have a
reason (preferably a better reason than “convention”) for all of
the technical terms that one uses. My own distaste for the use
of unexplained technical terms led to the writing of an article
about some of them: “Abscissas and Ordinates” [].

E.. Etymology of suistimal

When the students taught me this word (page ), I think
the students spelled it suistimal, and this is the spelling of
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Nişanyan []; but Püsküllüoğlu [] and Redhouse [] give
the more etymologically correct suiistimal. In particular, Red-
house lists the word under the Arabic prefix sui-, which means
“evil, mis-”; and istimal by itself is an Arabic verbal noun for
“using.” Of about twenty words that Redhouse lists under sui-,
I recognize only suikast, which I have understood to mean “as-
sassination”; but the meaning can apparently be broader, as
kasıt by itself means “intention.”

E.. “Oricycle”

There is no such word ὁροκύκλος in the big Greek dictio-
nary [], though there are compounds like ὁροθεσία “fixing
of boundaries” and ὁροφύλαξ “frontier guard” (as opposed to
ὀροφύλαξ “mountain guard”). Possibly the form “oricycle”
mentioned on page  represents the translator’s faithful-
ness to Lobachevski’s Russian. Nietzsche’s Birth of Tragedy
concerns what Walter Kaufmann translates as “the Apollinian
and Dionysian,” and “Apollinian” is a strange way to form an
adjective from the name of Apollo; but Kaufmann explains
in a footnote: “Apollinisch has often been rendered by ‘Apol-
lonian’; but I follow Brinton, Morgan, and the translator of
Spengler’s Decline of the West in preferring ‘Apollinian’; after
all, Nietzsche did not say Apollonisch” [, p. ].
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