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6

Circles and spheres

The present chapter shows how Euclidean geometry, in which lines and
planes play a fundamental role, can be extended to inversive geometry, in
which this role is taken over by circles and spheres. We shall see how the
obvious statement, that lines and planes are circles and spheres of infinite
radius, can be replaced by the sophisticated statement that lines and planes
are those circles and spheres which pass through an “ideal” point, called
“the point at infinity.” In § 6.9 we shall briefly discuss a still more unusual
geometry, called elliptic, which is one of the celebrated “non-Euclidean”
geometries.

6.1 INVERSION IN A CIRCLE

Can it be that all the great scientists of the past were really playing
a game, a game in which the rules are written not by man but by
God? ... When we play, we do not ask why we are playing—we
just play. Play serves no moral code except that strange code which,
for some unknown reason, imposes itself on the play. . .. You will
search in vain through scientific literature for hints of motivation. And
as for the strange moral code observed by scientists, what could be
stranger than an abstract regard for truth in o world which is full of
concealment, deception, and taboos? . . . In submitting to your con-
sideration the idea that the human mind is ot its best when playing,
I am myself playing, and that makes me feel that what | am saying may
have in it an element of truth.

J. L. Synge (1897 - ¥

All the transformations so far discussed have been similarities, which
transform straight lines into straight lines and angles into equal angles. The
transformation called inversion, which was invented by L. J. Magnus in
1831, is new in one respect but familiar in another: it transforms some

* Hermathena, 19 (1958), p. 40; quoted with the editor’s permission.

77



78 CIRCLES AND SPHERES

straight lines into circles, but it still transforms angles into equal angles.
Like the reflection and the half-turn, it is involutory (that is, of period 2).
Like the reflection, it has infinitely many invariant points; these do not lie
on a straight line but on a circle, and the center of the circle is “singular:”
it has no image!

Figure 6.1a

Given a fixed circle with center O and radius k, we define the inverse of
any point P (distinct from O) to be the point P’ on the ray OP whose dis-
tance from O satisfies the equation

OP x OP' = k2

It follows from this definition that the inverse of P’ is P itself. Moreover,
every point outside the circle of inversion is transformed into a point in-
side, and every point inside (except the center O) into a point outside. The
circle is invariant in the strict sense that every point on it is invariant. Every
line through O is invariant as a whole, but not point by point.

To construct the inverse of a given point P (other than O) inside the cir-
cle of inversion, let T be one end of the chord through P perpendicular to
OP, as in Figure 6.1a. Then the tangent at 7 meets OP (extended) in the
desired point P’. For, since the right-angled triangles OPT, OTP’ are simi-
lar, and OT = k,

OP _ k
k — opP’

To construct the inverse of a given point P’ outside the circle of inver-
sion, let T be one of the points of intersection of this circle with the circle
on OP as diameter (Figure 6.1a). Then the desired point P is the foot of
the perpendicular from 7 to OP".

If OP > %k, the inverse of P can easily be constructed by the use of com-
passes alone, without a ruler. To do so, let the circle through O with cen-
ter P cut the circle of inversion in Q and Q’. Then P’ is the second inter-
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section of the circles through O with centers Q and Q’. (This is easily seen
by considering the similar isosceles triangles POQ, QOP'.)
There is an interesting connection between inversion and dilatation:

6.11  The product of inversions in two concentric circles with radii k and
k' is the dilatation O(p) where p = (k'/k)2.

To prove this, we observe that this product transforms P into P (on OP)

where
OP x OP = k2, OP x OP" = k2

and therefore OP" _ < k'\?
oP k
EXERCISES

1. Using compasses alone, construct the vertices of a regular hexagon.

2. Using compasses alone, locate a point B so that the segment OB is twice as long
as a given segment OA.

3. Using compasses alone, construct the inverse of a point distant 4 k from the cen-
ter O of the circle of inversion. Describe a procedure for inverting points arbitrarily
near to O.

4. Using compasses alone, bisect a given segment.

5. Using compasses alone, trisect a given segment. Describe a procedure for di-
viding a segment into any given number of equal parts.

Note, The above problems belong to the Geometry of Compasses, which was de-
veloped independently by G, Mohr in Denmark (1672) and L, Mascheroni in Italy
(1797). For a concise version of the whole story, see Pedoe [1, pp. 23-25] or Courant
and Robbins [1, pp. 145-151].

6.2 ORTHOGONAL CIRCLES

A circle is o happy thing ta be—
Think how the joyful perpendicular
" Erected at the kiss of tangency
Must meet my central paint, my avatar.
And lovely as | am, yet only 3
Points are needed to determine me,

Christopher Marley (1890 - )

Two circles are said to be orthogonal if they cut at right angles, that is, if
they intersect in two points at either of which the radius of each is a tan-
gent to the other (Figure 6.24).

By Euclid I11.36 (see p. 8) any circle, through a pair of inverse points is
invariant: the circle of inversion decomposes it into two arcs which invert
into each other. Moreover, such a circle is orthogonal to the circle of in-
version, and every circle orthogonal to the circle of inversion is invariant
in this sense. Through a pair of inverse points we can draw a whole pencil
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of circles (infinitely many), and they are all orthogonal to the circle of in-
version. Hence

6.21 The inverse of a given point P is the second intersection of any two
circles through P orthogonal to the circle of inversion.

Figure 6.2a

The above remarks provide a simple solution for the problem of drawing,
through a given point P, a circle (or line) orthogonal to two given circles.
Let P;, Ps be the inverses of P in the two circles. Then the circle PP, P,
(or the line through these three points, if they happen to be collinear) is
orthogonal to the two given circles.

If O and C are the centers of two orthogonal circles w and v, as in Figure
6.2a, the circle on OC as diameter passes through the points of intersection
T, U. Every other point on this circle is inside one of the two orthogonal
circles and outside the other. It follows that, if a and b are two perpen-
dicular lines through O and C respectively, either a touches y and b touches
w, or a cuts y and b lies outside w, or a lies outside y and b cuts w.

6.3 INVERSION OF LINES AND CIRCLES

Figure 6.3a
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We have seen that lines through O invert into themselves. What about
other lines? Let 4 be the foot of the perpendicular from O to a line not
through O. Let A’ be the inverse of 4, and P’ the inverse of any other point
P on the line. (See Figure 6.3a where, for simplicity, the circle of inversion
has not been drawn.) Since

OP X OP' = k2 = 04 x 04/,

the triangles O4AP, OP’'A’ are similar, and the line AP inverts into the circle
on OA’ as diameter, which is the locus of points P’ from which OA’ sub-
tends a right angle. Thus any line not through O inverts into a circle through
O, and vice versa.

Figure 6.3b

Finally, what about a circle not through O? Let P be any point on such
a circle, with center C, and let OP meet the circle again in Q. By Euclid
I11.35 again, the product

p=O0Px0Q

is independent of the position of P on the circle. Following Jacob Steiner
(1796-1863), we call this product the power of O with respect to the circle.
It is positive when O is outside the circle, zero when O lies on the circle,
and we naturally regard it as being negative when O is inside (so that OP
and OQ are measured in opposite directions). Let the dilatation O(k2/p)
transform the given circle and its radius CQ into another circle (or possibly
the same) and its parallel radius DP’ (Figure 6.3b, cf. Figure 5.24), so that

opP" _ 0D _ k*

0Q 0C p’
Since OP x OQ = p, we have, by multiplication,
OP x OP' = k2.

Thus P’ is the inverse of P, and the circle with center D is the desired in-
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verse of the given circle with center C. (The point D is usually not the in-
verse of C.)

We have thus proved that the inverse of a circle not through O is another
circle of the same kind, or possibly the same circle again. The latter possi-
bility occurs in just two cases: (1) when the given circle is orthogonal to the
circle of inversion, so that p = k2 and the dilatation is the identity; (2) when
the given circle is the circle of inversion itself, so that p = — k2 and the dilata-
tion is a half-turn.

When p is positive (see the left half of Figure 6.3b), so that O is outside
the circle with center C, this circle is orthogonal to the circle with center O
and radius +/p; that is, the former circle is invariant under inversion with
respect to the latter. In effect, we have expressed the given inversion as
the product of this new inversion, which takes P to (0, and the dilatation
O(k2/p), which takes Q to P’. When p is negative (as in the right half of
Figure 6.3b), P and Q are interchanged by an “anti-inversion:” the product
of an inversion with radius v/ —p and a half-turn [Forder 3, p. 20].

When discussing isometries and other similarities, we distinguished be-
tween direct and opposite transformations by observing their effect on a tri-
angle. Since we are concerned only with sense, the triangle could have been
replaced by its circumcircle. Such a distinction can still be made for inver-
sions (and products of inversions), which transform circles into circles. In-
stead of a triangle we use a circle: not an arbitrary circle but a “small” circle
whose inverse is also “small,” that is, a circle not surrounding O. Referring
again to the left half of Figure 6.3b, we observe that P and @ describe the
circle with center C in opposite senses, whereas Q and P’ describe the two
circles in the same sense. Thus the inverse points P and P’ proceed oppo-
sitely, and

Inversion is an opposite transformation.

It follows that the product of an even number of inversions is direct. One
instance is familiar: the product of inversions with respect to two concentric
circles is a dilatation.

Figure 6.3¢ Figure 6.3d

EXERCISES

1. For any two unequal circles that do not intersect, one of the two centers of simili-
tude (§ 5.2) is the center of a circle which inverts either of the given circles into the
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other. For two unequal intersecting circles, both centers of similitude have this prop-
erty. What happens in the case of equal intersecting circles?

2. Explain the action of Peaucellier’s cell (Figure 6.3¢), an instrument invented by
A. Peaucellier in 1864 for the purpose of drawing the inverse of any given locus. It is
formed by four equal rods, hinged at the corners of a thombus APBP”, and two equal
(longer) rods connecting two opposite corners, 4 and B, to a fixed pivot 0. When a
pencil point is inserted at P’ and a tracing point at P (or vice versa), and the latter is
traced over the curves of a given figure, the pencil point draws the inverse figure. In
particular, if a seventh rod and another pivot are introduced so as to keep P on a cir-
cle passing through O, the locus of P’ will be a straight line. This linkage gives an
exact solution of the important mechanical problem of converting circular into rec-
tilinear motion. [Lamb 2, p. 314.]

3. Explain the action of Hart’s linkage (Figure 6.3d), an instrument invented by
H. Hart in 1874 for the same purpose as Peaucellier’s cell. It requires only four rods,
hinged at the corners of a “crossed parallelogram” ABCD (with AB = CD, BC = DA).
The three collinear points O, P, P’, on the respective rods 4B, AD, BC, remain col-
linear (on a line parallel to AC and BD) when the shape of the crossed parallelogram
is changed. As before, the instrument is pivoted at 0. [Lamb 2, p. 315]

4. With respect to a circle y of radius 7, let p be the power of an outside point O.
Then the circle with center O and radius k inverts y into a circle of radius k2r/p.

6.4 THE INVERSIVE PLANE

Whereupon the Plumber said in tones of disgust:
"'l suggest that we proceed at once to infinity."

J. L. Synge [2, p. 13i]

We have seen that the image of a given point P by reflection in a line
(Figure 1.3b) is the second intersection of any two circles through P orthog-
onal to the mirror, and that the inverse of P in a circle is the second inter-
section of any two circles through P orthogonal to the circle of inversion.
Because of this analogy, inversion is sometimes called “reflection in a cir-
cle” [Blaschke 1, p. 47], and we extend the definition of a circle so as to in-
clude a straight line as a special (or “limiting”) case: a circle of infinite radius.
We can then say that any three distinct points lie on a unique circle, and
that any circle inverts into a circle.

In the same spirit, we extend the Euclidean plane by inventing an “ideal”
point at infinity O, which is both a common point and the common center
of all straight lines, regarded as circles of infinite radius. Two circles with
a common point either touch each other or intersect again. This remains
obvious when one of the circles reduces to a straight line. When both of
them are straight, the lines are either parallel, in which case they touch at
O’, or intersecting, in which case O’ is their second point of intersection
[Hilbert and Cohn-Vossen 1, p. 251].
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We can now assert that every point has an inverse. All the lines through
0, being “circles” orthogonal to the circle of inversion, meet again in O, the
inverse of O. When the center O is O itself, the “circle” of inversion is
straight, and the inversion reduces to a reflection.

The Euclidean plane with O’ added is called the inversive (or “conformal”)
plane.* 1t gives inversion its full status as a “transformation” (§ 2.3): a one-
to-one correspondence without exception.

Where two curves cross each other, their angle of intersection is naturally
defined to be the angle between their tangents. In this spirit, two intersect-
ing circles, being symmetrical by reflection in their line of centers, make
equal angles at the two points of intersection. This will enable us to prove

6.41 Any angle inverts into an equal angle (or, more strictly, an opposite
angle).

We consider first an angle at a point P which is not on the circle of in-
version. Since any direction at such a point P may be described as the di-
rection of a suitable circle through P and its inverse P’, two such directions
are determined by two such circles. Since these circles are self-inverse, they
serve to determine the corresponding directions at P’. To show that an
angle at P is still preserved when P is self-inverse, we use 6.11 to express
the given inversion as the product of a dilatation and the inversion in a con-
centric circle that does not pass through P. Since both these transforma-
tions preserve angles, their product does likewise.

In particular, right angles invert into right angles, and

6.42 Orthogonal circles invert into orthogonal circles (including lines as
special cases).

Figure 6.4a

By 6.21, inversion can be defined in terms of orthogonality. Therefore a
circle and a pair of inverse points invert (in another circle) into a circle and
a pair of inverse points. More precisely, if a circle y inverts P into Q and

* M. Bécher, Bulletin of the American Mathematical Society, 20 (1914), p. 194.
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a circle w inverts y, P, Q into ¥, P’, (¢, then the circle ¥’ inverts P’ into Q'.
An important special case (Figure 6.4a) arises when @ coincides with O,
the center of w, so that @' is O, the point at infinity. Then P is the inverse
of O in v, and P’ is the center of y¥'. In other words, if y inverts O into P,
whereas w inverts y and P into y’ and P’, then P’ is the center of v

Two circles either touch, or cut each other twice, or have no common
point. In the last case (when each circle lies entirely outside the other, or
else one encloses the other), we may conveniently say that the circles miss
each other.

If two circles, ay and a3, are both orthogonal to two circles 81 and B,
we can invert the four circles in a circle whose center is one of the points
of intersection of a; and By, obtaining two orthogonal circles and two per-
pendicular diameters, as in the remark at the end of §6.2. Hence, either
ay touches a; and By touches B2, or ay cuts az and By misses B2, or a; misses
Qg and ,81 cuts ,82.

6.5 COAXAL CIRCLES

In this section we leave the inversive plane and return to the Euclidean
plane, in order to be able to speak of distances.

Figure 6.5a

If P and P’ are inverse points in the circle w (with center O), as in Figure
6.5a, all the lines through P’ invert into all the circles through O and P: an
intersecting (or “elliptic”) pencil of coaxal circles, including the straight line
OPP as a degenerate case. The system of concentric circles with center P,
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consisting of circles orthogonal to these lines, inverts into a nonintersecting
(or “hyperbolic™) pencil of coaxal circles (drawn in broken lines). These
circles all miss one another and are all orthogonal to the intersecting pen-
cil. Ome of them degenerates to a (vertical) line, whose inverse is the circle
(with center P’) passing through O.

| IS SENUUIE JUNGUIP IO Up U —

Figure 6.5b

As a kind of limiting case when O and P coincide (Figure 6.5b), the cir-
cles that touch a fixed line at a fixed point O constitute a tangen: (or “para-
bolic”) pencil of coaxal circles. They invert (in a circle with center Q) into
all the lines parallel to the fixed line. Orthogonal to these lines we have
another system of the same kind, inverting into an orthogonal tangent pen-
cil of coaxal circles. Again each member of either pencil is orthogonal to
every member of the other.

Any two given circles belong to a pencil of coaxal circles of one of these
three types, consisting of all the circles orthogonal to both of any two circles
orthogonal to both the given circles. (More concisely, the coaxal circles con-
sist of all the circles orthogonal to all the circles orthogonal to the given
circles.) Two circles that cut each other belong to an intersecting pencil
(and can be inverted into intersecting lines); two circles that touch each
other belong to a tangent pencil (and can be inverted into parallel lines);
two circles that miss each other belong to a nonintersecting pencil (by the
remark at the end of § 6.4).

Each pencil contains one straight line (a circle of infinite radius) called
the radical axis (of the pencil, or of any two of its members).* For an inter-
secting pencil, this is the line joining the two points common to all the cir-
cles (OP for the “unbroken” circles in Figure 6.54). For a tangent pencil,

* Louis Gaultier, Journal de I’Ecole Polytechnique, 16 (1813), p. 147.
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it is the common tangent. For a nonintersecting pencil, it is the line mid-
way between the two limiting points (or circles of zero radius) which are the
common points of the orthogonal intersecting pencil. For each pencil there
is a line of centers, which is the radical axis of the orthogonal pencil. Hence

6.51 Iftangents can be drawn 10 the circles of a coaxal pencil from a point
on the radical axis, all these tangents have the same length.

The radical axis of two given circles may be defined as the locus of points
of equal power (§ 6.3) with respect to the two circles. This power can be
measured as the square of a tangent except in the case when the given cir-
cles intersect in two points O, P, and we are considering a point 4 on the
segment OP; then the power is the negative number 4O X AP.

It follows that, for three circles whose centers form a triangle, the three
radical axes (of the circles taken in pairs) concur in a point called the radi-
cal center, which has the same power with respect to all three circles. If
this power is positive, its square root is the length of the tangents to any of
the circles, and the radical center is the center of a circle (of this radius)
which is orthogonal to all the given circles. But if the power is negative,
no such orthogonal circle exists.

Figure 6.5¢

The possibility of inverting any two nonintersecting circles into concentric
circles (by taking O at either of the limiting points) provides a remarkably
simple proof for Steiner’s porism:* If we have two (nonconcentric) circles,
one inside the other, and circles are drawn successively touching them and
one another, as in Figure 6.5¢, it may happen that the ring of touching cir-
cles closes, that is, that the last touches the first. Steiner’s statement is that,
if this happens once, it will always happen, whatever be the position of the
first circle of the ring. To prove this we need only invert the original two
circles into concentric circles, for which the statement is obvious.

* Forder [3, p. 23]. See also Coxeter, Interlocked rings of spheres, Scripta Mathematica, 18
(1952), pp. 113-121, or Yaglom [2, p. 199].
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EXERCISES

1. In a pencil of coaxal circles, each member, used as a circle of inversion, inter-
changes the remaining members in pairs and inverts each member of the orthogonal
pencil into itself.

2. The two limiting points of a nonintersecting pencil are inverses of each other in
any member of the pencil.

3. Iftwo circles have two or four common tangents, their radical axis joins the mid-
points of these common tangents. If two circles have no common tangent (i.e., if one
entirely surrounds the other), how can we construct their radical axis?

4. When a nonintersecting pencil of coaxal circles is inverted into a pencil of con-
centric circles, what happens to the limiting points?

5. In Steiner’s porism, the points of contact of successive circles in the ring all lie
on a circle, and this will serve to invert the two original circles into each other. Do
the centers of the circles in the ring lie on a circle?

6. For the triangle considered in Exercise 10 of § 1.5 (page 16), the incircle is coaxal
with the “two other circles” (Soddy’s circles).

6.6 THE CIRCLE OF APOLLONIUS

The analogy between reflection and inversion is reinforced by the follow-
ing

PROBLEM. To find the locus of a point P whose distances from two fixed
points A, A’ are in a constant ratio 1 : u, so that

A'P = pAP.

Figure 6.6a

When g = 1, the locus is evidently the perpendicular bisector of 44’,
that is, the line that reflects 4 into A’. We shall see that for other values
of pitis a circle that inverts 4 into 4’. (Apollonius of Perga, c. 260-190 B.c.)

Assuming u 5= 1, let P be any point for which 4'P = p4 P. Let the in-
ternal and external bisectors of £/ APA’ meet AA’in A; and A, (as in Fig-
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ure 6.6a, where p = 1). Take E and F on AP so that A’E is parallel to
AP and A'F is parallel to A, P, that is, perpendicular to A1 P. Since FP
= PA’ = PE, we have

Ady _ AP _ AP Ady _ AP _ AP
A4 T PE” PA’  Ad;  FP ~ PA"

(The former result is Euclid VI.3.) Thus 4; and 4, divide the segment 44’
internally and externally in the ratio 1 : u, and their location is independ-
ent of the position of P. Since £ A1PA, is a right angle, P lies on the cir-
cle with diameter 4145.

Conversely, if A1 and A, are defined by their property of dividing A4’ in
the ratio 1 : y, and P is any point on the circle with diameter 4144, we have
AP _AA, | _AA; AP
PE ™~ A4’ — p~ A'A, ~ FP’

Thus FP = PE, and P, being the midpoint of FE, is the circumcenter of
the right-angled triangle EFA’. Therefore PA’ = PE and

AP _ AP _ 1
PA'~ PE  p

[Court 2, p. 15].
Finally, the circle of Apollonius A1A2P inverts A into A’. For, if O is its
center and k its radius, the distances a = 40 and &’ = 4’0 satisfy

a—k _AAy A4y _a+ k
k—a A A~ A4, d + k

whence aa’ = k2.

EXERCISES

1. When u varies while 4 and 4’ remain fixed, the circles of Apollonius form a non-
intersecting pencil with 4 and A’ for limiting points.

2. Given a line / and two points 4, A’ (not on /), locate points P on / for which
the ratio 4’P/AP is maximum or minimum. (Hint: Consider the circle through 4, A4’
with its center on /. The problem is due to N. S. Mendelsohn, and the hint to Rich-
ard Blum.)

3. Express k/AA’ in terms of p.

4. In the notation of Figure 5.6a (which is embodied in Figure 6.6b), the circles on
A4 and B, B, as diameters meet in two points O and O, such that the triangles OAB
and OA’B’ are similar, and likewise the triangles O4B and OA’B’. Of the two simi-
larities

OAB — OA'B' and OAB — OA'B’,
one is opposite and the other direct. In fact, O is where 4,B; meets A2B5, and O lies

on the four further circles A4’P, BB'P, ABT, A’B'T (. Ex. 2 of § 5.5). [Casey 1, p.
185.] If A’ coincides with B, O lies on AB'.
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Figure 6.6b

5. Let the inversive distance between two nonintersecting circles be defined as the
natural logarithm of the ratio of the radii (the larger to the smaller) of two concentric
circles into which the given circles can be inverted. Then, if a nonintersecting pencil
of coaxal circles includes ay, a,, a3 (in this order), the three inversive distances satisfy

(a1, @2) + (@2, a3) = (a1, a3).

6. Two given unequal circles are related by infinitely many dilative rotations and
by infinitely many dilative reflections. The locus of invariant points (in either case) is
the circle having for diameter the segment joining the two centers of similitude of the
given circles. (Thislocus is known as the circle of similitude of the given circles.) What
is the corresponding result for two given equal circles?

7. The inverses, in two given circles, of a point on their circle of similitude, are
images of each other by reflection in the radical axis of the two circles [Court 2, p. 199].

6.7 CIRCLE-PRESERVING TRANSFORMATIONS

Having observed that inversion is a transformation of the whole inversive
plane (including the point at infinity) into itself, taking circles into circles, we
naturally ask what is the most general transformation of this kind. We dis-
tinguish two cases, according as the point at infinity is, or is not, invariant.

In the former case, not only are circles transformed into circles but also
lines into lines. With the help of Euclid IIL.21 (see p. 7) we deduce that
equality of angles is preserved, and consequently the measurement of angles
is preserved, so that every triangle is transformed into a similar triangle, and
the transformation is a similarity (§ 5.4).

If, on the other hand, the given transformation T takes an ordinary point
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O into the point at infinity O’, we consider the product J;T, where Jy is the in-
version in the unit circle with center O. This product J; T, leaving O’ invari-
ant, is a similarity. Let k2 be its ratio of magnification, and J; the inver-
sion in the circle with center O and radius k. Since, by 6.11, J;J, is the
dilatation O(k2), the similarity J;T can be expressed as J1JiS, where S is an
isometry. Thus
T = IS,
the product of an inversion and an isometry.
To sum up,

6.71 Every circle-preserving transformation of the inversive plane is either
a similarity or the product of an inversion and an isometry.

It follows that every circle-preserving transformation is the preduct of at
most four inversions (provided we regard a reflection as a special kind of in-
version) [Ford 1, p. 26]. Such a transformation is called a homography or an
antihomography according as the number of inversions is even or odd. The
product of two inversions (either of which could be just a reflection) is called
a rotary or parabolic or dilative homography according as the two inverting
circles are intersecting, tangent, or nonintersecting (i.e., according as the
orthogonal pencil of invariant circles is nonintersecting, tangent, or inter-
secting). As special cases we have, respectively, a rotation, a translation,
and a dilatation. The most important kind of rotary homography is
the Mdbius involution, which, being the inversive counterpart of a half-
turn, is the product of inversions in two orthogonal circles (e.g., the product
of the inversion in a circle and the reflection in a diameter). Any product of
four inversions that cannot be reduced to a product of two is called a
loxodromic homography [Ford 1, p. 201

EXERCISE

When a given circle-preserving transformation is expressed as JS (where J is an inver-
sion and S an isometry), J and S are unique. There is an equally valid expression SJ’, in
which the isometry precedes the inversion. Why does this revised product involve the
same S? Under what circumstances will we have J' = J?

6.8 [INVERSION IN A SPHERE

By revolving Figures 6.1a, 6.2a, 6.3a, 6.3b, and 6.4a about the line of
centers (OP or OA4 or OC), we see that the whole theory of inversion ex-
tends readily from circles in the plane to spheres in space. Given a sphere
with center O and radius k, we define the inverse of any point P (distinct
from O) to be the point P’ on the ray OP whose distance from O satisfies

OP x OP = k2

Alternatively, P’ is the second intersection of three spheres through P orthog-
onal to the sphere of inversion. Every sphere inverts into a sphere, ro-
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vided we include, as a sphere of infinite radius, a plane, which is the inverse
of a sphere through O. Thus, inversion is a transformation of inversive (or
“conformal’) space, which is derived from Euclidean space by postulatmg a
point at infinity, which lies on all planes and lines.

Revolving the circle of Apollonius (Figure 6.6a) about the line AA’ we ob-
tain the sphere of Apollonius, which may be described as follows:

6.81 Given two points A, A’ and a positive number y, let A1 and A, divide
AA’ internally and externally in the ratio | . u. Then the sphere on A1A2 as
diameter is the locus of a point P whose distances from A and A’ are in this ratio.

EXERCISES

1. If a sphere with center O inverts 4 into 4’ and Binto B, the triangles OA B and
OB’ A’ are similar.
2. Interms ofa = OA4 and b = OB, we have (in the notation of Ex. 1)
A'B =K 4B
ab
3. The “cross ratio” of any four points is preserved by any inversion:
AB/BD _ A'B/B'D
AC/CD ~— A'C'/C'D"’
[Casey 1, p. 100.]
4. Two spheres which touch each other at O invert into parallel planes.
5. Leta, B, vy be three spheres all touching one another. Let o4, 05, ... be a se-
quence of spheres touching one another successively and all touching «, 8, y. Then

o6 touches oy, so that we have a ring of six spheres interlocked with the original ring
of three.* (Hins: Invert in a sphere whose center is the point of contact of « and 8.)

6.9 THE ELLIPTIC PLANE

In some unaccountable way, while he [Davidson] moved hither and
thither in London, his sight moved hither and thither in @ manner that
corresponded, about this distant island. . . . When | said that nothing
would alter the fact that the place [Antipodes Island] is eight thou-
sand miles away, he answered that two points might be a yard away
on a sheet of paper, and yet be brought together by bending the paper
round.

H. G. Wells (1866 -1946)
(The Remarkable Case of Davidson's Eyes)

Let S be the foot of the perpendicular from a point N to a plane o, as in
Figure 6.9a. A sphere (not drawn) with center N and radius NS inverts the
plane o into the sphere ¢’ on NS as diameter [Johnson 1, p. 108]. We have

* Frederick Soddy, The Hexlet, Nature, 138 (1936), p. 958; 139 (1937), p. 77.
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seen that spheres invert into spheres (or planes); therefore circles, being inter-
sections of spheres, invert into circles (or lines). In particular, all the circles
in o invert into circles (great or small) on the sphere ¢’, and all the lines in o
invert into circles through N. Each point P in ¢ yields a corresponding point
P’ on ¢/, namely, the second intersection of the line NP with ¢’. Conversely,
each point P’ on o', except N, corresponds to the point P in which NP’ meets
0. The exception can be removed by making ¢ an inversive plane whose
point at infinity is the inverse of N.

This inversion, which puts the points of the inversive plane into one-to-
one correspondence with the points of a sphere, is known as srereographic
projection. It serves as one of the simplest ways to map the geographical
globe on a plane., Since angles are preserved, small islands are mapped with
the correct shape, though on various scales according to their latitude.

Figure 6.9a Figure 6.9b

Another way is by gnomonic (or central) projection, in which the point
from which we project is not N but O, the center of the sphere, as in Fig-
ure 6.9b. Each point Pin o yields a line OP, joining it to O. This diameter
meets the sphere in two antipodal points Py, P, which are both mapped on
the same point P. Each line m in o yields a plane Om, joining it to O. This
diametral plane meets the sphere in a grear circle. Conversely, each great
circle of the sphere, except the “equator” (whose plane is parallel to o), cor-
responds to a line in 6. This time the exception can be removed by adding
to the Euclidean plane o a line ar infinity (representing the equator) with all
its points, called points at infinity, which represent pairs of antipodal points
on the equator. Thus, all the lines parallel to a given line contain the same
point at infinity, but lines in different directions have different points at in-
finity, all lying on the same line at infinity. (This idea is due to Kepler and
Desargues.)

When the line at infinity is treated just like any other line, the plane so
extended is called the projective plane or, more precisely, the real projective
plane [Coxeter 2]. Two parallel lines meet in a point at infinity, and an
ordinary line meets the line at infinity in a point at infinity. Hence
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6.91 Any two lines of the projective plane meet in a point.

Instead of taking a section of all the lines and planes through O, we could
more symmetrically (though more abstractly) declare that, by definition, the
points and lines of the projective plane are the lines and planes through O.
The statement 6.91 is no longer surprising; it merely says that any two planes
through O meet in a line through O.

Equivalently we could declare that, by definition, the lines of the projective
plane are the great circles on a sphere, any two of which meet in a pair of
antipodal points. Then the points of the projective plane are the pairs of
antipodal points, abstractly identified. This abstract identification was
vividly described by H. G. Wells iri his short story, The Remarkable Case of
Davidson’s Eyes. (A sudden catastrophe distorted Davidson’s field of vision
so that he saw everything as it would have appeared from an exactly antip-
odal position on the earth.)

When the inversive plane is derived from the sphere by stereographic pro-
jection, distances are inevitably distorted, but the angle at which two circles
intersect is preserved. In this sense, the inversive plane has a partial metric:
angles are measured in the usual way, but distances are never mentioned
[Graustein 1, pp. 377, 388, 395].

On the other hand, gnomonic projection enables us, if we wish, to give the
projective plane a complete metric. The distance between two points P and
Qin o (Figure 6.94) is defined to be the angle POQ (in radian measure), and
the angle between two lines m and n in o is defined to be the angle between
the planes Om and On. (This agrees with the customary measurement of dis-
tances and angles on a sphere, as used in spherical trigonometry.) We have
thus obtained the ellipric plane* or, more precisely, the real projective plane
with an elliptic metric [Coxeter 3, Chapter VI; E. T. Bell 2, pp. 302-311;
Bachmann 1, p. 21].

Since the points of the elliptic plane are in one-to-two correspondence with
the points of the unit sphere, whose total area is 4, it follows that the total
area of the elliptic plane (according to the most natural definition of “area”)
is 27. Likewise, the total length of a line (represented by a “great semi-
circle”)is #. The simplification that results from using the elliptic plane in-
stead of the sphere is well illustrated by the problem of computing the area of
a spherical triangle 4 BC, whose sides are arcs of three great circles. Figure
6.9c shows these great circles, first in stereographic projection and then in
gnomonic projection. The elliptic plane is decomposed, by the three lines
BC, CA, AB, into four triangular regions. One of them is the given triangle
A with angles 4, B, C; the other three are marked a, 8, y in Figure 6.9¢. (On
the sphere, we have, of course, not only four regions but eight.) The two

* The name “elliptic” is possibly misleading. It does not imply any direct connection with the
curve called an ellipse, but only a rather far-fetched analogy. A central conic is called an ellipse
or a hyperbola according as it has no asymptote or two asymptotes. Analogously, a non-Euclid-
ean plane is said to be elliptic or hyperbolic (Chapter 16) according as each of its lines contains no
point at infinity or two points at infinity.
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lines CA, AB decompose the plane into two lunes whose areas, being pro-
portional to the supplementary angles 4 and # — A4, are exactly 24 and
2(r — A). The lune with angle 4 is made up of the two regions A and a.
Hence

Similarly A + B = 2B and A + y = 2C. Adding these three equations
and subtracting

A+a+ B+ vy=2m
we deduce Girard’s “spherical excess” formula
6.92 A=A4+ B4+ C—a,

which is equally valid for the sphere and the elliptic plane. (A. Girard, In-
vention nouvelle en algébre, Amsterdam, 1629.)

Figure 6.9¢

EXERCISES

1. Two circles in the elliptic plane may have as many as four points of intersection.

2. The area of a p-gon in the elliptic plane is equal to the excess of its angle sum over
the angle sum of a p-gon in the Euclidean plane.
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Ordered geometry

During the last 2000 years, the two most widely read books have undoubt-
edly been the Bible and the Elements. Scholars find it an interesting task
to disentangle the various accounts of the Creation that are woven together
in the Book of Genesis. Similarly, as Euclid collected his material from
various sources, it is not surprising that we can extract from the Elements
two self-contained geometries that differ in their logical foundation, their
primitive concepts and axioms. They are known as absolute geometry and
affine geometry. After describing them briefly in § 12.1, we shall devote
the rest of this chapter to those propositions which belong to both: propo-
sitions so fundamental and “obvious” that Euclid never troubled to men-
tion them.

12.1 THE EXTRACTION OF TWO DISTINCT GEOMETRIES FROM EUCLID

The pursuit of an idea is as exciting as the pursuit of a whale.
Henry Norris Russell (1877 -1957)

Absolute geometry, first recognized by Bolyai (1802-1860), is the part of
Euclidean geometry that depends on the first four Postulates without the
fifth. Thus it includes the propositions 1.1-28, II1.1-19, 25, 28-30; IV.4-9
(with a suitably modified definition of “square”). The study of absolute
geometry is motivated by the fact that these propositions hold not only in
Euclidean geometry but also in hyperbolic geometry, which we shall study
in Chapter 16. In brief, absolute geometry is geometry without the assump-
tion of a unique parallel (through a given point) to a given line.

On the other hand, in affine geometry, first recognized by Euler (1707-
1783), the unique parallel plays a leading role. Euclid’s third and fourth
postulates become meaningless, as circles are never mentioned and angles
are never measured. In fact, the only admissible isometries are half-turns
and translations. The affine propositions in Euclid are those which are pre-
served by parallel projection from one plane to another {Yaglom 2, p. 17]:
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for example, L. 30, 33-45, and VI. 1, 2, 4, 9, 10, 24-26. The importance of
affine geometry has lately been enhanced by the observation that these
propositions hold not only in Euclidean geometry but also in Minkowski’s
geometry of time and space, which Einstein used in his special theory of
relativity.

Since each of Euclid’s propositions is affine or absolute or neither, we
might at first imagine that the two geometries (which we shall discuss in
Chapters 13 and 15, respectively) had nothing in common except Postu-
lates I and II. However, we shall see in the present chapter that there is a
quite impressive nucleus of propositions belonging properly to both. The
essential idea in this nucleus is intermediacy (or “betweenness’™), which Eu-
clid used in his famous definition:

A line (segment) is that which lies evenly between its ends.

This suggests the possibility of regarding intermediacy as a primitive con-
cept and using it to define a line segment as the set of all points between
two given points. In the same spirit we can extend the segment to a whole
infinite line. Then, if B lies between 4 and C, we can say that the three
points 4, B, C lie in order on their line. This relation of order can be ex-
tended from three points to four or more.

Euclid himself made no explicit use of order, except in connection with
measurement: saying that one magnitude is greater or less than another. It
was Pasch, in 1882, who first pointed out that a geometry of order could be
developed without reference to measurement. His system of axioms was
gradually improved by Peano (1889), Hilbert (1899), and Veblen (1904).

Etymologically, “geometry without measurement” looks like a contradic-
tion in terms. But we shall find that the passage from axioms and simple
theorems to “interesting” theorems resembles Euclid’s work in spirit, though
not in detail.

This basic geometry, the common foundation for the affine and absolute
geometries, is sufficiently important to have a name. The name descriptive
geometry, used by Bertrand Russell [1, p. 382], was not well chosen, be-
cause it already had a different meaning. Accordingly, we shall follow
Artin [1, p. 73] and say ordered geometry.

We shall pursue this rigorous development far enough to give the reader
its flavor without boring him. The whole story is a long one, adequately
told by Veblen [1] and Forder [1, Chapter II, and the Canadian Journal of
Mathematics, 19 (1967), pp. 997-1000].

It is important to remember that, in this kind of work, we must define
all the concepts used (except the primitive concepts) and prove all the state-
ments (except the axioms), however “obvious” they may seem.

EXERCISES

1. s the ratio of two lengths along one line a concept belonging to absolute ge-
ometry or to affine geometry or to both? (Hint: In “one dimension,” i.e., when we
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consider only the points on a single line, the distinction between absolute and affine
disappears.)

2. Name a Euclidean theorem that belongs neither to absolute geometry nor to
affine geometry.

3. The concurrence of the medians of a triangle (1.41) is a theorem belonging to
both absolute geometry and affine geometry. To which geometry does the rest of § 1.4
belong?

4. Which geometry deals (a) with parallelograms? (b) with regular polygons? (c)
with Fagnano’s problem (§ 1.8)?

12.2 INTERMEDIACY

A discussion of order . . . has become essential to any understanding of
the foundation of mathematics.

Bertrand Russell (1872 - )

[Russell 1, p. 199]

In Pasch’s development of ordered geometry, as simplified by Veblen, the
only primitive concepts are points A, B, ... and the relation of intermediacy
[ABC], which says that B is between 4 and C. If Bis not between 4 and C,
we say simply “not [ABC].” There are ten axioms (12.21-12.27, 12.42, 12.43,
and 12.51), which we shall introduce where they are needed among the vari-
ous definitions and theorems.

AXIOM 12.21 There are at least two points.

AXIOM 12.22 If A and B are two distinct points, there is at least one point
C for which [ABC].

AXIOM 12.23 If [ABC], then A and C are distinct: A 7= C.

AXIOM 12.24 If [ABC], then [CBA] but not |[BCA].

THEOREM 12.241 If [ABC] then not [CAB).
Proof. By Axiom 12.24,[CA B] would imply not [4BC].

THEOREM 12.242 If [ABC], then A = B 5 C (thatis, in view of Axiom
12.23, the three points are all distinct).

Proof. If B = C, the two conclusions of Axiom 12.24 are contradictory.
Similarly, we cannot have 4 = B.

DEFINITIONS. If A and B are two distinct points, the segment AB is the set
of points P for which [APB]. We say that such a point P is on the segment.
Later we shall apply the same preposition to other sets, such as “lines.”

THEOREM 12.243  Neither A nor B is on the segment AB.

Proof. If A or B were on the segment, we would have [44B] or [4BB],
contradicting 12.242.
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THEOREM 12.244 Segment AB = segment BA.
Proof. By Axiom 12.24, [APB] implies [BPA].

DEFINITIONS. The interval AB is the segment AB plus its end points A
and B: _
AB = A 4+ AB + B.

The ray A/B (“from A, away from B”) is the set of points P for which [P4B].
The line AB is the interval AB plus the two rays A/B and B/A:

line AB = A/B + AB + B/A.
COROLLARY 12.2441 Interval AB = interval BA; line AB = line BA.

AXIOM 12.25 If C and D are distinct points on the line AB, then A is on the
line CD.

THEOREM 12.251 If C and D are distinct points on the line AB then
line AB = line CD.

Proof. 1fA, B, C, D are not all distinct, suppose D = B. To prove that
line AB = line BC, let X be any pointon BC except A or B. By 12.25, 4, like
X, is on BC. Therefore B is on AX, and X is on AB. Thus every point on
BCis alsoon AB. Interchanging the roles of 4 and C, we see that similarly
every point on ABis also on BC. Thus AB = BC. Finally,if 4, B, C, D are
all distinct, we have AB = BC = CD.

COROLLARY 12.2511 Two distinct points lie on just one line. Two dis-
tinct lines (if such exist) have at most one common point. (Such a common
point Fis called a point of intersection, and the lines are said to meet in F.)

COROLLARY 12,2512 Any three distinct points 4, B, C on a line satisfy
just one of the relations [4 BC), [BCA], [CAB].

AXIOM 12.26 IfABis aline, there is a point C not on this line.

THEOREM 12.261 If C is not on the line AB, then A is not on BC, nor B on
CA: the three lines BC, CA, AB are distinct.
Proof. By 12.25, if A were on BC, C would be on 4B,

DEFINITIONS. Points lying on the same line are said to be collinear.
Three non-collinear points 4, B, C determine a triangle ABC, which consists
of these three points, called vertices, together with the three segments BC, CA,
AB, called sides.

AXIOM12.27 IfABC s atriangle and [BCD)] and {CEA], then there is, on
the line DE, a point F for which {AFB). (See Figure 12.2a.)

THEOREM 12.271 Berween two distinct points there is another point.

Proof. Let A and B be the two points. By 12.26, there is a point E not on
the line AB. By 12.22, there is a point C for which [AEC]. By 12.251, the
line AC is the same as AE. By 12.261 (applied to ABE), B is not on this
line: therefore ABCis a triangle. By 12.22 again, there is a point D for which
[BCD]. By 12.27 thereis a point F between 4 and B.
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THEOREM 12.272 In the notation of Axiom 12.27, [DEF].

Proof. Since Flies on the line DE, there are (by 12.2512) just five possi-
bilities: F = D, F = E [EFD],|FDE],{ DEF]. Either of the first two would
make A4, B, C collinear.

If[EFD], we could apply 12.27 to the triangle DCE with [CEA] and {EFD]
(Figure 12.2b), obtaining X on AF with [DXC]. Since AF and CD cannot
meet more than once, we have X = B, so that [DBC]. Since [BCD], this
contradicts 12.24.

Similarly (Figure 12.2¢) we cannot have [FDE]. The only remaining pos-
sibility is [DEF].

Figure 12.2a Figure 12.2b Figure 12.2¢

This proof is typical; so let us be content to give the remaining theorems
without proofs [Veblen 1, pp. 9-15; Forder 1, pp. 49-55].

12.273 A line cannot meet all three sides of a triangle. (Remember that
the “sides” are not intervals, nor whole lines, but only segments.)

12.274 If[{ABC] and [BCD], then [ABD].

12.275 If [ABC] and |ABD] and C 5= D, then [BCD] or [BDC], and
[A4CD] or[ADC)

12.276 If[ABD]and[ACD] and B # C, then [ABC] or [ACB].
12.277 If{ABC)and[ACD]), then |BCD] and[ABD].
DEFINITION. If{AB(] and [4 CD], we write [ABCD].

This four-point order is easily seen to have all the properties that we should
expect, for example, if [A BCD], then [DCBA], but all the other orders are
false.

Any point O on a segment AB decomposes the segment into two segments:
AO and OB. (We are using the word decomposes in a technical sense
[Veblen 1, p. 21], meaning that every point on the segment 4 B except O itself
is on just one of the two “smaller” segments.) Any point O on a ray from
A decomposes the ray into a segment and a ray: 40 and O/4. Any point
O on a line decomposes the line into two “opposite” rays; if [4 OB], the rays
are O/A and O/B. The ray O/A, containing B, is sometimes more conven-
iently called the ray OB.

For any integer n > 1, n distinct collinear points decompose their line into
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two rays and n — | segments. The points can be named Py, P, . .. .. P,in
such a way that the two rays are P1/P,, P,/P1, and the n — 1 segments are
P1P2’P2P39-“9PNA1PN9

each containing none of the points. We say that the points are in the order
P1P; ... P, and write [P1P;... P,]. Necessary and sufficient conditions for
this are

[P1P2P3]9 [P2P3P4], cees [Pn‘ZPn‘lpn]-

Naturally, the best logical development of any subject uses the simplest or
“weakest” possible set of axioms. (The worst occurs when we go to the op-
posite extreme and assume everything, so that there is no development at
all!) In his original formulation of Axiom 12.27 [Pasch and Dehn 1, p. 2 :
“IV. Kemsatz”’] Pasch made the following far stronger statement: If a line in
the plane of a given triangle meets one side, it also meets another side (or
else passes through a vertex). Peano’s formulation, which we have adopted,
excels this in two respects. The word “plane” (which we shall define in
§ 12.4) is not used at all, and the line DE penetrates the triangle ABC in a
special manner, namely, before entering through the side CA, it comes
from a point D on C/B. It might just as easily have come from a point on
A/B (which is the same with C and 4 interchanged) or from a point on B/ A4
or B/C (which is quite a different story). The latter possibility (with a slight
change of notation) is covered by the following theorem (12.278). Axiom
12.27 is “only just strong enough”; for, although it enables us to deduce the
statement 12.278 of apparently equal strength, we could not reverse the roles:
if we tried instead to use 12.278 as an axiom, we would not be able to deduce
12.27 as a theorem!

Figure 12.2d

THEOREM 12.278 If ABC is a triangle and |AFB) and |BCD], then there is,
on the line DF, a point E for which [CEA].

Proof. Take H on B/F (as in Figure 12.2d) and consider the triangle DFB
with [FBH] and [BCD]. By 12.27 and 12.272, there is a point R for which
[DRF] and [HCR]. By 12.274, [AFB] and [FBH] imply [AFH]. Thus we
have a triangle DAF with [AFH] and [FRD}]. By 12.27 and 12.272 again,
there is a point L for which [DLA] and [HRL]. By 12.277,[HCR] and [HRL]
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imply [CRL]. Thus we have a triangle CAL with [ALD] and [LRC]. By
12,27 a third time, there is, on the line DR (= DF), a point E for which [CEA].

EXERCISES

1. A line contains infinitely many points.

2. We have defined a segment as a set of points. At what stage in the above de-
velopment can we assert that this set is never the nu/l set? [Forder 1, p. 50.]

3. In the proof of 12.272, we had to show that the relation [FDE] leads to a con-
tradiction. Do this by applying 12.27 to the triangle BFD (instead of EAF).

4. Given a finite set of lines, there are infinitely many points not lying on any of
the lines.

5. IfABCisatriangle and [BLC],[CMA], [AN B], then there is a point F for which
[AEL] and [MEN]. [Forder 1, p. 56.]

6. If ABC is a triangle, the three rays B/C, A/C, A/B have a transversal (that is, a
line meeting them all). (K. B. Leisenring.)

7. If ABC is a triangle, the three rays B/C, C/A, A/B have no transversal.

12.3 SYLVESTER’S PROBLEM OF COLLINEAR POINTS

Almost any field of mathematics offered an enchanting world for dis-
covery to Sylvester.

E. T. Bell [1, p. 433]

It may seem to some readers that we have been using self-evident axioms
to prove trivial results. Any such feeling of irritation is likely to evaporate
when it is pointed out that the machinery so far developed is sufficiently
powerful to deal effectively with Sylvester’s conjecture (§ 4.7), which baffled
the world’s mathematicians for forty years. This matter of collinearity
clearly belongs to ordered geometry. Kelly’s Euclidean proof involves the
extraneous concept of distance: it is like using a sledge hammer to crack
an almond. The really appropriate nutcracker is provided by the follow-
ing argument.

THEOREM. If n points are not all collinear, there is at least one line con-
taining exactly two of them.

Proof. Let Py, Ps, ..., P, be the n points, so named that the first three
are not collinear (Figure 12.34). Lines joining P; to all the other points of
the set meet the line P2 Ps in at most n — 1 points (including Pz and P3). Let
Q be any other point on this line. Then the line P;Q contains P; but no
other P;.

Lines joining pairs of P’s meet the line P;1Q in at most ("5 1) + 1 points
(including P; and Q). Let P14 be one of the segments that arise in the de-

composition of this line by all these points. (Possibly 4 = Q.) Then no
joining line P;P; can meet the “empty” segment P1A. By its definition, 4
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Figure 12.3a Figure 12.3b

lies on at least one joining line, say P,Ps. If P, and P5 are the only P’s on
this line (as in Figure 12.34) our task is finished. If not, we have a joining
line through 4 containing at least three of the P’s, which we can name Py,
Ps, Pgin such an order that the segment A4 P5 contains P, but not P. (Since
A decomposes the line into two opposite rays, one of which contains at least
two of the three P’s, this special naming is always possible. See Figure
12.3b.) We can now prove that the line P1P5 contains only these two P’s.

A A
P
N 4
\\ P
4
AN
AN
~
N
—
P, P, P
Figure 12.3¢ Figure 12.3d

We argue by reductio ad absurdum. If the line P;Ps contains (say) Pz, we
can use 12.27 and 12.278 to deduce that the segment P14 meets one of the
joining lines, namely, P¢P7 or P4P;. In fact, it meets PgPy if [P1P7Ps] (as
in Figure 12.3¢), and it meets P4Py if [ P1P5P7] or | PsP1P7] (as in Figure
12.3d). In either case our statement about the “empty” segment is contra-
dicted.

Thus we have found, under all possible circumstances, a line (P4Ps or
P1Ps) containing exactly two of the P’s,

EXERCISE
Justify the statement that the joining lines meet the line P1Q in at most ("E 1) +1
points. In the example shown in Figure 12.3b, this number (at most 11) is only 5;
why? (The symbol( ;) stands for the number of combinations of 7 things taken j at a
time; for instance,(é)is the number of pairs, namely 4/ (i — 1).)
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12.4 PLANES AND HYPERPLANES

If i hyperplanes in n dimensions are so placed that every n but no
n + 1 have a common point, the number of regions into which they
decompose the space is

()2 o(2) o0

Ludwig Schlafli (1814 -1895)
(Schiafli 1, p. 209]

It is remarkable that we can do so much plane geometry before defining
a plane. But now, as the Walrus said, “The time has come . ...”

DEFINITIONS. If 4, B, C are three non-collinear points, the plane ABC
is the set of all points collinear with pairs of points on one or two sides of
the triangle ABC. A segment, interval, ray, or line is said to be in a plane
if all its points are.

Axioms 12.21 to 12.27 enable us to prove all the familiar properties of
incidence in a plane, including the following two which Hilbert[1, p. 4] took
as axioms:

Any three non-collinear points in a plane a completely determine that
plane.

If two distinct points of a line a lie in a plane «, then every point of a
lies in a.

DEFINITIONS.  An angle consists of a point O and two non-collinear rays
going out from O. The point O is the vertex and the rays are the sides of
the angle [Veblen 1, p. 21; Forder 1, p. 69]. If the sides are the rays O4
and OB, or a; and b, the angle is denoted by ZAOB or a1by (or LBOA,
or bia;). The same angle a1b1 is determined by any points A and B on its
respective sides. If Cis any point between 4 and B, the ray OC is said to
be within the angle.

From here till the statement of Axiom 12.41, we shall assume that all the
points and lines considered are in one plane.

A convex region is a set of points, any two of which can be joined by a
segment consisting entirely of points in the set, with the extra condition that
each of the points is on at least two non-collinear segments consisting en-
tirely of points in the set. In particular, an angular region is the set of
all points on rays within an angle, and a triangular region is the set of all
points between pairs of points on distinct sides of a triangle. An angular
(or triangular) region is said to be bounded by the angle (or triangle).

It can be proved [Veblen 1, p. 21} that any line containing a point of a
convex region “decomposes” it into two convex regions. In particular, a
line a decomposes a plane (in which it lies) into two half planes. Two points
are said to be on the same side of a if they are in the same half plane, on
opposite sides if they are in opposite half planes, that is, if the segment join-
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ing them meets a. In the latter case we also say that a separates the two
points. (It is unfortunate that the word “‘side” is used with two different
meanings, both well established in the literature, However, the context will
always show whether we are considering the two sides of an angle, which
are rays, or the two sides of a line, which are half planes.)

by

b 2 ay
Figure 12.4a

As we remarked in § 12.2, any point O on a line a decomposes a into two
rays, say a; and az. Any other line b through O is likewise decomposed by
O into two rays by and bs, one in each of the half planes determined by a.
Each of these rays decomposes the half plane containing it into two angu-
lar regions. Thus any two intersecting lines a and b together decompose
their plane into four angular regions, bounded by the angles

arb1, biaz, azbz, boay,

as in Figure 12.4a. The opposite rays a; and az are said to separate the
rays by and bg; they likewise separate all the rays within either of the angles
aiby, b1az from alj the rays within either of the angles ashs, bea;. We also
say that the rays a; and by separate all the rays between them from as, bs,
and from all the rays within bias, asbs, or bea;.

It follows from the definition of a line that two distinct points, 4 and B,
decompose their line into three parts: the segment 4B and the two rays
A/B, B/A. Somewhat similarly, two nonintersecting (but coplanar) lines,
a and b, decompose their plane into three regions. One of these regions lies
between the other two, in the sense that it contains the segment A B for any
A ona and B on b. Another line ¢ is said to lie between «¢ and b if it meets
such a segment AB but does not meet a or b, and we naturally write [acb].

12.401 If ABC and A’B’'C’ are two triads of collinear points, such that
the three lines AA’, BB', CC’ have no intersection, and if | ACB], then [A’C'B’}.

Analogous consideration of an angular region yields

12.402 If ABC and A’B'C’ are two (riads of collinear points on distinct
lines, such that the three lines AA’, BB’, CC' have a common point O which is not

between A and A’, nor between B and B’, nor between C and C', and if |ACB],
then [A’C'B].

We need one or more further axioms to determine the number of dimen-
sions. If we are content to work in two dimensions we say

AXIOM 12.41 Al pbints are in one plane.
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If not [Forder 1, p. 60}, we say instead:
AXIOM 12.42 If ABC is a plane, there is a point D not in this plane.

We then define the retrahedron ABCD, consisting of the four non-coplanar
points A, B, C, D, called vertices, the six joining segments AD, BD, CD,
BC, CA, AB, called edges, and the four triangular regions BCD, CDA,
DAB, ABC, called faces. The space (or “3-space”) ABCD is the set of all
points collinear with pairs of points in one or two faces of the tetrahedron
ABCD.

We can now deduce the familiar properties of incidence of lines and planes
[Forder 1, pp. 61-65]. In particular, any four non-coplanar points of a space
determine it, and the line joining any two points of a space lies entirely in the
space. If Qis in the space ABCD and P is in a face of the tetrahedron
ABCD, then PQ meets the tetrahedron again in a point distinct from P.

If we are content to work in three dimensions, we say

AXIOM 12.43 All points are in the same space.

Figure 12.4b

Consequently:

THEOREM 12.431 Two planes which meet in a point meet in another point,
and so in a line.

Proof. Let P be the common point and a one of the planes. Take 4,
B, C in a so that P is inside the triangle ABC. Let DPQ be a triangle in
the other plane B (Figure 12.4b). If D or Q lies in a, then a and B have
two common points. If not, PQ meets the tetrahedron ABCD in a point R
distinct from P; and DR, in B, meets the triangle ABC in a point common
to a and B.

If, on the other hand, we wish to increase the number of dimensions, we
replace 12.43 by

AXIOM 12.44 [f AoA1A32Aj3 is a 3-space, there is a point A4 not in this
3-space.
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We then define the simplex AgA1A2A43A44 which has 5 vertices 4;, 10 edges
AiA; (1 <)), 10 faces A;4;45 (i < j < k), and 5 cells A;A;45A; (which are
tetrahedral regions.) The 4-space AgA1A2A43A4, is the set of points collinear
with pairs of points on one or two cells of the simplex.

The possible extension to n dimensions (using mathematical induction)
is now clear. The n-space ApA1 . . . Ay is decomposed into two convex re-
gions (half-spaces) by an (n — 1)-dimensional subspace such as A¢A; ... Ap_1,
which is called a hyperplane (or “prime,” or “(n— 1)-flat™).

EXERCISES

1. Any 5 coplanar points, no 3 collinear, include 4 that form a convex quadrangle.

2. Aray OC within £ AOB decomposes the angular region into two angular regions,
bounded by the angles A0OC and COB. [Veblen 1, p. 24.]

3. If m distinct coplanar lines meet in a point O, they decompose their plane into
2m angular regions [Veblen 1, p. 26].

4. If ABCisa triangle, the three lines BC, CA, A B decompose their plane into seven
convex regions, just one of which is triangular.

5. If m coplanar lines are so placed that every 2 but no 3 have a common point,
they decompose their plane into a certain number of convex regions. Call this num-
ber f(2, m). Then

f@om =f@m=1)+m
But f(2, 0) = 1. Therefore f(2, 1) = 2, f(2, 2) = 4, f(2, 3) = 7, and f(2, m)

=14+m+ ('g)

6. If m planesin a 3-space are so placed that every 3 but no 4 have a common point,
they decompose their space into (say) f(3, m) convex regions. Then

f@G m =f3,m—-1+f2,m—1).
Butf(3,0) = 1. Thereforef(3,1) =2, f(3,2)=4, f(3.3)=8, f(3,4)= 15, and

fG,m =1+ (’;’) + (’;) + (”3’) [Steiner 1, p. 87.]

7. Obtain the analogous result for m hyperplanes in an n-space.

12.5 CONTINUITY

Nothing but Geometry can furnish a thread for the labyrinth of the

composition of the continuum . . . and no one will arrive at a truly
solid metaphysic who has not passed through that labyrinth.

G. W. Leibniz (1646 -1716)

[Russell 2, pp. 108 -109]

Between any two rational numbers (§ 9.1) there is another rational num-
ber, and therefore an infinity of rational numbers; but this does not mean
that every real number (§ 9.2) is rational. Similarly, between any two points
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(12.271) there is another point, and therefore an infinity of points; but this
does not mean that the axioms in § 12.2 make the line “continuous.” In fact,
continuity requires at least one further axiom. There are two well-recog-
nized approaches to this subtle subject. One, due to Cantor and Weier-
strass, defines a monotonic sequence of points, with an axiom stating that
every bounded monotonic sequence has a limit [Coxeter 2, Axiom 10.11]. The
other, due to Dedekind, obtains a general point on a line as the common
origin of two opposite rays [Coxeter 3, p. 162]. Its arithmetical counter-
part is illustrated by describing /2 as the “section” between rational num-
bers whose squares are less than 2 and rational numbers whose squares are
greater than 2. Dedekind’s Axiom, though formidable in appearance, is
the more readily applicable; so we shall use it here:

AXIOM 12.51  For every partition of all the points on a line into two non-
empty sets, such that no point of either lies between two points of the other,
there is a point of one set which lies between every other point of that set and
every point of the other set.

This axiom is easily seen to imply several modified versions of the same
statement. Instead of “the points on a line” we could say “the points on a
ray” or “the points on a segment” or “the points on an interval.”” (In the
last case, for instance, the rest of the line consists of two rays which can be
added to the two sets in an obvious manner.) Another version [Forder 1,
p. 299] is:

THEOREM 12.52 For every partition of all the rays within an angle into
two nonempty sets, such that no ray of either lies between two rays of the other,
there is a ray of one set which lies between every other ray of that set and every
ray of the other set.

To prove this for an angle / AOB, we consider the section of all the rays
by the line A B, and apply the “segment” version of 12.51 to the segment A B.

12.6 PARALLELISM

In the last few weeks | have begun to put down a few of my own Medi-
tations, which are already to some extent nearly 40 years old. These |
had never put in writing, so | have been compelied three or four times
to go over the whole matter afresh in my head.

C. F. Gauss (1777 -1855)

(Letter to H. K. Schumacher, May 17, 1831, as translated by Bonola
(V. p. &7])

The idea of defining, through a given point, two rays parallel to a given
line (in opposite senses), was developed independently by Gauss, Bolyai,
and Lobachevsky. The following treatment is closest to that of Gauss.
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THEOREM 12.61 For any point A and any line r, not through A, there are
just two rays from A, in the plane Ar, which do not meet r and which separate
all the rays from A that meet r from all the other rays that do not.

Figure 12.6a

Proof. Taking any two distinct points B and C on r, we apply 12.52 to
the angle between the rays A C and 4/B (marked in Figure 12.6a). We con-
sider the partition of all the rays within this angle into two sets according
as they do or do not meet the ray C/B. Clearly, these sets are not empty,
and no ray in either set lies between two in the other. We conclude that
one of the sets contains a special ray p; which lies between every other ray
of that set and every ray of the other set.

In fact, p; belongs to the second set. For, if it met C/B, say in D, we
would have [BCD]. By Axiom 12.22, we could take a point E such that
[CDE], with the absurd conclusion that AE belongs to both sets: to the first,
because E is on C/B, and to the second, because AD lies between AC and
AE.

We have thus found a ray p1, within the chosen angle, which is the “first”
ray that fails to meet the ray C/B; this means that every ray within the
angle between 4C and p; does meet C/B. Interchanging the roles of B
and C, we obtain another special ray g1, on the other side of 4B, which
may be described (for a counterclockwise rotation) as the “last” ray that
fails to meet B/C. Since the line r consists of the two rays B/C, C/B, along
with the interval BC, we have now found two rays pq, g1, which separate all
the rays from A that meet r from all the other rays (from A4) that do not.
[Forder 1, p. 300.]

These special rays from A are said to be parallel to the line r in the two
senses: py parallel to C/B, and ¢, parallel to B/C. (Two rays are said to
have the same sense if they lie on the same side of the line joining their in-
itial points.)

For the sake of completeness, we define the rays parallel to r from a point
A on ritself to be the two rays into which 4 decomposes r. The distinction
between affine geometry and hyperbolic geometry depends on the question
whether, for other positions of 4, the two rays py, ¢ are still the two halves
of one line. Ifthey are, this line decomposes the plane into two half planes,
one of which contains the whole of the line r. If not, the lines p and g (which
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contain the rays) decompose the plane into four angular regions
P41, q91p2, P2q2, 42P1-

In this case, by 12.61, r lies entirely in the region p1q;.

COROLLARY 12.62 For any point A and any line r, not through A, there is
at least one line through A, in the plane Ar, which does not meet r.

Figure 12.6b Figure 12.6¢

Another familiar property of parallelism is its “transmissibility’:

THEOREM 12.63 The parallelism of a ray and a line is maintained when
the beginning of the ray is changed by the subtraction or addition of a segment.

Proof [Gauss 1,vol. 8, p.203]. Letp; be a ray from 4 which is parallel
to a line r through B, and let A’ be any point on this ray (Figure 12.6b) or on
the opposite ray p, (Figure 12.6¢). The modified ray p’y, beginning at A’,
is A’/A or A’A, respectively; it obviously does not meet r. What remains
to be proved is that every ray from A’, within the angle between A’B and
p’1, does meet r. Let D be any point on such a ray (Figure 12.6b) or on its
opposite (Figure 12.6¢). Since p; (from A) is parallel to r, the line A D (con-
taining a ray within the angle between 4B and p,) meets r, say in C. The
line A’B, separating A from D, meets the segment AD,say in E. By Axiom
2.27, applied to the triangle CBE with [BEA’] and [EDC] (Figure 12.6b) or
to the triangle BCE with [CED] and [EA’B] (Figure 12.6¢), the line A’D
meets BC. Thus p’y is parallel to r.

This property of transmissibility enables us to say that the line p = A4’
is parallel to the line r = BC, provided we remember that this property is
associated with a definite “sense” along each line.

Busemann [1, p. 139 (23.5)] has proved that it is not possible, within the
framework of two-dimensional ordered geometry, to establish the “sym-
metry” of parallelism: that if p is parallel to r then r is parallel to p. To sup-
ply this important step we need either Axiom 12.42 [as in Coxeter 3, pp-

165-177] or the affine axiom of parallelism (13.11) or the absolute axioms
of congruence (§ 15.1).
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THEOREM 12.64 If two lines are both parallel to a third in the same sense,
there is a line meeting all three.

Proof. We have to show that, if lines p and s are both parallel to r in the
same sense, then the three lines p, r, s have a transversal. In affine geometry
this is obvious, so let us assume the geometry to be hyperbolic. Of the two
lines parallel to r through a point 4 on p, one is p itself. Let g be the other,
and let r be in the angular region p1qi, so that the rays p; and q; (from A)
are parallel to r in opposite senses and s is parallel to r in the same sense as
p1. Let B and D be arbitrary points on r and s, respectively.

If D is in the region p1qi, the line AD is a transversal. If D is in p1qs,
BD is a transversal. If D is in pzqs, both 4D and BD are transversals.
Finally, if D is in peqi, AB is a transversal.

Hyperbolic geometry will be considered further in Chapters 15, 16, and 20.

EXERCISES

1. Ifpis parallel to s and [prs], then p is parallel to r. (See Figure 15.2¢ with s for q.)
2. Consider all the points strictly inside a given circle in the Euclidean plane. Re-
gard all other points as nonexistent. Let chords of the circle be called lines. Then all
the axioms 12.21-12.27, 12.41, and 12.51 are satisfied. Locate the two rays through
a given point parallel to a given line. Note that they form an angle (as in Figure 16.25).
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Affine geometry

The first three sections of this chapter contain a systematic development
of the foundations of affine geometry. In particular, we shall see how length
may be measured along a line, though independent units are required for
lines in different directions. In §§ 13.4-7 we shall investigate such topics
as area, affine transformations, lattices, vectors, barycentric coordinates,
and the theorems of Ceva and Menelaus. Finally, in § 13.8 and § 13.9, we
shall extend these ideas from two dimensions to three.

According to Blaschke [1, p. 31; 2, p. 12], the word “affine” (German
affin) was coined by Euler. But it was only after the launching of Klein’s
Erlangen program (see Chapter 5) that this geometry became recognized as
a self-contained discipline. Many of the propositions may seem familiar;
in fact, most readers will discover that they have often been working in the
affine plane without realizing that it could be so designated.

Our treatment is somewhat more geometric and less algebraic than that
of Artin’s Geometric Algebra [Artin 1; see especially pp. 58, 63, 71]. Inci-
dentally, we shall find that our Axiom 13.12 (which he calls DP) implies
Theorem 13.122 (his D;): this presumably means that his Axiom 4b implies
4a.

13.1 THE AXIOM OF PARALLELISM AND THE “DESARGUES’’ AXIOM

Mathematical language is difficult but imperishable. | do not believe
that any Greek scholar of to-day can understand the idiomatic under-
tones of Plato’s dialogues, or the jokes of Aristophanes, as thoroughly
as mathematicians can understand every shade of meaning in Archi-
medes’ works.

M. H. A. Newman
(Mathematical Gazette 43, 1959, p. 167)

In this axiomatic treatment, we regard the real affine plane as a special
case of the ordered plane. Accordingly, the primitive concepts are point
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and inrermediacy, satisfying Axioms 12.21-12.27, 12.41 and 12.51. Affine
geometry is derived from ordered geometry by adding the following two
extra axioms:

AXIOM 13.11  For any point A and any line r, not through A, there is at
most one line through A, in the plane Ar, which does not meet r.

AXIOM13.12 If A, A, B, B, C, C, O are seven distinct points, such that
AA’, BB', CC are three distinct lines through O, and if the line AB is parallel to
A’B’, and BC to B’'C’, then also CA is parallel to C'A’.

The affine axiom of parallelism (13.11) combines with 12.62 to tell us that,
for any point 4 and any line r, there is exactly one line through 4, in the
plane Ar, which does not meet r. Hence the two rays from A parallel to
are always collinear, any two lines in a plane thar do not meet are parallel,
and parallelism is an equivalence relation. The last remark comprises three
properties:

Parallelism is reflexive. (Each line is parallel to itself.)

Parallelism is symmetric. (1f p is parallel to r, then r is parallel to p.)

Parallelism is zransitive. (If p and g are parallel to r, then p is parallel to
q. Euclid L. 30.)

In the manner that is characteristic of equivalence relations, every line
belongs to a pencil of parallels whose members are all parallel to one an-
other.

Figure 13.1a Figure 13.1b

Axiom 13.12 (see Figure 13.1a) is probably familiar to most readers either
as a corollary of Euclid V1.2 or as an affine form of Desargues’s theorem.
We shall see that it implies

THEOREM 13.121 If ABC and A’B’C’ are two triangles with distinct ver-
tices, so placed that the line BC is parallel to B'C’, CA to C'A’, and AB to
A’B’, then the three lines AA’, BB’, CC’ are either concurrent or parallel.

Proof. If the three lines A4’, BB’, CC’ are not all parallel, some two of
them must meet. The notation being symmetrical, we may suppose that
these two are A4’ and BB, meeting in O, as in Figure 13.15. Let OC meet
B’C’in C;. By Axiom 13.12, applied to 44’, BB’, CCy, the line A Cis paral-
lel to A’Cy as well as to 4’C’. By Axiom 13.11, C; lies on 4’C’ as well as
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on B’C’. Since A’B’'C’ is a triangle, C; coincides with C’. Thus, if 44",
BB’, CC’ are not parallel, they are concurrent [Forder 1, p. 158].

Roughly speaking, Axiom 13.12 is the converse of one half of Theorem
13.121. The converse of the other half is

THEOREM 13.122 If A4, A’, B, B’, C, C are six distinct points on three
distinct parallel lines AA’, BB’, CC, so placed that the line AB is parallel to
A’'B’, and BC to B'C’, then also CA is parallel to C'A’.

Proof. Through 4’ draw 4’C; parallel to AC, to meet B'C’ in Cy, as in
Figure 13.1c. By 13.121, applied to the triangles ABC and A4’B’C,, since
AA’ and BB’ are parallel, CC; is parallel to both of them, and therefore
also to CC’. Hence C; lies on CC’ as well as on B’C’. Since the parallel
lines BB’ and CC’ are distinct, B’ cannot lie on CC’. Therefore C; coincides
with C’, and 4’C’ is parallel to AC.

Figure 13.1c¢

EXERCISES
1. If a line in the plane of two parallel lines meets one of them, it meets the other
also.

2. Can we always say, of three distinct parallel lines, that one lies between the other
two?

13.2 DILATATIONS

Dilatatians . . . are one-fo-one maps of the plane onfo itself which
move all points of a line into points of a parailel line.

E. Artin [1, p. 511]

Four non-collinear points 4, B, C, D are said to form a parallelogram
ABCD if the line AB is parallel to DC, and BC to AD. lIts vertices are the
four points; its sides are the four segments AB, BC, CD, DA, and its diag-
onals are the two segments AC, BD. Since B and D are on opposite sides
of AC, the diagonals meet in a point called the cenrer [Forder 1, p. 140].
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Asin § 5.1, we define a dilaration to be a transformation which transforms
each line into a parallel line. But now we must discuss more thoroughly
the important theorem 5.12, which says that rwo given segments, AB and
A’B’, on parallel lines, determine a unique dilatation AB - A’B’,

fod

A B A B

Figure 13.2a

For any point P, not on AB, we can find a corresponding point P’ by
drawing A’P’ parallel to AP, and B’P’ parallel to BP, as in Figure 5.1a. (The
lines thus drawn through 4’ and B’ cannot be parallel, for, if they were, 4 P
and BP would be parallel.) Similarly, another point C yields ', as in Figure
13.2a. By 13.121, the three lines AA’, BB’, CC’ are either concurrent or
parallel. So likewise are A4’, BB, PP’

If the two parallel lines 4B and 4A’B’ do not coincide, it follows that the
four lines AA4’, BB’, CC’, PP’ are all either concurrent or parallel. Then,
by 13.12 or 13.122 (respectively), CP and C’'P’ are parallel, so that the trans-
formation is indeed a dilatation. If the lines AB and A’B’ do coincide, we
can reach the same conclusion by regarding the transformation as AC — 4’'C’
instead of AB — A’B’.

We see now that a given dilatation may be specified by its effect on any
given segment. The inyerse of the dilatation AB — A’B’ is the dilatation
A’B’" — AB. The product of two dilatations, AB — A’B’ and A’B’ — A”B”,
is the dilatation AB — A”’B”. 1In particular, the product of a dilatation with
its inverse is the identity, AB — AB. Thus all the dilatations together form
a (continuous) group.

The argument used in proving 5.13 shows that, for a given dilatation, the
lines PP’ which join pairs of corresponding points are invariant lines. The
discussion of 5.12 shows that all these lines are either concurrent or parallel.

If the lines PP’ are concurrent, their intersection O is an invariant point,
and we have a cenrral dilatation

04 - 04’

(where A’ lies on the line OA). The invariant point O is unique; for, if O
and O were two such, the dilatation would be 00O; — OO, which is the
identity.
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Figure 13.2b

If, on the other hand, the lines PP’ are parallel, there is no invariant point,
and we have a translation AB — A’B’, where not only is A B parallel to 4’B’
but also AA’ is parallel to BB’. If these two parallel lines are distinct,
AA’B’'B is a parallelogram. If not, we can use auxiliary parallelograms
AA’C'Cand C'CBB’ (or AA’D’D and D’DBB’) as in Figure 13.2b. Two ap-
plications of 13,122 suffice to prove that, when 4, B, A’ are given, B’ is inde-
pendent of the choice of C (or D). Hence

13.21  Any two points A and A’ determine a unique translation A — A’

We naturally include, as a degenerate case, the identity, 4 — 4. [t follows
that a dilatation, other than the identity, is a translation if and only if it has
no invariant point. Moreover, a given translation may be specified by its
effect on any given point; in fact, the translation 4 — A’ is the same as
B — B’ if AA’B’B is a parallelogram, or if, for any parallelogram 44'C'C
based on AA4’, there is another parailelogram C'CBPB’.

We next prove that dilatations are “ordered transformations:”

13.22 The dilatation AB — A’B’ transforms every point between A and B
into a point between A’ and B’.

Proof. If the lines AB and A’B’ are distinct, the fact that [4 CB] implies
[4’C B’] follows at once from 12.401 (for a translation) or 12.402 (for a central
dilatation). To obtain the analogous result for two corresponding triads on
an invariant line CC’, we draw six parallel lines through the six points, as in
Figure 13.2¢, and use the fact that [acb] implies [a’¢’b].

To prove Theorem 3.21, which says that the product of two translations is a
translation, we can argue thus: since translations are dilatations, the product
is certainly a dilatation. If it is not a translation it has a unique invariant
point O. If the first of the two given translations takes O to ¢, the second
must take O’ back to O. But the translation 0’ — O is the inverse of
O — O’. Thus the only case in which the product of two translations has
an invariant point is when one of the translations is the inverse of the other.
(By our convention, the product is still a translation even then.) Hence

13.23 The product of two translations A — B and B — C is the translation
A - C.
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Figure 13.2¢

To prove that this is a commutative product (as in 3.23), we consider first
the easy case in which the two translations are along nonparallel lines.
Completing the parallelogram ABCD, we observe that the translations
A — Band B —» Care the same as D — C and 4 — D, respectively. Hence
their product in either order is the translation 4 — C:

A->BB->C)=A->DYD-CO)
= (B—= C)4 - B).

To deal with the product of two translations T and X along the same line,
let Y be any translation along a nonparallel line, so that X commutes with
both Y and TY. Then

TXY = TYX = XTY

and therefore TX = XT
[cf. Veblen and Young 2, p. 76].

As a special case of 5.12, we see that any two distinct points, 4 and B, are
interchanged by a unique dilatation AB — BA, or, more concisely,

A < B,

which we call a half-rurn. (Of course, A <> Bis the same as B <> A4.) If Cis
any point outside the line 4B, the half-turn transforms C into the point D in
which the line through B parallel to AC meets the line through A paral-
lel to BC (Figure 13.2d). Therefore ADBC s a parallelogram, and the same
half-turn can be expressed as C <> D. The invariant lines 4 B and CD, being
the diagonals of the parallelogram, intersect in a point O, which is the in-
variant point of the half-turn. It follows that any segment 4B has a mid-
point which can be defined to be the invariant point of the half-turn 4 < B,
and we have proved that the center of a parallelogram is the midpoint of each
diagonal, that is, that the two diagonals “bisect” each other. To see how the
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half-turn transforms an arbitrary point on AB, we merely have to join this
point to C (or D) and then draw a parallel line through D (or C).

By considering their effect on an arbitrary point B, we may express any
two half-turns as 4 <> B and B <> C. If their product has an invariant point
0, each of them must be expressible in the form O « O, that is, they must
coincide. In every other case, there is no invariant point. Hence

13.24 The product of two half-turns A <> B and B <> C is the translation
A—C.

Figure 13.2d

We have seen (Figure 13.2d) that, if ADBC is a parallelogram, the half-
turn A <> B is the same as C < D, and the translation A — D is the same
as C —» B. This connection between half-turns and translations remains
valid when the parallelogram collapses to form a symmetrical arrangement
of four collinear points, as in Figure 13.2e:

[s7)

A C D

Figure 13.2¢

13.25 The half-turns A <> B and C < D are equal if and only if the trans-
lations A — D and C — B are equal.

In fact, the relation (4 < B) = (C « D) implies
(A—>D)y=(4< B)(B< D)
= (C & D)D < B) = (C > B)
and, conversely, the relation (4 — D) = (C — B) implies
(A< B) = (4 - D)(D <> B)
=(C-> BB D)= (CeD)

In the special case when C and D coincide, we call them C” and deduce that
C’ is the midpoint of 4 B if and only if the translations 4 — C" and C' — B
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are equal. This involves the existence of parallelograms AC’4’B’ and
A’B’C’'B, as in Figure 13.2f. Completing the parallelogram B'C' 4’C, we ob-
tain a triangle ABC with 4’, B’, C’ at the midpoints of its sides. Hence

13.26 The line joining the midpoints of two sides of a triangle is parallel to
the third side, and the line through the midpoint of one side parallel to another
passes through the midpoint of the third.

Figure 13.2f

Two figures are said to be homotheric if they are related by a dilatation,
congruent if they are related by a translation or a half-turn. In particular,
a directed segment A B is congruent to its “opposite” segment BA by the half-
turn 4 <> B. Thus, in Figure 13.2f, the four small triangles

AC'B', C'BA’, B'A'C, A'BC
are all congruent, and each of them is homothetic to the large triangle ABC.

EXERCISES

1. Such equations as those used in proving 13.25 are easily written down if we re-
member that each must involve an even number of double-headed arrows (indicating
half-turns). Explain this rule.

2. The translations 4 — C and D — B are equal if the translations 4 — D and
C — B are equal. (This is obvious when 4 DBC is a parallelogram, but remarkable
when all the points are collinear.)

3. Setting 4 = C in the equation
(4 BYB->C)=(A4eO),

deduce that any given point C is the invariant point of a half-turn (C < B)(B - ()
which, by a natural extension of the symbolism, may be written as
Ce C

4. If the three diagonals of a hexagon (not necessarily convex) all have the same
midpoint, any two opposite sides are parallel (as in Figure 4.1e).

5. From any point 4, on the side BC of a triangle ABC, draw 4By parallel to B4
to meet CA in By, then B,C, parallel to CB to meet AB in C,, and then CyA4, parallel
to AC to meet BCin 4,. If 4, is the midpoint of BC, 4, coincides with it. If not,

continue the process, drawing 4,B; parallel to B4, B,C; parallel to CB, and CzA;
parallel to 4C. The path is now closed: 45 coincides with 4;. (This is called Thom-
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Figure 13.2g

sen’s figure. See Geometrical Magic, by Nev R. Mind, Scripta Mathematica, 19
(1953), pp. 198-200.)

6. The midpoints of the four sides of any simple quadrangle are the vertices of a
parallelogram (Figure 13.2g; cf. Figure 4.2¢). This theorem was discovered by Pierre
Varignon (1654-1722). It shows that the bimedians, which join the midpoints of op-
posite sides of the quadrangle, bisect each other. Thus the corollary to Hjelmslev’s
theorem (§ 3.6) becomes an affine theorem when we replace the hypotheses 3.61 by

AB = BC, A'B = B'C.
7. The midpoints of the six sides of any complete quadrangle are the vertices of a
centrally symmetrical heXxagon (of the kind considered in Ex. 4, above).

13.3 AFFINITIES

“Yes, indeed,” said the Unicorn, . . . "What can we measure? . . .
We are experts in the theory of measurement, not its practice.”

J.L. Synge [2, p. 51]

The results of § 13.2 may be summarized in the statement that all the trans-
lations of the affine plane form a continuous Abelian group, which is a sub-
group of index 2 in the group of translations and half-turns; and the latter is
a subgroup (of infinite index) in the group of dilatations [Veblen and Young
2, pp. 79, 93].

Moreover, the group of translations is a normal subgroup (or “self-con-
jugate” subgroup)* in the group of dilatations, that is, if T is a translation
while S is a dilatation, then S—1TS is a translation [Artin 1, p. 57]. To
prove this, suppose if possible that the dilatation S—1TS has an invariant
point. Since this invariant point could have been derived from a suitable
point O by applying S, we may denote it by O%. Thus S—1TS leaves OS in-
variant. But S-1TS transforms OS into O™, Hence O™ = 0S. Applying
S-1, we deduce OF = O, which is absurd (since T has no invariant point).

IfTisA — Band Sis AB — ASBS, then S-1TS is 4% — BS. Accord-
ingly, it is sometimes convenient to write TS for S—1TS [see, e.g., Coxeter 1,
p. 39] and to say that the dilatation S zransforms the translation T into the
translation TS. (Since ASB® is parallel to 4B, T* has the same direction as
T.) In other words, a dilatation transforms the group of translations into

* Birkhoff and MacLane 1, p. 141; Coxeter 1, p. 42.
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itself in the manner of an automorphism: if it transforms T into T® and
another translation U into US, it transforms the product TU into (TU)*
= T®U® and any power of T into the same power of T5.

It is convenient to use the italic letter T for the point into which the trans-
lation T transforms an arbitrarily chosen initial point (or origin) I. Then, if
a central dilatation S has I as its invariant point, it not only transforms T into
T* but also transforms T into 7%

Figure 13.3a

Applying to the arbitrary point I all the integral powers of a given transla-
tion X, we obtain a one-dimensional lattice consisting of infinitely many
points “‘evenly spaced” along a line, as in Figure 13.3a. We may regard
every such point X* as being derived from the point X by a dilatation
IX — IX* (which leaves the point / invariant). At first we take u to be an
integer; but since the same dilatation transforms each X into

(X/A)n — Xun’

we can consistently extend the meaning of X* so as to allow p to have any
rational value, and finally any real value. In other words, we can interpolate
new points between the points of the one-dimensional lattice and then define
X#, for any real u, to mean the translation I — X* The details are as
follows.

For each rational number p = a/b (where ais an integer and b is a positive
integer) we derive from the point X a new point X* by means of the dilata-
tion /X? — 1Xe A convenient way to construct this point X* is to use the
lattice of powers of an arbitrary translation Y along another line through the
initial point I, drawing a line through the point Y parallel to the join of the
points Y% and X, as in Figure 13.3b (cf. Figure 9.1c¢).

To verify that the order of such points X* agrees with the order of the ra-
tional numbers yu, we take three of them and reduce their p’s to a common
denominator so as to express them as X/t Xa:/b Xou/b 1f gy < ay < as,
so that [Xe Xe: Xos] we can apply 13.22 to the dilatation IX? — IX, with
the conclusion that

[Xea:/b Xaxb Xea./b],

If pis irrational, we define X* to be the Dedekind section between all the
rational points X2/? for which a/b < p and all those for which a/b > p.
More precisely, supposing for definiteness that p is positive, we apply the
“ray” version of 12.51 to two sets of points, one consisting of all the points
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Yb

Yb

xe 1 X Xb
Xa/b Xa/b

Figure 13.3b

whose exponents are positive rational numbers less than g, and all the points
between pairs of these, whereas the other set consists of the rest of the “posi-
tive” ray 1X. (If p is negative, we make the same kind of partition of the
“negative” ray I1/X.) Finally X* is, by definition, the translation 1 — X*,

We have now interpreted the symbol X* for all real values of u (includ-
ing 0 and 1, which yield X° = 1 and X* = X). Conversely, every point on
the line 1X can be expressed in the form X*.

This is obvious for any point of the interval from X-1 to X. Any other
point T satisfies either {1 X T] or [ X-1 T]. If [I X T], the dilatation
1T - IX transforms X into a point between / and X, say X*. The inverse
dilatation IX* — IX transforms X into X1/*; therefore T = X1/*. If, on
the other hand, [/ X-! 7], we make the analogous use of /T — 1X-1 In
either case we obtain an expression for T as a power of X.

Thus, assuming Dedekind’s axiom, we have proved the “axiom of Archi-
medes”:

13.31  For any point T (except 1) on the line of a translation X, there is
an integer n such that T lies between the points 1 and X».

The exponent y provides a measure of distance along the line /X. In fact,
the segment X*X* (v < y) is said to have lengrth y — v in terms of the segment
1X as unit:

XX+ _
1X

_V‘

Along another line 1Y (Figure 13.3¢) we have an independent unit. Since
the dilatation 1X — IX* transforms the point Y into Y*, where the line X*Y*
is parallel to XY, we have

X+ _ 1Y+

1X 1y

in agreement with Euclid VI.2 (see § 1.3). Thus we can define ratios of the
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lengths on one line, or on parallel lines, and we can compare such ratios on
different lines. But affine geometry contains no machinery for comparing
lengths in different directions: it is a meaningless question whether the trans-
lation Y is longer or shorter than X.

Y#

1 X x*

Figure 13.3¢

The above definition for the length of the segment X* X« (v < p) suggests
the propriety of allowing the oppositely directed segment X“X* to have the
negative length » — pu. This convention enables us to write p = 1X*/1X for
negative as well as positive values of y, and to add lengths of collinear seg-
ments according to such formulas as

AB + BC = AC, BC + CA + AB =0,

regardless of the order of their end points 4, B, C.

Now, to set up a system of affine coordinates in the plane, we let (x, y) de-
note the point into which the origin 7 is transformed by the translation XzYv,
This simple device establishes a one-to-one correspondence between points
in the plane and ordered pairs of real numbers. In particular, the point X7 is
(x,0), Yvis (0, »), and the origin itself is (0, 0). When x and y are integers, the
points (x, y) form a two-dimensional lattice, as in Figure 4.1b. The remaining
points (x, y) are distributed between the lattice points in the obvious manner.

In affine coordinates (as in Cartesian coordinates) a line has a linear equa-
tion. The powers of the translation X—? Y transform the origin into the
points (—ub, ua) whose locus is the line ax + by = 0. The same powers
transform (x1, y1) into the points

(x1 — pb, y1 + pa)
whose locus is
a(x — x1) + b(y — y1) = 0.
We can thus express a line in any of the standard forms 8.11, 8.12, 8.13.
A dilatation is a special case of an affinity, which is any transformation (of
the whole affine plane onto itself) preserving collinearity. Thus, an affinity

transforms parallel lines into parallel lines, and preserves ratios of distances
along. parallel lines. It also preserves intermediacy (compare 13.22),
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/

13.32  An affinity /s/ uniquely determined by its effect on any one triangle.

For, if it transforms a triangle /XY into /’X’Y’, it transforms the point
(x, y) referred to the former triangle into the point having the same coordi-
nates referred to the latter. Here 1XY and I’X'Y’ may be any two triangles
[Veblen and Young 2, p. 72], and we naturally speak of “the affinity
I1XY - I'X’Y’.” In particular, if ABC and ABC’ are two triangles with a
common side, ABC — ABC is called a shear or a strain according as the line
CC’ is or is not parallel to AB. One kind of strain is sufficiently important
to deserve a special name and a special symbol: the affine reflection A(CC")
or B(CC"), which arises when the midpoint of CC’ lies on AB. In other
words, any triangle ACC’ determines an affine reflection 4A(CC") whose
mirror (or “axis”) is the median through 4 and whose direcrion is the direc-
tion of all lines parallel to CC'.

In the language of the Erlangen program (see page 67), the principal group
for affine geometry is the group of all affinities.

EXERCISES
1. The shear or strain ABC — ABC' leaves invariant every point on the line 4B
What is its effect on a point P of general position?
2. Every affinity of period 2 is either a half-turn or an affine reflection.

3. If, for a given affinity, every noninvariant point lies on at least one invariant line,
then the affinity is either a dilatation or a shear or a strain.

4. In terms of affine coordinates, affinities are “affine transformations”

X =ax 4+ by + [,
13.33 VY =cx + dy + m, ad = be.
5. Describe the transformations
O x=x+1, y=y (i) x=ax)y =ay,

(iliy ¥ =x4by,y =y, (iv) X =ax,y =y.

13.4 EQUIAFFINITIES

For he, by Geometrick scale,
Could take the size of Pots of Ale,

Samuel Butler (1600 -1680)
(Hudibras, 1.1)

We are now ready to show how the comparison of lengths on parallel lines
can be extended to yield a comparison of areas in any position [cf. Forder
1, pp. 259-265; Coxeter 2, pp. 125-128]. For simplicity, we restrict con-
sideration to polygonal regions. (Other shapes may be included by a suit-
able limiting process of the kind used in integral calculus.) Clearly, any
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polygonal region can be dissected into a finite number of triangles.* Follow-
ing H. Hadwiger and P. Glur [Elemente der Mathematik, 6 (1951), pp. 97-
120], we declare two such regions to be equivalent if they can be dissected
into a finite number of pieces that are congruent in pairs (by translations or
by half-turns). In other words, two polygonal regions are equivalent if they
can be derived from each other by dissection and rearrangement. Super-
posing two different dissections, we see that this kind of equivalence, which
is obviously reflexive and symmetric, is also transitive; two polygons that are
equivalent to the same polygon are equivalent to each other.

(0] R

P P Q Q P P Q Q

Figure 13.4a Figure 13.4b

The parallelograms OPQR and OP' Q'R of Figure 13.4a are equivalent,
since each of them consists of the trapezoid OP’QR plus one of the two con-
gruent triangles OPP’, RQQ’. In some such cases, more than two pieces
may be needed, but we find eventually:

13.41  Two parallelograms are equivalent if they have one pair of opposite
sides of the same length lying on the same pair of parallel lines.

Since a parallelogram can be dissected along a diagonal to make two tri-
angles that are congruent by a half-turn, it follows that two triangles (such as
OPQ and OP' Q' in Figure 13.4b) are equivalent if they have a common ver-
tex while their sides opposite to this vertex are congruent segments on one
line. In particular, if points Po, Py, . . ., P, are evenly spaced along a line
(not through 0), so that the segments PoPy, P1Ps, . .. are all congruent,
as in Figure 13.4c, then the triangles OPoPy1, OPyPs, . . . are all equivalent,
and we naturally say that the area of OPoP, is n times the area of OPoP;.
By interpolation of further points on the same line, we can extend this idea
to all real values of n, with the conclusion that, if Q is on the side PQ’ of a
triangle OP(Q’, as in Figure 13.4d, the Cevian OQ divides the area of the tri-
angle in the same ratio that the point Q divides the side:

OPQ _ PQ
OoPQ ~ PQ’
*N. J. Lennes, American Journal of Mathematics, 33 (1911), p. 46.

13.42
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We naturally regard this ratio as being negative if P lies between Q@ and Q’,
that is, if the two triangles are oppositely oriented.

B P B P

Figure 13.4¢ Figure 13.4d

These ideas enable us to define the area of any polygon in such a way that
equivalent polygons have the same area, and when two polygons are stuck to-
gether to make a larger polygon, the areas are added. To compute the area
of a given polygon in terms of a standard triangle OA4 B as unit of measure-
ment, we dissect the polygon into triangles and add the areas of the pieces,
each computed as follows.

By applying a suitable translation, any given triangle can be shifted so that
one vertex coincides with the vertex O of the standard triangle O4B. Ac-
cordingly, we consider a triangle OPQ. Let the line PQ meet O4 in P, and
OB in @', as in Figure 13.4d. Multiplying together the three ratios

OPQ _PQ OPQ _OP 04Q O
OPQ ~ PQ° 0AQ 04’ 0OAB ~ OB

we obtain the desired ratio

OPQ _ PQ OP'OQ
OAB  P'Q 04 OB~

To obtain an analytic expression for the area of a triangle OPQ, referred
to axes through the vertex O, we take the coordinates of the points

0, A, B, P, o, P, o

13.43

to be

(O’ O)a (1’ 0)7 (Os 1)’ (xl’ y1)5 (x25 y2)’ (p’ O)s (O’ q)’
respectively. Since the equation
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for the line PQ is satisfied by (x1, y1) and (x, y2), we have
l—yl/q:lzl—yg/g

X1 p X9
whence q = M
Xy — X2
Taking the product of
PQ _x1—x, OF _ 00"  xy2 — X1
PO p 04 P oBT TxqIx
we obtain
OPQ X1 Y1
‘3.44 —_— = _— - N
04AB ~ 2T RN=

We deduce, as in § 8.2, that a triangle
(xla Vl) (x2’ J/Z) (X3, J’B),

of general position, has area PQR, where

Xy J/1 1

POR
13.45 —Og_B = Xo Yo 1
x3 ys 1

Since the homogeneous linear transformation
x' = ax + by, y =cx + dy
takes the triangle 04 B to
(0, 0)(a, ¢)(b, ),
we conclude that the affinity 13.33 preserves area if and only if
ad — bc = 1.

An area-preserving affinity is called an equiaffinity (or “equiaffine collinea-
tion” [Veblen and Young 2, pp. 105-113]). The group of all equiaffinities,
like the group of all dilatations, includes the group of all translations and
half-turns as a normal subgroup, and is itself a normal subgroup in the group
of all affinities. Equiaffinities are of many kinds. Here are some examples:

The hyperbolic rotation (“Lorentz transformation” or “Procrustean stretch™)

13.46 X =pulx, Yy = >0, p#1l,

for which x’y" = xy, leaves invariant each branch of the hyperbola xy = 1.
Th ¢ ossed hvperbolic rotation
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13.47 X = —plx, Y= —wy >0, u#1)
interchanges the two branches. The parabolic rotation

13.48 X=x4+1 y=2x+y+1,

’

for which x'2 — y’ = x2 — y, leaves invariant the parabola y = x2. The
elliptic rotation

13.49 X' =xcosf —ysinf, = xsinf + ycos¥d

leaves invariant the ellipse x2 + y2 = 1, and is periodic if 8 is commensur-
able with 7.

In §2.8 (page 36) we derived a regular polygon PoP1P; . . . from a point
P, (other than the center) by repeated application of a rotation through
27/n. (The rotation takes Py to Py, Py to P2, and so on.) Although mea-
surement of angles has no meaning in affine geometry, we can define an
affinely regular polygon whose vertices P; are derived from suitable point Py
by repeated application of an equiaffinity. The polygon is said to be of
type {n} if the equiaffinity is an elliptic rotation 13.49, where § = 27/n and
n 1s rational, so that P; has affine coordinates

(cos j8, sin j6) 0 = 27/n).

Figure 13.4e shows an affinely regular pentagram (n = 5/2) and pentagon
(n = 5)

Py Py

P P, Py

Py Py P Py

Figure 13.4e Figure 13.4f

EXERCISES

1. Two triangles with a common side (such as 4BC and BCD in Figure 13.24d)
have the same area if and only if the line joining their remaining vertices is parallel to
the common side (that is, 4D parallel to BC).

2. If a pentagon has four of its diagonals parallel to four of its sides, the remaining
diagonal is parallel to the remaining side.

3. When is a dilatation an equiaffinity?

4. When is a shear an equiaffinity?

5. When is a strain an equiaffinity?

6. The product of any even number of affine reflections is an equiaffinity.
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7. Any translation or half-turn or shear can be expressed as the product of two
affine reflections.
8. If an equiaffinity is neither a translation nor a half-turn nor a shear, it can be
expressed as PoPyPy; — Py PoP3 where PyPsis parallel to P1Ps. (See Figure 13.4f)
9. Every equiaffinity can be expressed as the product of two affine reflections.
(Veblen.)
10. In an affinely regular polygon PoP1Ps . . ., the lines P;P; and PPy are parallel
wheneveri + j = h + k.
11. Why did we call x2 + »? = ] an ellipse rather than a circle (just below 13.49)?
12. What triangles and quadrangles are affinely regular?
13. Construct an affinely regular hexagon.
14. Compute the ratio PyPs/P1P; for an affinely regular polygon of type {n}.
15. For which values of n can an affinely regular polygon of type {n} be constructed
with a parallel-ruler?

13.5 TWO-DIMENSIONAL LATTICES

Farey has a notice of twenty lines in the Dictionary of National Biog-

raphy. . . . His biographer does not mention the one thing in his life
which survives.

G. H. Hardy

[Hardy and Wright 1, p. 37]

Our treatment of lattices in § 4.1 (as far as the description of Figure 4.1d)
is purely affine. In fact, a lattice is the set of points whose affine coordi-
nates are integers. Any one of the points will serve as the origin O.

Let 4’ be any lattice point, and 4 the first lattice point along the ray 04’.
Following Hardy and Wright [1, p. 29], we call 4 a visible point, because
there is no lattice point between O and 4 to hide 4 from an observer at O.
In terms of affine coordinates, a necessary and sufficient condition for (x, y)
to be visible is that the integers x and y be coprime, that is, that they have
no common divisor greater than 1. The three visible points

(1,0), (1,1, (O, 1D

form with the origin a parallelogram. This is called a unit cell (or “typical
parallelogram”) of the lattice, because the translations transform it into in-
finitely many such cells filling the plane without overlapping and without
interstices: it is a fundamental region for the group of translations. Thus
it serves as a convenient unit for computing the area of a region.

According to Steinhaus [2, pp. 76-77, 260] it was G. Pick, in 1899, who
discovered the following theorem:*

* For an extension to three dimensions, see J. E. Reeve, On the volume of lattice polyhedra,
Proceedings of the London Mathematical Society (3), 7 (1957), pp. 378-395.
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Figure 13.5a

13.51 The area of any simple polygon whose vertices are lattice points is
given by the formula

36+ ¢ — 1,

where b is the number of lattice points on the boundary while c is the number of
lattice points inside.

(By a “simple” polygon we mean one whose sides do not cross one an-
other. Figure 13.5a shows an example in which b = 11, ¢ = 3))

Proof. We first observe that the expression 4 b + ¢ — 1is additive when
two polygons are juxtaposed. In fact, if two polygons, involving b, + ¢1 and
by + ¢ lattice points respectively, have a common side containing # (> 0)
lattice points in addition to the two vertices at its ends, then the values of
b and ¢ for the combined polygon are

b=>by + by —2n — 2, c=¢ 4+ co + n,
so that
1b+c—-1=G3bi+c1— 1)+ @GFbo+c2— 1.

Next, the formula holds for a parallelogram having no lattice points on
its sides (so that b = 4 and the expression reduces to ¢ 4+ 1). For, when
N such parallelograms are fitted together, four at each vertex, to fill a large
region, the number of lattice points involved (apart from a negligible pe-
ripheral error) is N(c + 1), and this must be the same as the number of unit
cells needed to fill the same region.

Splitting the parallelogram into two congruent triangles by means of a
diagonal, we see that the formula holds also for a triangle having no lattice
points on its sides. A triangle that does have lattice points on a side can
be dealt with by joining such points to the opposite vertex so as to split the
triangle into smaller triangles. This procedure may have to be repeated,
but obviously only a finite number of times. Finally, as we remarked on
page 204, any given polygon can be dissected into triangles; then the ex-
pressions for those pieces can be added to give the desired result.

In particular, any parallelogram for which & = 4 and ¢ = 0 has area 1
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and can serve as a unit cell. If the vertices of such a parallelogram (in coun-
terclockwise order) are

0,0), (x,»), (x+ x1,¥y + y1), (X1, 1),
we see from 13.44 that

13.52 Xy1 — yYXxX1 = 1.
In other words, this is the condition for the points

13.53 (O’ O)’ (x9 y)’ (xl’ yl)

to form a positively oriented “empty” triangle of area 4, which could be used
just as well as (0, 0) (1, 0) (0, 1) to generate the lattice. Thus a lattice is com-
pletely determined, apart from its position, by the area of its unit cell. More-
over, although there are infinitely many visible points in a given lattice, they
all play the same role. (These properties of affine geometry are in marked
contrast to Euclidean geometry, where the shape of a lattice admits unlim-

ited variation and each lattice contains visible points at infinitely many dif-
ferent distances.)

=
Wi
T

—jo ¢

Figure 13.5b

George Polya* has applied 13.52 to a useful lemma in the theory of num-
bers. The Farey series F, of order n is the ascending sequence of fractions

from O to 1 whose denominators do not exceed n. Thus y/x belongs to F,
if x and y are coprime and

13.54 0<y < x<n.
For instance, F5 is

44444, 3.3. 4.4, 1

* Actn Tittorarum ae Scientiarum R oia [ niversi atis Hune ric e Francisco-Josephinae, Sectio
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The essential property of such a sequence, from which many other properties
follow by simple algebra, is that 13.52 holds for any two adjacent fractions

Y and 1.

X X1
To prove this, we represent each term y/x of the sequence by the point (x, y)
of alattice. For example, the terms of F5 are the lattice points emphasized
in Figure 13.5b (where, for convenience, the angle between the axes is ob-
tuse). Since the fractions are in their “lowest terms,” the points are visible.
By 13.54, they belong to the triangle (0, 0) (n, 0) (n. n). A ray from the ori-
gin, rotated counterclockwise, passes through the representative points in
their proper order. If y/x and y{/x; are consecutive terms of the sequence,
then (x, y) and (xy, y1) are visible points such that the triangle joining them
to the origin contains no lattice point in its interior. Hence this triangle
is one half of a unit cell, and 13.52 holds, as required.

Figure 13.5¢

Another result belonging to affine geometry is

13.55 If the sides BC, CA, AB of a triangle ABC are divided at L, M, N
in the respective ratios N : 1, 2 1, v : 1, the Cevians AL, BM, CN form a tri-
angle whose area is

Apr — 1)2 )
Au+A+Dw +p+ DA +v + 1
times that of ABC.

This was discovered by Routh [1, p. 82; see also Dérrie 1, pp. 41-42]. We
shall give a general proofin § 13.7, but it is interesting to observe that, when
A = p = », so that the ratio of areas is (A — 1)3/(A3 — 1), the result can
be deduced from 13.51. For instance, when A = p = v = 2, so that each
side is trisected [Steinhaus 2, p. 8], the central triangle is one-seventh of
the whole, and we can see this immediately by embedding the figure in a
lattice, as in Figure 13.5¢. Since the central triangle has b = 3, ¢ = 0 while
ABChas b = 3, ¢ = 3, the ratio of areas is 4/ = L.
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EXERCISES

1. Ify/x and y1/x; are two consecutive terms of a Farey series, x and x; are co-
prime.
2, If yo/xg, ¥/x, y1/x; are three consecutive terms of a Farey series,

Yo+ _JY
Xo + x1 X

(C. Haros, 1802.)

3. The points 4, B, C in Figure 13.5¢ belong to a lattice whose unit cell has seven
times the area of that of the basic lattice. (For the Euclidean theory of such com-
pound lattices, see Coxeter, Configurations and maps, Reports of a Mathematical Col-
loquium (2), 8 (1948), pp. 18-38, especially Figs. i, v, vii.)

4. Use lattices to verify 1355 when (@) A =u=r =3, (D)A =pu=vr = 3.

5. Join the vertices 4, B, C, D of a parallelogram to the midpoints of the respec-
tive sides BC, CD, DA, AB so as to form a smaller parallelogram in the middle. TIts
area is one-fifth that of ABCD. Another such parallelogram is obtained by joining
A, B, C, D to the midpoints of CD, DA, AB, BC. The common part of these two small
parallelograms is a centrally symmetrical octagon whose area is one-sixth that of A BCD
[Doérrie 1, p. 40].

6. In the notation of 13.55, the area of the triangle LMN is

Awy + 1
A+ D+ Do + D
times that of ABC. (Hint: Use 13.42 to compute the relative area of CLM, etc)

7. Of the four triangles ANM, BLN, CML, LMN, the last cannot have the smallest
areaunless L, M, N are the midpoints of BC, CA, AB. (H. Debrunner.*)

13.6 VECTORS AND CENTROIDS

A vector is really the same thing as a transiation, although one uses
different phraseologies for vectors and translations. Instead of speak-
ing of the transiation A — A’ which carries the point A into A’ one

—
speaks of the vector AA’. . .. The same vector laid off from B ends
in B’ if the transiation carrying A info A’ carries B into B'.

H. Weyl [1, p. 45]

As we saw in § 2.5, a group is an associative system containing an iden-
tity and, for each element, an inverse. Arithmetical instances are provided
by the positive rational numbers, the positive real numbers, the complex
numbers of modulus 1, and all the complex numbers except 0, combined,
in each case, by ordinary multiplication. Such instances make it natural to
adopt a multiplicative notation for all groups, so that the combination of S
and T is ST, the inverse of S is S—1, and the identity is 1. However, it is
often convenient, especially in the case of Abelian (i.e., commutative)

* Elemente der Mathematik, 12 (1957), p. 43, Aufgabe 260.
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groups, to use instead the additive notation, in which the combination of
S and Tis S 4 T, the inverse of S is — S, and the identity is 0. To see
that this other notation has equally simple arithmetical instances, we merely
have to consider in turn the integers, the rational numbers, the real num-
bers, and the complex numbers, combined, in each case, by ordinary addi-
tion.

The transition from a multiplicative group to the corresponding additive
group is the foundation of the theory of logarithms [Infeld 1, pp. 97-100].

When we go outside the domain of arithmetic, the choice between mul-
tiplication and addition is merely a matter of notation. In particular, the
Abelian group of translations, which we have expressed as a multiplicative
group, becomes the additive group of vectors.

In this notation, 13.21 asserts that any two points 4 and 4’ determine a
IR
unique vector 44’ (going from A to 4"), Figure 13.2b illustrates a situation

in which
—_— — —_—

A4’ = CC' = BB,
13.23 asserts that

_ — -

AB + BC = AC,
and 3.23 asserts that, for any two vectors a and b,

at+b=>b4+a

In the same spirit the “origin” will henceforth be called O instead of /, and
the zero vector will be denoted by 0. The integral multiples of any non-
zero vector proceed from the origin to the points of a one-dimensional lat-
tice. Two vectors @ and f are said to be independent if neither is a (real)
multiple of the other, that is, if the only numbers that satisfy the vector
equation

xe +yf =0

are x = 0 and y = 0. Two such vectors (corresponding to the translations
X and Y in Figure 4.1c) provide a basis for a system of affine coordinates:
they enable us to define the coordinates of any point to be the coefficients
in the expression

xe + yf

for the position vector which goes from the origin to the given point. In
other words, with reference to a triangle OA4B, the affine coordinates of a
point P are the coefficients in the expression

— —> —_>

OP = x 04 + y OB.

We shall find it useful to borrow from statics the notion of the centroid
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(or “center of gravity”) of a set of “weighted” points, that is, of points to
each of which a real number is attached in a special way. For convenience,
we shall call these numbers masses, although, when some of them are nega-
tive, electric charges provide a more appropriate illustration.

Let masses f1, . . . , tx be assigned to k distinct points 44, . .., 4, let O be
any point (possibly coincident with one of the A4’s), and consider the vector

—> —
t OAy + ... 4 1t OAy.

Ift1 + ... + tx = 0, this vector is independent of the choice of O. For,
if we subtract from it the result of using O’ instead, we obtain

— - —_ >

L (041 — O'A1) + ... + 1, (OA, — O'4y)

-—>

=t +...+ %) 00 =0
More interestingly, if
4 ...+ 5F0,
we have

— — —>

110A1+...+tkOAk:(tl+...+tk)0P,

where the point P is independent of the choice of 0. For, if the same pro-
cedure with O’ instead of O yields P’ instead of P, we have, by subtraction,

—_—
(11 4+ ... + tk) 00 = (11 + ... 4+ tk)(OP — O’P')
—> — — —>
whence OF = 00 + O'P' = OP,
so that P’ coincides with P. This point P, given by
— —>
Eti OP == Eti OAi,

is called the centroid (or “barycenter™) of the k masses f; at 4;.
Since, having found P, we may choose this position for O, we have

—_—
2t; PA; = 0.
If there are only two points,
—_— —_—
ty PAy = —1t2 PAs,

so that P lies on the line 4142 and divides the segment 4,4, in the ratio
tz : t1. In particular, if #; = £, P is the midpoint of 4145.
For a triangle 414243, we have
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—> —> — —>
(11 + 1o + 13) OP = 110A1 + tQOAQ + thAg

— —
= 1041 + (f2 + 13) OQ,

where Q is the centroid of ¢; at 42 and #5 at 43. Thus, in seeking the centroid
of three masses, we may replace two of them by their combined mass at their
own centroid. (There is an obvious generalization to more than three
masses.) In particular, when t; = ¢, = #3 (= 1, say), Q is the midpoint of
AgAg, and P divides 4,Q in the ratio 2: 1. Thus the “centroid” G of a tri-
angle (§ 1.4) is the centroid of equal masses at its three vertices.

4

7\
§\

7\
’ \
/ \
/ \
¢ \
{ \

/ \
ya 3 \
A, Q Ay
Figure 13.6a

This same point G, where the medians concur, is also the centroid of a
triangular lamina or “plate” of uniform density. (Strictly speaking, this no-
tion requires integral calculus.) For we may divide the triangle into thin
strips parallel to the side 4243, as in Figure 13.6a. The centroids of these
strips evidently lie on the median 41Q. Hence the centroid of the whole
lamina lies on this median, and similarly on the others. (This argument was
used by Archimedes in the third century B.C.)

EXERCISES

1. Verify in detail that
(i) the positive rational numbers,
(ii) the positive real numbers,
(iii) the complex numbers of modulus 1,
(iv) all the complex numbers except 0
form multiplicative groups: and that
(v) the integers,
(vi) the rational numbers,
(vii) the real numbers,
(viii) the complex numbers
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form additive groups. Explain why the first four sets do not form additive groups, and
why the last four do not form multiplicative groups.

2. If A, B, C are on one line and A’, B, C’ on another with

4B _ BC
A’B’ - B/Cr’

then points dividing all the segments AA4’, BB’, CC’ in the same ratio are either
collinear or coincident (cf. § 3.6). (Hint: Consider the centroid of suitable masses at
A,C, 4, C")

3. The centroid of equal masses at the vertices of a quadrangle is the center of the
Varignon parallelogram (Figure 13.2g).

Figure 13.6b

4. The centroid of a quadrangular lamina is the center of the Wittenbauer paral-
lelogram, whose sides join adjacent points of trisection of the sides, as in Figure 13.65.
This theorem, due to F. Wittenbauer (1857-1922) [Blaschke 2, p. 13], was rediscov-
ered by J. J. Welch and V. W. Foss.*

5. For what kind of quadrangle will the centroids described in the two preceding
exercises coincide?

13.7 BARYCENTRIC COORDINATES

If 11 + t2 = 0, masses ¢ and #, at two fixed points 4, and A4, determine
a unique centroid P, as in Figure 13.74. This pointis 4, itselfif tz = 0, A
if 4 = 0. Itis on the segment A4 if the £'s are both positive (or both
negative), on the ray A1/ A4, if

t1 > —t2 > O’
and on the ray 45/44 if ta > —1, > 0.

* Mathematical Gazette, 42 (1958), p. 55; 43 (1959), p. 46.
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A ty P t 4,

Figure 13.7a

Conversely, given a point P on the line 4,45, we can find numbers #; and
to such that
tQ_AIP . tl_PAQ.

i PA, tr AP’

then P will be the centroid of masses #; and #; at 4; and 4. Since masses
pt1 and ut, (where p == 0) determine the same point as #; and t,, these bary-
centric coordinates are homogeneous:

(t1, £2) = (pt1, pt2)  (p# 0).

Similarly, as Mobius observed in 1827, we may set up barycentric coor-
dinates in the plane of a triangle of reference A1A243. 1ft, + to + t3 70,
masses t4, f2, I3 at the three vertices determine a point P (the centroid) whose
coordinates are (t, f2, #3). In particular, (1, 0, 0) is 44, (0, 1, 0) is 42,
(0,0, 1)is A3, and (0, 22, 13) is the point on 4245 whose one-dimensional co-
ordinates with respect to A, and A3 are (¢, ¢3). To find coordinates for a
given point P of general position, we find ¢, and #3 from such a point Q on
the line 4, P, as in Figure 13.7b, and then determine ¢, as the mass at 4,
that will balance a mass #2 + f3 at Q so as to make P the centroid. Again,
as in the one-dimensional case, these coordinates are homogeneous:

(t1, fe, 13) = (ut1, pt2, pi3)  (u = 0).

Joining P to A1, A2, A3, we decompose 414243 into three triangles hav-
ing a common vertex P. The areas of these triangles are proportional to the
barycentric coordinates of P, as in Figure 13.7¢. This fact follows at once
from 13.42, since

fs _ A:Q _ AidsQ _ PAQ _ AuAzQ — PAQ _ PAuds
tz QA3  A104s PQAs  A1QAs — PQAs  PAsAy’

4

Ay q Aj

Figure 13.7b ) Figure 13.7¢
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and similarly for #1/13, ts/t,. Positions of P outside the triangle are covered
by means of our convention for the sign of the area of a directed triangle.
The inequality
h+t+1t3%#0

enables us to normalize the coordinates so that
13.71 4+t +t3 =1

(We merely have to divide each coordinate by the sum of all three.) These
normalized barycentric coordinates are called areal coordinates, because
they are just the areas of the triangles PA4243, PA3A1, PA1A,, expressed in
terms of the area of the whole triangle 414243 as unit of measurement.
Areal coordinates are not homogeneous but “redundant”: the position of a
point is determined by two of the three, and the third is retained for the
sake of symmetry. However, any expression involving them can be made
homogeneous by inserting suitable powers of r; + #» + f3 in appropriate
places.

3 A]

Figure 13.7d

In affine coordinates, as we have seen, a line has a linear equation. In
barycentric coordinates, as we shall soon see, a line has a linear homogene-
ous equation. For this purpose we use the segments 4341 and AsA4» as axes
for affine coordinates, as in Figure 13.7d, so that the coordinates of P, 41,
A2, A3, which were formerly

(t19 t29 t3)9 (19 09 0)9 (Ov 19 0)9 (09 09 1)9
ar€ now

x, »), (Lo, O 1 (©0

By 13.44, the areas of PA3A3 and PA3A1, as fractions of the “unit” triangle
A1A2A4s3, are just

1 0
Xy

Xy
0

‘:x and ‘:y.

By subtraction, the area of P4142is 1 — x — y. Hence the areal coordi-
nates of P are related to the affine coordinates by the very simple formulas
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h=x, to=y, tg=1—x—y.
The general line, having the affine equation 8.11, has the areal equation
aty + bta + ¢ = 0.

Making this homogeneous by the insertion of 11 4+ f2 + f3, we deduce the
barycentric equation

fl

aty + bta 4+ c(t1 + t2 + 13)
or @+ + b +0o)a +cts =0

or, in a more symmetrical notation,

13.72 Tit1 + Taots + T3t3 = 0.

Thus every line has a linear homogeneous equation. In particular, the
lines 4243, A3A1, A142 have the equations

13.73 t1=0, =0, 13 =0
The line joining two given points () and (5), meaning
(r1, r2, r3) and  (s1, S2, 53),

has the equation

rh re rs
13.74 Sy So S3| = 0.
h s I3

For, this equation is linear in the #’s and is satisfied when the #’s are replaced
by the s or the s’s. Another way to obtain this result is to ask for the fixed
points (r) and (s) to form with the variable point (z) a “triangle’” whose area
is zero. In terms of areal coordinates, with the triangle of reference as unit,
the area of the triangle (r)(s)(?) is, by 13.45 and 13.71,

ri re 1 ro r2 ri+r2+4r3 rn or2ors
s1 S2 1| = |51 52 S14+ 52+ 83| = |51 52 S3).
ty o1 Hh ot b +1t+ 13 Hh oty 83

Hence the area in general barycentric coordinates is this last determinant
divided by
(ri 4+ re + r3)1 + s2 + 53)(8 + 2 + 83).

We are now ready to prove Routh’s theorem 13.55 in its full generality.
Identifying 4 BC with 414243, so that the points L, M, N are

(O’ 1’ A)9 (1u’9 09 1)9 (19 V9 0)9
we can express the lines AL, BM, CN as

Aty = 13, upls3 = 11, vt1 = lo.
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They intersect in pairs in the three points

(u, v, 1), (1, v, ), (Ap, 1, D),

forming a triangle whose area, in terms of that of the triangle of reference,
is the result of dividing the determinant

pow 1
I v vA| =@Quw — 1)2
A 1A

by (u + wr + D1 + v + »A)(Ap + 1 + A), in agreement with the state-
ment of 13.55.

As an important special case we have

CEVA'S THEOREM. Let the sides of a triangle ABC be divided at L, M, N
in the respective ratios X : 1, p: 1, v: 1. Then the threelines AL, BM, CN
are concurrent if and only if Ay = 1.

The general line 13.72 meets the sides 13.73 of the triangle of reference
in the points

(09 T3a - T2)9 (_ T39 Oa T1)9 (T27 - Tl’ O)a
which divide them in the ratios
kT I
T3 ’ T1 ? T2 ’
whose productis — 1. Conversely, any three numbers whose product is — 1
can be expressed in this way for suitable values of 7y, T2, 75. Hence

MENELAUS'S THEOREM. Let the sides of a triangle be divided at L, M, N
in the respective ratios A . 1, p: 1, v: 1. Then the three points L, M, N are
collinear if and only if \yv = — 1.

Ay

Figure 13.7¢

The coefficients 71, T2, T3 in the equation 13.72 for a line are sometimes
called the tangential coordinates of the line. These homogeneous “coordi-
nates” have a simple geometric interpretation {Salmon 1, p. 11]: they may
be regarded as the distances from A1, A2, As to the line, measured in any di-
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rection (the same for all). To prove this, let A1F1, A2F2, A3F3 be these dis-
tances, as in Figure 13.7¢. Since

AN _ T
NA; ~ Ty

the homothetic triangles NA1F1 and NA.F, yield

A1F1 _ AN _ E
A2F2 - AQN a 7o ’
ArF;  AoF,

n Ty’

Hence

AsF;3
L
Mobius’s invention of homogeneous coordinates was one of the most far-
reaching ideas in the history of mathematics: comparable to Leibniz’s in-
vention of differentials, which enabled him to express the equation

drw=r

and similarly each of these expressions is equal to

in the homogeneous form

df (x) = f'(x) dx

(for instance, d sin x = cos x dx).

EXERCISES
1. Sketch the seven regions into which the lines 4243, 434, A142 decompose the
plane, marking each according to the signs of the three areal coordinates.

2. Verify that 13.45 yields | — x — y as the area of the triangle P44, in Figure
13.7d.

3. In areal coordinates, the midpoint of (s1, sg, s3)(f1, t2, £3) 1S

Si+t1 sz +1l2 S3+ 3
2’ 2 2 )

4. The centroid of masses o and 7 at points whose areal coordinates are (s1, 52, $3)
and (#y, tg, 3) is the point whose barycentric coordinates are

(os1 + T, os9 + Tl, OS3 + TI3).
5. In barycentric coordinates, any point on the line (s)(¢) may be expressed in the
form
(osy + Tt1, OSy + Tig, 0OS3 + TI3).
6. Apply barycentric coordinates to Ex. 6 at the end of § 13.5. What becomes of
this result when L, M, N are collinear?

7. In what way do the signs of T4, Ty, T3 depend on the position of the line 13.72
in relation to the triangle of reference? When 75 and T3 are positive, describe the cases
Ty <13, Ty =1T3,Ty > T3.
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13.8 AFFINE SPACE

Give me something to construct and | shall become God for the time
being, pushing aside all obstacles, winning all the hard knowledge |
need for the construction . . . advancing Godlike to my goal!

J. L. Synge [2, p. 162]

Affine geometry can be extended from two dimensions to three by using
Axioms 12.42 and 12.43 instead of 12.41. The total number of axioms is
not really increased, as 13.12 now becomes a provable theorem [Forder 1,
pp- 155-157]. A line and a plane, or two planes, are said to be parallel if
they have no common point (or if the line lies in the plane, or if the two
planes coincide). Thus any plane that meets two paraliel planes meets them
in parallel lines; if two planes are parallel, any line in either plane is paral-
lel to the other plane; if two lines are parallel, any plane through either line
is parallel to the other line.

The existence of parallel planes is ensured by the following theorem (cf.
Axiom 13.11):

13.81 For any point A and any plane v, not through A, there is just one
plane through A parallel to v.

Proof. Let g and r be two intersecting lines in y. Let ¢’ and » be the re-
spectively parallel lines through 4. Then the plane ¢'# is parallel to y. For
otherwise, by 12.431, the two planes would meet in a line /. Since ¢’ and 7
are parallel to vy, they cannot meet /. Thus ¢ and # are two parallels to /
through 4, contradicting 13.11. This proves that ¢'#’ is parallel to y. More-
over, ¢'r is the only plane through 4 parallel to y. For, two such would meet
in aline s’ through 4, and we could obtain a contradiction by considering
their section by the plane 4s, where s is a line in ¥ not parallel to s’.

Figure 13.8a

Parallelism for lines is transitive in space as well as in a plane:

13.82 If p and q are both parallel to r, they are parallel to each other.
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Proof [Forder 1, p. 140]. When all three lines are in one plane, this fol-
lows at once from 13.11, so let us assume that they are not. For any point
Q on g, the planes Op and Qr meet in a line, say ¢’ (Figure 13.84). Any
common point of ¢’ and r would lie in both the planes Qp, pr, and there-
fore on their common line p; this is impossible, since p is parallel to . Hence
¢’ 1s parallel to r. But the only line through Q parallel to r is g. Hence ¢
coincides with ¢, and is coplanar with p. Any common point of p and ¢
would lie also on r. Hence p and ¢ are parallel.

The transitivity of parallelism provides an alternative proof for 13.81. To
establish the impossibility of a point O lying on both planes y and ¢'r’, we
imagine two lines through O, parallel to g (and ¢’),  (and #’). The planes
v and ¢'r/, each containing both these lines, would coincide, contradicting
our assumption that 4 does not lie in v.

The three face planes OBC, OCA, OAB of a tetrahedron O4 BC form with
the respectively parallel planes through A, B, C a parallelepiped whose faces
are six parallelograms, as in Figure 13.8b [Forder 1, p. 155].

(x!yYZ)

Figure 13.8b Figure 13.8¢

Itis now easy to build up a three-dimensional theory of dilatations, trans-
lations, and vectors. Three vectors d, e, f are said to be dependent if they
are coplanar, in which case each is expressible as a linear combination of
the other two. Three vectors e, f, g are said to be independent if the only
solution of the vector equation

xe +yf + 29 =0
isx =y = z = 0. Three such vectors provide a basis for a system of three-
dimensional affine coordinates. 1In fact, if

—_— —_— —_—
e =04, f= 0B, g =0C,

as in Figure 13.8¢, the general vector 57’ Iilay be exhibited as a diagonal of
the parallelepiped formed by drawing through P three planes parallel to
OBC, OCA, 0OAB. Then

—
OP = xe + yf + zg,
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where the terms of this sum are vectors along three edges of the parallele-

piped.
In space, as in a plane, the centroid P of masses #; at points 4; is deter-

mined by a vector 67’ such that
—> —
If (7;11 = x;e + yif + z;9, we deduce

_9
2t OP = Ztixe + Etlylf + EtiZig.
Hence, in terms of affine coordinates,
13.83 The centroid of k masses t; (2t; = 0) at points (xi, Vi, z)
(i=1...,kis
Stxi 2Ly 2tz;
S0 20 3

In particular, if 11 + 2 + ¢35 = 1, the centroid of three masses #1, 5, £3
at the points
(1,0,0), (0,1.0), (0,0, 1
is (¢4, t2, t3). Hence

13.84 The affine coordinates of any point in the plane x + y + z = 1
are the same as its areal coordinates referred to the triangle cut out from this
plane by the coordinate planes x = 0, y =0, z = 0.

It follows that there is a line

through the origin (in affine space) for each point with barycentric coordi-
nates (f1, t2, t3). On the other hand, lines lying in the plane x + y + z = 0
yield no corresponding points in the parallel plane x 4+ y + z = 1, unless
we agree to extend the affine plane by postulating a line at infinity

h+tet+t3=0

so as to form the projective plane. This possibility has already been men-
tioned in § 6.9; we shall explore it more systematically in Chapter 14.

EXERCISES

1. If aline a is parallel to a plane «, and a plane through a meets « in b, then a
and b are parallel lines. 1f another plane through a meets « in ¢, then 4 and ¢ are paral-
lel lines.

2. If a, B, vy are planes intersecting in lines By = a, y-a =b, «a-f = ¢, and
a is parallel to b, then a, b, ¢ are all parallel.

3. 'All thelines through A4 parallel to « are in a plane parallel to « [Forder 1, p. 155].
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4. Each of the six edges of a tetrahedron lies on a plane joining this edge to the
midpoint of the opposite edge. The six planes so constructed all pass through one
point: the centroid of equal masses at the four vertices.

5. Develop the theory of three-dimensional barycentric coordinates referred to a
tetrahedron A1A42A43A4,4.

13.9 THREE-DIMENSIONAL LATTICES

The small paralielepiped built upon the three translations selected as
unit franslations . . . is known as the unit cell. . .. The entire crystal
structure is generated through the periodic repetition, by the three unit
translations, of the matter contained within the volume of the unit cell.

M. J. Buerger (1903 - )
[Buerger 1, p. 5]

The theory of volume in affine space is more difficult than that of area in
the affine plane, because of the complication introduced by M. Dehn’s ob-
servation that two polyhedra of equal volume are not necessarily derivable
from each other by dissection and rearrangement. A valid treatment, sug-
gested by Mrs. Sally Ruth Struik, may be described very briefly as follows.
It is found that any two tetrahedra are related by a unique affinity ABCD —
A'B’C'D’, which transforms the whole space into itself in such a way as to
preserve collinearity. In particular, a tetrahedron ABC(C’ is transformed
into ABC'C by the affine reflection

AB(CCY),

which interchanges C and C’ while leaving invariant every point in the plane
that joins AB to the midpoint of CC’. Two tetrahedra are said to have
the same volume if one can be transformed into the other by an equiaffinity:
the product of an even number of affine reflections. Such a comparison is
easily extended from tetrahedra to parallelepipeds, since a paralielepiped
can be dissected into six tetrahedra all having the same volume.

In three dimensions, as in two, a lattice may be regarded as the set of
points whose affine coordinates are integers. However, as it is independent
of the chosen coordinate system, it is more symmetrically described as a
discrete set of points whose set of position vectors is closed under subtrac-
tion, that is, along with any two of the vectors the set includes also their
difference. Subtracting any one of the vectors from itself, we obtain the
zero vector

c—¢c¢c=0

and hence also 0 — b = —b,a — (—b) = a + b, a + a = 2a, and so
on: the set of vectors, containing the difference of any two, also contains the
sum of any two, and all the integral multiples of any one. The lattice is one-,
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two-, or three-dimensional according to the number of independent vectors.
In the three-dimensional case, a set of three independent vectors e, f, g is
called a basis for the lattice if all the vectors are expressible in the form

13.91 xe + yf + zg,

where x, y, z are integers. If three of these vectors, say rq, ro, r3 form an-
other basis for the same lattice, there must exist 18 integers

Ay, by, €4y Ay, By, C, (a =1,2,3)
such that
r,=a,e + b, f+c,9 e=2Z2A4,r, $=2B,r, g=2C,r,
and therefore
r, = a,2Azrg + b,ZBgrg + c,2Cy

whence

1 if(I:B,
., Ag + by, By + ¢, Cy = {O if o2 B,

Since the product of two determinants is obtained by combining the rows
of one with the columns of the other, we have

ai bl C1 A1 A2 A3 1 00
as bg Co B1 B2 B3 =10 1 0|=1
as by c¢3 Ci: Co GCj 0 0 1

Since the two determinants on the left are integers whose productis 1, each
must be =1. Conversely, if a,, b,, ¢, are given so that their determinant is
*+1, we can derive 4,, B,, C, by “inverting the matrix,” and the given basis
e, f, g yields the equally effective basis r,. Hence

A necessary and sufficient condition for two triads of independent vectors

e f g and a,e+ b, f+c,9 (a=1,2,3)
to be alternative bases for the same lattice is
a, b1 C1
13.92 as by co| = %=1
as b3 C3

lcf. Hardy and Wright 1, p. 28; Neville 1, p. 5].

In other words, a lattice is derived from any one of its points by applying a
discrete group of translations: one-, two-, or three-dimensional according as
the translations are collinear, coplanar but not collinear, or not coplanar.
In the one-dimensional case the generating translation is unique (except that
it may-be reversed), but in the other cases the two or three generators, thatis,
the basic vectors, may be chosen in infinitely many ways. When they have
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been chosen, we can use them to set up a system of affine coordinates so that,
in the three-dimensional case, the vector 13.91 goes from the origin (0, 0, 0)
to the point (x, y, z), and the lattice consists of the points whose coordinates
are integers. The eight points

(0,0,0),(1,0,0), (0, 1,0), (0,0, 1), (0, 1, 1), (1,0, 1), (1, 1, 0), (1, 1, 1),
derived from the eight vectors
o’ e, f’ 9, f+9, g + e, e—f, e+f+g,

evidently form a parallelepiped, which is a unit cell of the lattice. By an argu-
ment analogous to that used for a two-dimensional lattice in § 4.1, any two
unit cells for the same lattice have the same volume.

Any line joining two of the lattice points contains infinitely many of them,
forming a one-dimensional sublattice of the three-dimensional lattice. In
fact, the line joining (0, 0, 0) and (x, y, z) contains also (nx, ny, nz) for every
integer n. If x, y, z have the greatest common divisor 4, the lattice point

(x/d, y/d, z/d)

lies on this same line, and the corresponding translation generates the group
of the one-dimensional lattice. The lattice point (x, y, z) is visible if and only
if the three integers x, y, z have no common divisor greater than 1.

Any triangle of lattice points determines a plane containing a two-dimen-
sional sublattice. For, if vectors

ri = xe + yif + z;9g and rp = xee + yof + z29

have integral components, so also does t1r; + fors for any integers ¢, and #s.
The parallel plane through any other lattice point will contain a congruent
sublattice. Thus we may regard all the lattice points as being distributed
among an infinite sequence of parallel planes, called rational planes [Buer-
ger 1, p. 7).

Any such plane, being the join of three points whose coordinates are in-
tegers, has an equation of the form

13.93 Xx + Yy + Zz = N,

where the coefficients X, Y, Z, N are integers, so that the intercepts on the
coordinate axes have the rational values N/X, N/Y, N/Z. (This is the rea-
son for the name “rational” planes.)) We may assume that the greatest
common divisor of X, Y, Z 1s 1; for, any common factor of X, Y, Z would
be a factor of N too, and then we could divide both sides of the equation
by this number, obtaining a simpler and equally effective equation for the
same plane.

Conversely, any such equation (in which the greatest common divisor of
X, Y, Z is 1) represents a plane containing a two-dimensional sublattice.
This is obvious when X = 1, since then we can assign arbitrar integral
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values to y, z, and solve 13.93 for x. When X, Y, Z are all greater than 1, we
consider the set of numbers

xX +yY + zZ,

where x, y, z are variable integers while X, Y, Z remain constant. This set
(like the set of lattice vectors) is an ideal: it contains the difference of any
two of its members and (therefore) all the multiples of any one. Let d de-
note its smallest positive member, and N any other member. Then N is a
multiple of d: for otherwise we could divide N by d and obtain a remainder
N — gqd, which would be a member smaller than d.  Thus every member of
the set is a multiple of & But X, Y, Z are members. Therefore d, being a
common divisor, must be equal to 1, and the set simply consists of all the
integers. In other words, the equation 13,93 has one integral solution (and
therefore infinitely many) [cf. Uspensky and Heaslet 1, p. 54].

For each triad of integers X, Y, Z, coprime in the above sense (but not
necessarily coprime in pairs), we have a sequence of parallel planes 13.93,
evenly spaced, one plane for each integer N. Since every lattice point lies in
one of the planes, the infinite region between any two consecutive planes is
completely empty. One of the planes, namely that for which N = 0, passes
through the origin. The nearest others, given by N = =1, are appropriately
called first rational planes [Buerger 1, p. 9]. We shall have occasion to con-
sider them again in § 18.3.

EXERCISES

1. How can a parallelepiped be dissected into six tetrahedra all having the same
volume?

2. Identify the transformation (x, y, z) — (x, y, —2z) with the affine reflection that
leaves invariant the plane z = 0 while interchanging the points (0, 0, = 1).

3. A lattice is transformed into itself by the central inversion that interchanges two
of its points.

4. Every lattice point in a first rational plane is visible.

5. Is every rational plane through a visible point a first rational plane?

6. Find a triangle of lattice points in the first rational plane

6x + 10y 4+ 15z = L.
7. Obtain a formula for all the lattice points in this plane.
8. The origin is the only lattice point in the plane

X 4+ V2y + 3z =0



14

Projective geometry

In affine geometry, as we have seen, parallelism plays a leading role.
In projective geometry, on the other hand, there is no parallelism: every pair
of coplanar lines is a pair of intersecting lines. The conflict with 12.61 is ex-
plained by the fact that the projective plane is not an “ordered” plane. The
set of points on a line, like the set of lines through a point, is closed: given
three, we cannot pick out one as lying “between” the other two. At first
sight we might expect a geometry having no circles, no distances, no angles,
no intermediacy, and no parallelism, to be somewhat meagre. But, in fact,
a very beautiful and intricate collection of propositions emerges: proposi-
tions of which Euclid never dreamed, because his interest in measurement
led him in a different direction. A few of these nonmetrical propositions
_were discovered by Pappus of Alexandria in the fourth century A.D. Others
Tare associated with the names of two Frenchmen: the archltect Girard De—
sargues (1591- 1661) and the philosopher Blaise Pascal (1623- 1662) Mann-
while, the related subject of perspective [Yaglom 2, p. 31] had been studied
by artists such as Leonardo da Vinci (1452-1519) and Albrecht Diurer (1471
1528).

Kepler's invention of points at infinity made it possible to regard the
projective plane as the affine plane plus the line at infinity. A converse
relationship was suggested by Poncelet’s Traité des propriétés projectives des
figures (1822) and von Staudt’s Geometrie der Lage (1847), in which projec-
tive geometry appeared as an independent science, making it possible to
regard the affine plane as the projective plane minus an arbitrary line o, and
then to regard the Euclidean plane as the affine plane with a special rule for
associating pairs of points on o (in “perpendicular directions”) [Coxeter 2,
pp. 115, 138]. This standpoint became still clearer in 1899, when Mario Pieri
placed the subject on an axiomatic foundation. Other systems of axioms,
slightly different from Pieri’s, have been proposed by subsequent authors.
The particular system that we shall give in § 14.1 was suggested by Bach-
mann [1, pp. 76-77]. To test the consistency of a system of axioms, we ap-
ply it to a “model,” in which the primitive concepts are represented by fa-
miliar concepts whose properties we are prepared to accept [Coxeter 2, pp.
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186-187]. In the present case a convenient model for the projective plane
is provided by the affine plane plus the line at infinity (§ 6.9). We shall ex-
tend the barycentric coordinates of § 13.7 to general projective coordinates,
so as to eliminate the special role of the line at infinity. The result may be
regarded as a purely algebraic model in which a point is an ordered triad of
numbers (x1, X2, x3), not all zero, with the rule that (ux1, pxo, px3) is the same
point for any g # 0, and a line is a homogeneous linear equation. One ad-
vantage of this model is that the numbers x, and p are not necessarily real.
The chosen axioms are sufficiently general to allow the coordinates to be-
long to any field: instead of real numbers we may use rational numbers, com-
plex numbers, or even a finite field such as the residue classes modulo a prime
number. Accordingly we speak of the real projective plane, the rational pro-
jective plane, the complex projective plane, or a finite projective plane.

14.1 AXIOMS FOR THE GENERAL PROJECTIVE PLANE

The more systematic course in the present introductory memoir . . .
would have been fo ignore altogether the notions of distance and
metrical geometry. . . . Metrical geometry is a part of descriptive
geometry, and descriptive geometry is all geometry.

Arthur Cayley *(1821 -1895)

The projective plane has already been mentioned in §6.9. As primitive
concepts we take point, line, and the relation of incidence. 1f a point and a
line are incident, we say that the point lies on the line and the line passes
through the point. The related words join, meet (or “intersect”), concurrent
and collinear have their usual meanings. Three non-collinear points are the
vertices of a triangle whose sides are complete lines. (“Segments” are not de-
fined.) A complete quadrangle, its four vertices, its six sides, and its three di-
agonal points, are defined as in § 1.7. A hexagon A1B2C14,B,C> has six
vertices A1, Ba, ..., Cy and six sides

A1By, ByCy, C1Ag, A2By, B1Cs, CoA,.

Opposite sides are defined in the obvious manner; for example, A2 B; is op-
posite to A1Bs.  After these preliminary definitions, we are ready for the five
axioms.

AXIOM 14.11  Any two distinct points are incident with just one line.
NOTATION. The line joining points 4 and B is denoted by AB.

* Collected Mathematical Papers, 2 (Cambridge, 1889), p. 592. Cayley, in 1859, used the word
“descriptive” where today we would say “projective.” His idea of the supremacy of projective ge-
ometry must now be regarded as a slight exaggeration. Itis true that projective geometry includes
the affine, Euclidean and non-Euclidean geometries; but it does not include the general Rieman-
nian geometry, nor topology.
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AXIOM 14.12 Any two lines are incident with at least one point.
THEOREM 14.121  Any two distinct lines are incident with just one point.

NOTATION. The point of intersection of lines a and b is denoted by a - b;
that of AB and CD by AB- CD. The linejoining a - b and ¢ - dis denoted by
(a-b)c-d).

AXIOM 14.13 There exist four points of which no three are collinear.

AXIOM 14.14 (Fano’s axiom) The three diagonal points of a complete
quadrangle are never collinear.

AXIOM 14.15 (Pappus’s theorem) If the six vertices of a hexagon lie al-
ternately on two lines, the three points of intersection of pairs of opposite sides
are collinear.

One of the most elegant properties of projective geometry is the principle
of duality, which asserts (in a projective plane) that every definition remains
significant, and every theorem remains true, when we consistently inter-
change the words point and line (and consequently interchange /ie on and
pass through, join and intersection, collinear and concurrent, etc.). To estab-
lish this principle it will suffice to verify that the axioms imply their own
duals. Then, given a theorem and its proof, we can immediately assert the
dual theorem; for a proof of the latter could be written down mechanically
by dualizing every step in the proof of the original theorem.

The dual of Axiom 14.11 is Theorem 14.121, which the reader will have
no difficulty in proving (with the help of 14.12). The dual of Axiom 14.12
is one-half of 14.11. The dual of Axiom 14.13 asserts the existence of a
complete quadrilateral, which is a set of four lines (called sides) intersecting
in pairs in six distinct points (called vertices). Two vertices are said to be
opposite if they are not joined by a side. The three joins of pairs of oppo-
site vertices are called diagonals. If PQRS is a quadrangle with sides

p=PQ, q=PS, r=RS, s=QR w=PR u=QS,
as in Figure 14.1a, then pgrs is a quadrilateral with vertices

P=p-q Q=p-s, =r-s, =qr, W=p-r, U=gq-s.

Figure 14.1a
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Axiom 14.14 tells us that the three diagonal points
U=gq's, V=wu W=p-r

are not collinear. Its dual asserts that the three diagonals of a complete
quadrilateral are never concurrent. If this is false, there must exist a par-
ticular quadrilateral whose diagonals are concurrent. Let it be pgrs, with
diagonals

u=20S, v=WU, w=PR

Since these are concurrent, the point w - ¥ = ¥ must lie on v, contradicting
the statement that U, V, W are not collinear.

Figure 14.1b

Axiom 14.15 involves nine points and nine lines, which can be drawn in
many ways (apparently different though projectively equivalent), such as the
two shown in Figure 14.15. A4,B2C1A42:B,C; is a hexagon whose vertices lie
alternately on the two lines 4;B,C;, A2B2C,. The points of intersection of
pairs of opposite sides are

Az = B1Cy- ByCy, By = C1A - Ca44, C3 = A1Bs - A2B;.

The axiom asserts that these three points are collinear. Our notation has
been devised in such a way that the three points 4;, B;, Cy are collinear
whenever

i+j+ k=0 (mod 3).*

Another way to express the same result is to arrange the 9 points in the form
of a matrix

Ay B C
14.151 As By Co
A3 B3 C3

* Coxeter, Self-dual configurations and regular graphs, Bulletin of the American Mathematical
Society, 56 (1950), p. 432.
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If this were a determinant that we wished to evaluate, we would proceed to
multiply the elements in triads. These six “diagonal” triads, as well as the
first two rows of the matrix, indicate triads of collinear points. The axiom
asserts that the points in the bottom row are likewise collinear. Its inherent
self-duality is seen from an analogous matrix of lines

a by ¢
ay by o
as by c3

These lines can be picked out in many ways, one of which is

ay = A3B.Cy, by = A1B3C2, ¢1 = A2B2C,
ay = A3B3Cy, by = A3B2Cy, 2 = A1B1Cy,
as = A1BCs, b3 = A2B1Cs, c¢3 = A3B3C;.

This completes our proof of the principle of duality.

EXERCISES

1. Every line is incident with at least three distinct points. (This statement, and the
existence of a nonincident point and line, are sometimes used as axioms instead of 14.13
[Robinson 1, p. 10; Coxeter 2, p. 13].)

2. A setof m points and » lines is called a configuration (m,, ng) if c of the n lines pass
through each of the points while d of the m points lie on each of the lines. The four
numbers are not independent but satisfy em = dn. The dual of (m., na) is (ng, me).

In the case of a self-dual configuration, we have m = n, ¢ = d, and the symbol (nq, ng)
is conveniently abbreviated to ng. Simple instances are the triangle 3, the complete
quadrangle (43, 62) and the complete quadrilateral (65, 43). Axiom 14.14 asserts the
nonexistence of the Fano configuration* 73. The points and lines that occur in Axiom
14.15 (Figure 14.1b) form the Pappus configuration 93, which may be regarded (in how
many ways?) as a cycle of three triangles such as

A1B1Cy, A2B2C3, A3B3Cy,

each inscribed in the next (cf. Figure 1.84, where UVW is inscribed in A BC). The self-
duality is evident.
By a suitable change of notation, Axiom 14.15 may be expressed thus: If AB, CD
EF are concurrent, and DE, FA, BC are concurrent, then AD, BE, CF are concurrent.
3. A particular finite projective plane, in which only 13 “points” and 13 “lines” exist,
can be defined abstractly by calling the points P; and the lines p; (¢ = 0, 1, ..., 12) with
the rule that P; and p; are “incident” if and only if

i+7=0,1,30r9 (mod 13).

Construct a table to indicate the 4 points on each line and the 4 lines through each point
[Veblen and Young 1, p. 6]. Verify that all the axioms are satisfied; for example,
PyP;1PyP5 is a complete quadrangle with sides

PoPy = po, PoPy =py, PiPs=ps, PoPs=py, PoPs=pi1, PiP2 = pr

* Coxeter, Bulletin of the American Mathematical Society, 56 (1950), pp. 423-425.
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and diagonal points P3 = po * py3, P+ = pe* P12, Ps = p1 - ps. A possible matrix for
Axiom 14.15 is

Py P, Pg
P;s Py Pg
Py Py Ps

The first row may be any set of three collinear points. The second row may be any
such set on a line not incident with a point in the first row. The last row is then deter-
mined; e.g., in the above instance it consists of

PyPgPyPg = Py, P3Py PyPs = Py, PoPy-PyP3 = Ps.

This differs from the general “Pappus matrix” 14.151 in that sets of collinear points
occur not only in the rows and generalized diagonals but also in the columns. In other
words, the 9 points form a configuration which is not merely 95 but (94, 125). When any
one of the 9 points is omitted, the remaining 8 form a self-dual configuration 83 which
may be regarded as a pair of mutually inscribed quadrangles (such as PoPoP5Pg and
P3P3P1oPg). [Hilbert and Cohn-Vossen 1, pp. 101-102]]

4. The geometry described in Ex. 3 is known as PG (2, 3). More generally, PG (2, p)
is a finite plane in which each line contains p+ 1 points. Consequently, each point lies
on p+11lines. There are p2+ p+ 1 points (and the same number of lines) altogether. In
other words, the whole geometry is a configuration ng withn = p24+p+1andd = p+1.
(Actually p is not arbitrary, e.g., although it may be any power of an odd prime, for
instance, 5, 7, or 9, it cannot be 6.)* The possibility of such finite planes indicates
that the projective geometry defined by Axioms 14.11 to 14.15 is not categorical: it is not
Jjust one geometry but many geometries, in fact, infinitely many.

5. In any finite projective geometry, Sylvester’s theorem (§ 4.7) is false.

14.2 PROJECTIVE COORDINATES

Modern algebra does not seem quite so terrifying when expressed in
these geometrical terms|

G. de B. Robinsan (1906 - )

[Robinson 1, p. 94]

We saw, in § 13.7, that three real numbers #1, t5, 13 will serve as barycentric
coordinates for a point in the affine plane (with respect to any given triangle
of reference) if and only if

ty + t2 + 13 7#0.

Also a linear homogeneous equation 13.72 will serve as the equation for a
line if and only if the coefficients 7y, T2, T3 are not all equal. The remarks

* By not insisting on Axiom 14.14, we can develop a “geometry of characteristic 2 in which p is
apower of 2. By not insisting on Axiom 14.15, we can develop a “non-Desarguesian plane.” For
the application to mutually orthagonal Latin squares, see Robinson 1, p. 161, Appendix II.
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just after 13.84 indicate that these artificial restrictions will be avoided when
we have extended the real affine plane to the real projective plane by adding
the line at infinity

14.21 h+ta+13=0

and all its points (which are the points at infinity in various directions).
When we interpret T, T, T3 as the distances from A4, A2, A3 to the line

Tty + Taty + Ttz = 0,

it is obvious that a parallel line is obtained by adding the same number to
all three T’s. Hence the point of intersection of two parallel lines satisfies
1421, that is, it lies on the line at infinity.

To emphasize the fact that, in projective geometry, the line at infinity
no longer plays a special role, we shall abandon the barycentric coordinates
(11, t2, t3) in favor of general projective coordinates (xi, X2, X3), given by

1 = X1, 2 = poXe, I3 = M3Xs,

where py, flo, ua are constants, pipepts 7= 0. Thus (xi, x2, x3) is the cen-
troid of masses pox, at A, (& = 1, 2, 3), and the line at infinity has the un-
distinguished equation

X1 + paxs + paxz = 0.

The contrast between these two kinds of coordinates may also be ex-
pressed as follows. Barycentric coordinates can be referred to any given tri-
angle; the “simplest” points

(1,0,0), (0,1,0), (0,0, 1)

are the vertices, and the unit point (1, 1, 1) is the centroid. More usefully,
projective coordinates can be referred to any given quadrangle! Taking
three of the four vertices to determine a system of barycentric coordinates,
suppose the fourth vertex is (uy, pto, #3). By using these p’s for the transition
to projective coordinates, we give this fourth vertex the new coordinates
(1, 1, ). Just as, in affine geometry, all triangles are alike, so in projective
geometry all quadrangles are alike.

To prove that projective coordinates provide a model (in the augmented
affine plane) for the abstract projective plane described in § 14.1, we can take
each of our geometric axioms and prove it analytically (i.e., algebraically).

To prove 14.11, we merely have to observe that the line joining points
(¥1, ya, y3) and (zy, za, z3) is

Y2 )3
Zp Z3

Y3 N
Z3 21

Y1 )2
Z1 Zg

14.22

X3:0

X1 + X2 +

(cf. 13.74). Similarly, for 14.12 (or rather, 14.121), the point of intersection
of lines 2Y,x, = 0 and £2Z, x, = O is
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|

For 14.13, we can use the four points
14.23 (1,0,0), (0,1,0), (0,0,1, (1,1, 1.
The diagonal points of the quadrangle so formed are
O, 1,1, (1,0, 1), (1,1,0).
If these three points lay on a line 2X, x, = 0, we should have

14.24 X2 + X3 = 0, X3 + X1 = 0, X1 + Xg = 0,
whence X1 = X = X3 = 0, which is absurd. This proves 14.14.

Y. Y3 Ys T Y1 Yo

s 3

Zg Z3 Z3 Z1 Zl ZZ

Finally, to prove 14.15 we use the coordinates 14.23 for the four points
Ay, Ax Az Cy

On the lines C144, C1Ao, C1A43, which are

X2 = X3, X3 = X1, X1 = Xg,
we take the points By, Bs, By to be

(p, LD, (1,g 1), (1, Ln.

The three lines A3B1, A1Bs, A2B2, being

X1 = pX2, Xg = {4X3, X3 = FXy,
all pass through the same point Cy if
14.25 pgr = 1.
The three lines 43B3, A2B1, A1B;, being

X2 = gx1, X1 = pX3, X3 = FXp,

all pass through the same point Cs if

qpr:l.

Since this condition agrees with 14.25, the proof is complete. However,
it is important to observe that the above deduction can be carried through
in the more general situation where the coordinates belong not to a field
but to an arbitrary division ring [Birkhoff and MacLane 1, p. 222]. We can
still speak of points and lines, but Axiom 14.15 will have to be replaced by
a weaker statement if the coordinate ring includes elements p and ¢ such

that
a Pq # gp.

For instance, we might have p = k and ¢ = j in a “quaternion geometry”
whose coordinates are based on “units” 7, j, k satisfying

2=j2=k=ik=—l
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When the 4’s and B’s are so chosen, 14.15 is false. We have thus estab-
lished an important connection between geometry and algebra: Hilbert’s
discovery that, when homogeneous coordinates are used in a plane satisfy-
ing the first four axioms, Pappus’s theorem is equivalent to the commutative
law for multiplication.

EXERCISES

1. Given five points, no three collinear, we can assign the coordinates 14.23 to any
four of them, and then the coordinates (x1, x2, x3) of the fifth are definite (apart from
the possibility of multiplying all by the same constant). If the mutual ratios of the
three x’s are rational, we can multiply by a “common denominator” so as to make them
all integral. In this case we can derive the fifth point from the first four by a linear
construction, involving a finite sequence of operations of joining two known points or
taking the point of intersection of two known lines. Devise such a construction for
the point (1, 2, 3).

2. The four points (1, =1, =1) form a complete quadrangle whose diagonal tri-
angle is the triangle of reference.

3. A configuration 83, consisting of two mutually inscribed quadrangles, exists in
the complex projective plane, but not in the real projective plane. When it does exist,
its eight points appear in four pairs of “opposites” whose joins are concurrent. The
complete figure is a (94, 123). Hint: Let the two quadrangles be PoPsP4Pg and
P, P3P5P7, so that the sets of three collinear points are

PoPyP3, P1PyPy, PoP3Ps, P3PyPg, P4PsP7, P5PgPoy, PoP7P1, P1PyP.

Take PoP, P, as triangle of reference and let P3, P4, P; be (1, 1, 0), (0, 1, 1), (1, 0, x).
Deduce that P5 and Pg are (1, |, x + 1) and (1, x + 1, x). Obtain an equation for x
from the collinearity of PoPsPs.

4. Ifpis an odd prime, a finite projective plane PG(2, p) can be obtained by tak-
ing the coordinates to belong to the field GF(p) which consists of the p residues (or,
strictly, residue classes) modulo p [Ball 1, pp. 60-61]. For instance, the appropriate
“finite arithmetic” for PG(2, 3) consists of symbols 0, 1, 2 which behave like ordinary
integers except that

1+42=0 and 2x2=1

In the notation of Ex. 3 at the end of § 14.1, take PoP; P» to be the triangle of reference
and P; the unit point (1, 1, 1). Find coordinates for the remaining points, and equations
for the liges.

Finite planes, and the analogous finite n-spaces PG(n, p), were discovered by von
Staudt* and rediscovered by Fano. Von Staudt took n to be 2 or 3. Fano took p to be
a prime. The generalization PG(n, p¥) is credited to Veblen and Bussey.

5. Taking the coordinates to belong to GF(2), which consists of the two “numbers”
0 and 1 with the rule for addition
14 1=0,

we obtain a finite “geometry” in which the diagonal points of a complete quadrangle
are always collinear! Our proof of 14.14 breaks down because now the equations 14.24
* K. G. C. von Staudt, Beitrige zur Geometrie der Lage, vol. I (Niirnberg, 1856), pp. 87-88; Gino

Fano, Giornale di Matematiche, 30 (1892), pp. 114-124; Veblen and Bussey, Transactions of the
American Mathematical Society, 7 (1906), pp. 241-259.
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have not only the inadmissible solution X; = X; = X3 = 0 but also the significant
solution X; = X2 = X3 = 1, which yields the line

X1+ x2 + x3=0.

This PG(2, 2) can be described abstractly by calling its seven points P; and its seven
lines p; i = 0, 1, .. ., 6) with the rule that P; and p; are incident if and only if

i4+j=01or3 (mod 7).

14.3 DESARGUES’S THEOREM

The fundamental idea for this pure geometry came from the desire of
Renaissance painters to produce a “visual" geometry. How do things
really look, and how can they be presented on the plane of the draw-
ing? For example, there will be no parallel lines, since such lines ap-
pear to the eye fo converge.

S. H. Gould (1909- )
[Gould 1, p. 298]

Two triangles, with their vertices named in a particular order, are said to
be perspective from a point (or briefly, “perspective”) if their three pairs of
corresponding vertices are joined by concurrent lines. For instance, in Fig-
ure 14.15, the triangles 414243 and By B3 B; (sic) are perspective from Cj.
By permuting the vertices of B;B3B, cyclically, either forwards or back-
wards, we see that the same two triangles are also perspective from C; or
Cs3. In fact, one of the neatest statements of Axiom 14.15 [see Veblen and
Young 1, p. 100] is:

If two triangles are doubly perspective they are trebly perspective.

Dually, two triangles are said to be perspective from a line if their three
pairs of corresponding sides meet in collinear points. It was observed by
G. Hessenberg* that our axioms suffice for a proof of

DESARGUES'S THEOREM. If two triangles are perspective from a point they
are perspective from a line, and conversely.

The details are as follows. Let two triangles PQR and P'Q'R’ be per-
spective from O, as in Figure 14.3a, and let their corresponding sides meet
in points

D =QR-QR, E=RP-RP, F=PQ-PQ.
We wish to prove that D, E, F are collinear. After defining four further
points
S = PR:-QR, T = PQ - OR,
U= PQ-0S, V =PFPQ - 0S,
we have, in general, T enough triads of collinear points to make three applica-
tions of Axiom 14.15. The “matrix” notation enables us to write simply
* Mathematische Annalen, 61 (1905), pp. 161-172.

e ~ 4ol Dl Danal 10L7 we



DESARGUES'S THEOREM 239

0 0 ¢ o P P PO T
P S R|.|lorRs| .l vuUu s
DT U E VT D E F

The last row of the last matrix exhibits the desired collinearity.
The converse follows by the principle of duality.

Figure 14.3a

EXERCISES

1. The triangle (p, 1, 1) (1, g, 1) (1, 1, r) is perspective with the triangle of refer-
ence from the unit point (1, 1, 1). Pairs of corresponding sides meet in the three col-
linear points

©0,g-—1L1-r, (1-p0r—1, (p—-11-40).

2. Desargues’s theorem involves 10 points and 10 lines, forming a configuration 10;.
To obtain a symmetrical notation, consider triangles P;4 P24 P34 and Py5P55 P35, perspec-
tive from a point P45 and consequently from a line Pp3P3;P12. Then three points Py
are collinear if their subscripts involve just three of the numbers 1, 2, 3, 4, 5. If the
remaining two of the five numbers are k and /, we may call the line p;;. Then the
same two triangles may be described as pys pas pss and p14 paa pas, perspective from the
Hn€p45.

3. In the finite projective plane PG(2, 3), the two triangles Py PoP7 and P3PsP, are
perspective from the point Pg and from the line PgP;2P¢. Identify the remaining points
in Figure 14.3a. (In this special geometry, U and V both coincide with F, which is
not surprising in view of the fact that Figure 14.3a involves 14 points whereas the whole
plane contains only 13.)

14.4 QUADRANGULAR AND HARMONIC SETS

Desargues’s theorem enables us to prove an important property of a
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quadrangular set of points, which is the section of the six sides of a com-
plete quadrangle by any line that does not pass through a vertex:

14.41  Each point of a quadrangular set is uniquely determined by the re-
maining points.

Proof. Let PQRS be a complete quadrangle whose sides PS, 08, RS,
OR, RP, PQ meet a line g (not through a vertex) in six points 4, B, C, D,
E, F, certain pairs of which may possibly coincide. (The first three points
come from three sides all containing the same vertex S; the last three from
the respectively opposite sides, which form the triangle PQR.) To show
that F is uniquely determined by the remaining five points, we set up an-
other quadrangle P’Q'R’S” whose first five sides pass through 4, B, C, D, E,
as in Figure 14.4q. Since the two triangles PRS and P’R’'S’ are perspective
from the line g, the converse of Desargues’s theorem tells us that they
are also perspective from a point; thus PP’ passes through the point
O = RR’' - SS’. Similarly, the perspective triangles QRS and Q’R’S’ show
that QQ’ passes through this same point O. In fact, all the four lines PP’
QQ’, RR’, S§’ pass through O, so that PQRS and P'Q'R’S’ are “persp
tive quadrangles.” By the direct form of Desargues’s theorem, the triang
PQOR and P'Q'R’, which are perspective from the point O, are also persg
tive from the line DE, which is g; that is, the sides PQ and P'Q’ both r
g in the same point F. '

Figure 14.4a

We shall find it convenient to use the symbol
(AD) (BE) (CF)

to denote the statement that the six points form a quadrangular set in the
above manner. This statement is evidently unchanged if we apply any per-
mutation to .4 BC and the same permutation to DEF. It is also equivalent
to any of

(4D) (EB) (FC), (DA) (BE) (FC), (DA) (EB) (CF).

To obtain other permutations we need a new quadrangle. With the ex-
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Figure 14.4b

ercise of some ingenuity we can retain two of the four old vertices, say Q
and S. Defining

R = QR-SF, P = PS-QC,

as in Figure 14.4b, we apply Axiom 14.15 to the hexagon PRQCFS accord-
ing to the scheme

P F Q
C R § |,
R P E

with the conclusion that R'P’ passes through E. Just as the quadrangle
PQRS yields (4D) (BE) (CF), the quadrangle PPQR’S yields (A D) (BE)
(FC). Inother words, the statement (4D) (BE) (CF)implies (AD) (BE)
(FC), and hence also

14.42 (AD) (BE) (CF)implies (DA) (EB) (FC).
In the important special case (44) (BB) (CF), which is abbreviated to
H(4B, CF),

we say that the four points form a harmonic set, or, more precisely, that F
is the harmonic conjugate of C with respect to A and B. This means that 4
and B are two of the three diagonal points of a quadrangle while C and F
lie respectively on the remaining sides, that is, on the sides that pass through
the third diagonal point. Axiom 14.14 tells us that the harmonic conjugates

C and F are distinct (except in the degenerate case when they coincide with
A or B).

Figure 14.4c¢
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EXERCISES
1. H(AB, CF)is equivalent to H(BA, CF) or H(AB, FC) or H(BA, FC).

2. Describe in detail a construction for the harmonic conjugate of C with respect
to two given points 4 and B (on a line through C, as in Figure 14.4¢).

3. The harmonic conjugate of (0, 1, A\) with respect to (0, 1, 0) and (0,0, 1) is
©, 1, — ).

4. In PG(2, 3) (see Ex. 3 at the end of § 14.1), every set of four collinear points is a
harmonic set in every order; e.g., H( PoPs, P3Pg), H( PoP3, PoPy), H( PoPy, P1P3).

5. In Figure 6.6a, H(4A4’, A142). Deduce the metrical definition

AAy AAs

A AT A'Aq
for a harmonic set. (Hins: Defining £’ as in Ex. 4 at the end of § 6.6, consider the
quadrangle formed by P, E, E’ and the point at infinity on 4;P.)

14.5 PROJECTIVITIES

A range is the set of all points on a line. Dually, a pencil is the set of all
lines through a point. Ranges and pencils are instances of one-dimensional
forms. We shall often have occasion to consider a (one-to-one) correspond-
ence between two one-dimensional forms. The simplest possible corre-
spondence between a range and a pencil arises when the lines of the pencil
join the points of the range to another point, so that the range is a section
of the pencil. The correspondence between two ranges that are sections of
one pencil by two distinct lines is called a perspectivity; in such a case we
write

Xx=x o x2x,

A A
meaning that, if X and X’ are corresponding points of the two ranges, their
join XX’ continually passes through a fixed point O, which we call the cen-
ter of the perspectivity. There is naturally also a dual kind of perspectivity
relating pencils instead of ranges.

The product of any number of perspectivities is called a projectivity. Two
ranges (or pencils) related by a projectivity are said to be projectively related,

and we write

4
X X X .
For instance, in the circumstances illustrated in Figure 14.5a,

4BCD € 40BoCoDo L ABCD,  ABCD 5 A'BCD.
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Figure 14.5a Figure 14.5b

Analogously, we can define a projectivity relating a range to a pencil, or vice
versa.

Given three distinct points 4, B, C on a line, and three distinct points
A’, B’, C’ on another line, we can relate them by a pair of perspectivities in
the manner of Figure 14.5b, where the axis (or “intermediary line”) of the
projectivity joins the points

By = AB' - BA’, Co = AC - CA',
so that ABC %’AOBOCO % A'BC.

For each point X on 4B we obtain a corresponding point X’ on A’B’ by
joining A to the point Xo = A’X- BoCyp, so that

ABCX % AOBOCOXO’% ABCX.

By Axiom 14.15, the axis ByCy, being the “Pappus line” of the hexagon
AB’CA’BC’, contains the point BC' + CB’. Similarly, it contains the point
of intersection of the “cross joins™ of any two pairs of corresponding points.
In particular, we could have derived the same point X’ from a given point
X by using perspectivities from B’ and B (or any other pair of correspond-
ing points) instead of A’ and 4.

It can be proved [Baker 1, pp. 62-64; Robinson 1, pp. 24-36] that the
product of any number of perspectivities can be reduced to such a product
of two, provided the initial and final ranges are not on the same line. In
other words,

14.51  Any projectivity relating ranges on two distinct lines is expressible
as the product of two perspectivities whose centers are corresponding points (in
reversed order) of the two related ranges.

To relate two triads of distinct points ABC and 4’B’C’ on one line, we
may use an arbitrary perspectivity ABC = A1B1Cq to obtain a triad on an-
other line, and then relate 4,B,C, to A’B’C’ as in 14.51. Hence
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14.52 It is possible, by a sequence of not more than three perspectivities,
to relate any three distinct collinear points to any other three distinct collinear
points.

A projectivity X — X’ on one line may have one or more invariant points
(such that X = X’). Ifit has more than two invariant points, it is merely
the identity, X — X. In fact, the above construction for a projectivity

ABCX ~ ABCX’

on one line involves four points on another line such that

ABCX = A41B:C1Xy ~ ABCX'.
By 14.51, there is essentially only one projectivity 41B8;C ~ ABC. We have
thus proved

THE FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY. A projectivity
is determined when three points of one range and the corresponding three points
of the other are given.

If a projectivity relating ranges on two distinct lines has an invariant point
A, this point, belonging to both ranges, must be the common point of the
two lines, as in Figure 14.5¢. Let B and C be any other points of the first
range, B’ and C’ the corresponding points of the second. The fundamental
theorem tells us that the perspectivity

48c 2 4,
where O = BB - CC, is the same as the given projectivity ABC ~ AB'C'.
Hence
14.53 A projectivity between two distinct lines is equivalent to a perspec-
tivity if and only if their point of intersection is invariant.

R

A D C B E F

Figure 14.5¢ Figure 14.5d

Returning to the notion of a projectivity between ranges on one line
(i.e., a projective transformation of the line into itself), we recall that, if such
a transformation is not merely the identity, it cannot have more than two
invariant points. It is said to be elliptic, parabolic, or hyperbolic according
as the-number of invariant points is 0, 1, or 2. When coordinates are used,
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invariant points arise from roots of quadratic equations; thus elliptic pro-
jectivities do not occur in complex geometry, but

ABC = BCA
is elliptic in real geometry [Coxeter 2, p. 48].

Figure 14.5d (cf. 14.4a) suggests a simple construction for a hyperbolic
projectivity ABF ~ ACE in which one of the invariant points is given:

4BF 2 4sp R 4cE.
VAN VAN

Here S and P may be any two points collinear with A4, and then the other
two vertices of the quadrangle are

Q=BS-FP, R=CS-EP

The second invariant point is evidently D, on QR. When the same projec-
tivity is expressed in the form ADB ~ ADC (that is, when both invariant
points are given), we have the analogous construction

408 £ 4us B apc,
A A
where U = AS-QD. This can still be carried outif 4 and D coincide (i.e., if

g passes through the diagonal point U = PS « QR of the quadrangle), in
which case we have the parabolic projectivity

AAB = AAC
[Coxeter 2, p. 50].

Figure 14.5¢

An involution is a projectivity of period 2, that is, a projectivity which in-
terchanges pairs of points. Figure 14.5¢ is derived from Figure 14.5d by
adding extra points 7, W, Z. We may imagine this figure to have been de-
rived from any four given collinear points 4, C, D, F by taking a point R
outside their line, letting the joins R4, RD, RC meet an arbitrary line
through Fin T, Q, W, respectively, and then taking Z = AQ - RC. Since
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4apcr £ zrew 4 orFw R parc,
AN N AN
we have

14.54 ADCF = DAFC.

But, by the fundamental theorem, there is only one projectivity ADC ~ DAF.
Hence, if a projectivity interchanging A and D transforms C into F, it inter-
changes C and F. In other words,

14.55 Any projectivity that interchanges two points is an involution.

Applying the same set of three perspectivities to another point B, we have

2sdpRp
ATAT R
Since Q(ABC, DEF), we have now proved the theorem of the quadrangu-
lar set:

14.56 The three pairs of opposite sides of a quadrangle meet any line (not
through a vertex) in three pairs of an involution.

Combining this with 14.55, we have an alternative proof for 14.42 [Veb-
len and Young 1, p. 101].

Since the involution ACD =« DFA is determined by its pairs 4D and CF
(or any other two of its pairs), it is conveniently denoted by

(AD)CF)

or (DAY CF) or (CFYAD), etc. Thus (AD)(BE)(CF) implies that the pair
BE belongs to (AD)(CF), and CF to (AD)YBE), and AD to (BE)(CF). The
points in a pair are not necessarily distinct. When A = D and B = E, so
that H(A B, CF), we have the hyperbolic involution (44)(BB) which inter-
changes pairs of harmonic conjugates with respect to A and B. Since this
same involution is expressible as (44)(CF),

14.57 If an involution has one invariant point, it has another, and con-
sists of the correspondence between harmonic conjugates with respect to these
two points.

It follows that there is no parabolic involution.

EXERCISES
1. Let the lines O4,0B, ..., 0;4’, 018, . .. and A¢By in Figure 14.5a be denoted
by a,b,...,a,¥,...and 0. Use the principle of duality to justify the notation

abcd /—3\ abcd.
2. The harmonic property is invariant under a projectivity: if H(AB, CF) and
ABCF = A’B'C'F, then H(A'B’, C'F’) [Coxeter 2, p. 23].
3. WAB, CF) implies W(CF, AB). (Hint: By 14.54, ACBF + CAFB)



COLLINEATIONS 247

4. Draw a quadrangle and its section, as in Figure 14.5d. Take an arbitrary point
X on g and construct the corresponding point X’ in the hyperbolic projectivity

ABF + ACE,

Do the same for ADB = ADC, and draw the modified figure that is appropriate for
the parabolic projectivity A4AB = AAC.

5. Two perspectivities cannot suffice for the construction of an elliptic projectivity.

6. In the notation of Figure 14.4b,
2
A

7. Any projectivity may be expressed as the product of two involutions [Coxeter 2,
p. 54].

8. The projectivities on the line x3 = 0 are the linear transformations

S

ADCF = AUP'P % DUR'R = DAFC.

pxX’y = c11X1 + C12Xa,
px’s = Ca1x1 + Ca2X2,

where 1102055 €12¢2:.  Under what circumstances is such a projectivity (i) parabolic,
(ii) an involution?

14.6 COLLINEATIONS AND CORRELATIONS

A collineation is a transformation (of the plane) which transforms collinear
points into collinear points. Thus it transforms lines into lines, ranges into
ranges, pencils into pencils, quadrangles into quadrangles, and so on. A
projective collineation is a collineation which transforms every one-dimen-
sional form projectively.

14.61 Any collineation that transforms one range into a projectively re-
lated range is a projective collineation.

Proof [Bachmann1,p.85]. Letthegiven collineation transform the range
of points X on a certain line ¢ into a projectively related range of points X’
on the corresponding line a’, and let it transform the points Y on another
line b into corresponding points Y’ on ’. Any perspectivity relating X and Y
will be transformed into a perspectivity relating X’ and ¥’. Hence

Y=X—X =Y,
/AN A /AN

so that the collineation induces a projectivity Y — Y between the points of
b and ¥, as desired.

It follows that a projective collineation is determined when two corre-
sponding quadrangles (or quadrilaterals) are given [Coxeter 2, p. 60].

A perspective collineation with center O and axis o is a collineation which
leaves invariant all the lines through O and all the points on 0. (By 14.61,
every perspective collineation is a projective collineation.) Following Sophus
Lie (1842-1899), we call a perspective collineation an elation or a homology
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according as the center and axis are or are not incident. A harmonic ho-
mology is the special case when corresponding points A and 4’, on a line a
through O, are harmonic conjugates with respect to O and o - a. Every pro-
jective collineation of period 2 is a harmonic homology [Coxeter 2, p. 64].

We have seen that a collineation is a point-to-point and line-to-line trans-
formation which preserves incidences. Somewhat analogously, a correla-
tion is a point-to-line and line-to-point transformation which dualizes inci-
dences: it transforms points 4 into lines «’, and lines b into points B, in
such a way that @’ passes through B’ if and only if 4 lies on b. Thus a cor-
relation transforms collinear points into concurrent lines (and vice versa),
ranges into pencils, quadrangles into quadrilaterals, and so on. A projec-
tive correlation is a correlation that transforms every one-dimensional form
projectively. In a manner resembling the proof of 14.61, we can establish

14.62 Any correlation that transforms one range into a projectively re-
lated pencil (or vice versa) is a projective correlation.

It follows that a projective correlation is determined when a quadrangle
and the corresponding quadrilateral are given [Coxeter 2, p. 66].

A polarity is a projective correlation of period 2. In general, a correlation
transforms a point 4 into a line a’ and transforms this line into a new point
A”. When the correlation is of period two, A" always coincides with 4 and
we can simplify the notation by omitting the prime (’). Thus a polarity re-
lates 4 to a, and vice versa. Following J. D. Gergonne (1771-1859), we
call a the polar of 4, and A the pole of a. Clearly, the polars of all the points
on a form a projectively related pencil of lines through A.

Since a polarity dualizes incidences, if 4 lies on b, a passes through B.
In this case we say that 4 and B are conjugate points, a and b are conjugate
lines. It may happen that 4 and a are incident, so that each is self-conjugate.
We can be sure that this does not always happen, for it is easy to prove that
the join of two self-conjugate points cannot be a self-conjugate line. [t is
slightly harder to prove that no line can contain more than two self-con-
jugate points [Coxeter 2, p. 68]. The following theorem will be used in
§14.7:

14.63 A polarity induces an involution of conjugate points on any line that
is not self-conjugate.
Proof. On a non-self-conjugate line a, the projectivity X — a-x (Figure
. . . A
14.6a) transforms any non-self-conjugate point Binto another point C = a- b,
whose polar is 4B. The same projectivity transforms C into B. Since it
interchanges B and C, it must be an involution.

Dually, x and AX are paired in the involution of conjugate lines through 4.
Such a triangle 4 BC, in which each vertex is the pole of the opposite side
(so that any two vertices are conjugate points, and any two sides are con-
jugate-lines), is said to be self-polar. If P is any point not on a side, its
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polar p does not pass through a vertex, and the polarity may be described
as the unique projective correlation that transforms the quadrangle 4 BCP
into the quadrilateral abcp. An appropriate symbol, analogous to the sym-
bol (4 B)(PQ) for an involution, is

(ABCY(Pp).

Thus any triangle A BC, any point P not on a side, and any line p not through
a verteX, determine a definite polarity (4 BC)(Pp), in which the polar x of
an arbitrary point X can be constructed by simple incidences. As a first
step towards this construction we need the following lemma:*

Figure 14.6a

14.64 If the polars of the vertices of a triangle are distinct from the re-
spectively opposite sides, they meet these sides in three collinear points.

Proof. Let APX be a triangle whose sides PX, XA, AP meet the polars
a, p, x of its vertices in points 41, Py, X, as in Figure 14.65. The polar of
X1 = x - AP is, of course, x; = X(a * p). Define also the extra points
P =qa-AP, X' = a-AX and their polars p’ = A(a'p), x' = A(a-x).
By 14.54 and the polarity, we have

AP'PXy = PAX\P — paxip ~ AX'XPy.

By 14.53, AP'PX, = AX'XP,. Since the center of this perspectivity is
PX - PX = A, the/}hree points A1, Py, X7 are collinear, as desired.

We are now ready for the construction (Figure 14.6¢):

14.65 In the polarity (ABC)(Pp), the polar of a point X (not on AP, BP,
or p) is the line X X determined by

* This is known as Chasles’s theorem. The proof given in The Real Projective Plane [Coxeter
2, p. 71] suffices for real geometry but not for the more general geometry which is developed
here. Lemma 5.54 of that book is false in the finite geometry PG(2, 3), which admits a quadri-
lateral whose three pairs of opposite vertices Py P,, P3Pg, P5Py are pairs of conjugate points in
the polarity P; — p; although the four sides PyP3Pg, P2PgPg, P2 P3P5, P1P5Pg contain their re-
spective poles Py, Pr, Ps. P11 (The remaining three of the thirteen points in this finite plane are
the diagonal points of the quadrangle PoP7PsP1y; their joins in pairs are the diagonals of the
quadrilateral pop; pspi1.) See also W. G. Brown, Canadian Mathematical Bulletin, 3 (1960). pp.
221-223.
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A
p
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X1
o
X
P
X 7 = A
Py X,
. x
Figure 14.6b Figure 14.6¢

A1=a-PX, P1:p‘AX, X1=AP‘A1P1,
Bs =b-PX, P, =p-BX, X;= BP* ByP,.

Proof. By 14.64, the polars a, p, x meet the lines PX, 4X, AP in three
collinear points, the first two of which are 4, and P;. Hence x passes
through X; = AP - A;P,. Similarly x passes through X; = BP * ByPs.

In terms of coordinates, a projective collineation is a linear homogene-
ous transformation

14.66 px'y = ZcapXs, det(c,p) 7 0,

where the summation is understood to be taken over the repeated index 8
(for each value of @). The nonvanishing of the determinant makes it pos-
sible to solve the equations for x,z in terms of x’, so as to obtain the in-
verse collineation. By suitably adjusting the coefficients c,g, we can trans-
form the particular quadrangle 14.23 into any given quadrangle [Coxeter 2,
p- 197].

Since the product of two correlations (e.g., a polarity and another corre-
lation) is a collineation, any given projective correlation can be exhibited
as the product of an arbitrary polarity and a suitable projective collinea-
tion. The most convenient polarity for this purpose is that in which the line

EX,,X,, =0

is the polar of the point (X1, X», X3). Combining this with the general col-

jljneation 14.66, we obtain the correlation that transforms each point ()
into the line 7

14.661 2Z(Zcapyp)x, = 0,

where again we must have det(c,g) = 0. In fact, the correlation is associ-
ated with the bilinear equation
23Xy = 0

[cf. Coxeter 2, p. 200].
The correlation is a polarity if it is the same as its inverse, whose equa-
tion, derived by interchanging (x) and (), is
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Z3cpyVexg = 0, or Xy = 0.

Thus a polarity occurs when cg, = Ac,g, where A is the same for all a and S,
so that c,g = Acga = A%c,5, A2 = 1, A = £1. But we cannothaveA = —1,
as this would make the determinant

0 €12 —C31
—C12 0 C23 =0.
€31 —C23 0

Hence A = 1, and Cga = Cag. In other words,

14.67 A projective correlation is a polarity if and only if its matrix of co-
efficients is symmetric.

Thus the general polarity is given by
14.68 22 capxqayp = 0, Cpa = Cap, det(c,g) 7+ 0,

meaning that the polar of (yi, y2, y3) is 14.661, or that 14.68 is the condi-
tion for points (x) and (y) to be conjugate. Setting y; = x;, we deduce
the condition

Z2cCapXaXg = 0,

Or c11X12 + Ca2X22 + ¢33X3% 4+ 2co3XaX3 + 2¢31X3X1 + 2c12x1%2 = 0,
for the point (x) to be self-conjugate. Hence

14.69 If a polarity admits self-conjugate points, their locus is given by an
equation of the second degree.
EXERCISES

1. Given the center and axis of a perspective collineation, and one pair of corre-
sponding points (collinear with the center), set up a construction for the transform X’
of any point X [Coxeter 2, p. 62].

2. Any two perspective triangles are related by a perspective collineation.

3. A collineation which leaves just the points of one line invariant is an elation.

4. An elation with axis o may be expressed as the product of two harmonic ho-
mologies having this same axis o [Coxeter 2, p. 63].

5. In PG(2, 3), the transformation P; — P;; (with subscripts reduced modulo 13)
is evidently a collineation of period 13. Is it a projective collineation? Consider also
the transformation P; — Ps;.

6. What kind of collineation is

) xy = x1, X'z = X2, X'z = cx3;
(11) X,l = Xx1 + CiX3, X'3 = x3 + C2X3, X,3 = x3?

7. Use 14.64 to prove Hesse’s theorem: If two pairs of opposite vertices of a com-
plete quadrilateral are pairs of conjugate points (in a given polarity), then the third
pair of opposite vertices is likewise a pair of conjugate points.

8. Give an analytic proof of Hesse’s theorem. (Hint: Apply the condition 14.68 to
the pairs of vertices

O 1, %D, (1,0, D, {1, =1,0)
of the quadrilateral x; == x5 = x3 = 0.)
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9. The bilinear equation
X1y1 + Xaye 4+ xg¥3 = 0
is the condition for (x) and () to be conjugate in the polarity (4 BC)(Pp), where ABC
is the triangle of reference, Pis (1,1, 1),and pis x; 4+ x2 + x3 = 0. Are there any

self-conjugate points? Consider, in particular, the case when the coordinates are residues
modulo 3.

14.7 THE CONIC

The three familiar curves which we call the “conic sections” have a
fong history. The reputed discoverer was Menaechmus, who flour-
ished about 350 B.c. They attracted the attention of the best of the
Greek geometers down to the time of Pappus of Alexandria. ... A
vivid new interest arose in the seventeenth century. ... It seems cer-
tain that they will always hold a place in the mathematical curriculum.

J. L. Coolidge (1873 -1954)
[Coolidge 1, Preface]

In the projective plane there is only one kind of conic. The familiar dis-
tinction between the hyperbola, parabola, and ellipse belongs to affine
geometry. To be precise, it depends on whether the line at infinity is a
secant, a tangent, or a nonsecant [Coxeter 2, p. 129].

C
Figure 14.7a

A polarity is said to be hyperbolic or elliptic according as it does or does
not admit a self-conjugate point. (In the former case it also admits a self-
conjugate line: the polar of the point.) The self-conjugate point P, whose
existence suffices to make a polarity hyperbolic, is by no means the only
self-conjugate point: there is another on every line through P except its polar
p. To prove this we use 14.63, which tells us that every such line contains
an involution of conjugate points. By 14.57, this involution, having one in-
variant point P, has a second invariant point @, which is, of course, another
self-conjugate point of the polarity. Thus the presence of one self-con-
jugate point implies the presence of many (as many as the lines through a
point; for example, infinitely many in real or complex geometry). Their
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locus is a conic, and their polars are its tangents. This simple definition,
due to von Staudt, exhibits the conic as a self-dual figure: the locus of self-
conjugate points and also the envelope of self-conjugate lines.

The reader must bear in mind that there are only two kinds of polarity
and that there is only one kind of conic. The terminology is perhaps not
very well chosen: a hyperbolic polarity has many self-conjugate points, form-
ing a conic; an elliptic polarity has no self-conjugate points at all, but still
provides a polar for each point and a pole for each line; there is no such
thing as a “parabolic polarity.”

A tangent justifies its name by meeting the conic only at its pole, the point
of contact. Any other line is called a secant or a nonsecant according as it
meets the conic twice or not at all, that is, according as the involution of
conjugate points on it is hyperbolic or elliptic. Any two conjugate points
on a secant PQ, being paired in the involution (PP)(QQ), are harmonic con-
jugates with respect to P and Q.

Let POR be a triangle inscribed in a conic, as in Figure 14.7a. Any line
¢ conjugate to PQ is the polar of some point C on PQ. Let RC meet the
conic again in S. Then C is one of the three diagonal points of the inscribed
quadrangle PQRS. The other two are

A =PS-QR, B=QS-RP.

Their join meets the sides PQ and RS in points C; and Cs such that H(PQ,
CCy) and H(RS, CCy). Since Cy and C, are conjugate to C, the line AB,
which contains them, is ¢, the polar of C. Similarly BC is the polar of A.
Therefore A and B are conjugate points. These conjugate points are the
intersections of ¢ with the sides QR and RP of the given triangle. Hence

SEYDEWITZ'S THEOREM, If a triangle is inscribed in a conic, any line con-
jugate to one side meets the other two sides in conjugate points.

From this we shall have no difficulty in deducing

STEINER’S THEOREM. Let lines x and y join a variable point on a conic to
two fixed points on the same conic; then x — .

Proof. The tangents p and g, at the fixed points P and Q, intersect in D,
the pole of PQ. Let ¢ be a fixed line through D (but not through P or Q),
meeting x and y in B and 4, as in Figure 14.7h. By Seydewitz’s theorem,

Figure 14.7b
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Figure 14.7¢

BA is a pair of the involution of conjugate points on ¢. Hence, when the
point x - y varies on the conic,

The following construction for a conic through five given points, no three
collinear, was discovered by Braikenridge and Maclaurin independently,

about 1733 [Coxeter 2, p. 91]. Let 44, B2, Cy, A2, By be the five points, as
in Figure 14.7¢; then the conic is the locus of the point

C2 = Al(Z ‘ C1A2) . B1(Z . ClBg),

where z is a variable line through the point 4,B; - By4,. This is the con-
verse of

PASCAL'S THEOREM. If a hexagon A1B,C1A42B1C; is inscribed in a conic,
the points of intersection of pairs of opposite sides, namely,

B1C2 : Bzcl, Ci4, - C2A1, A1By - AzBl,
are collinear.

Pascal discovered his famous theorem [Coxeter 2, p. 103] when he was
only sixteen years old. More than 150 years later, it was dualized (see Fig-
ure 14.7d):

BRIANCHON'S THEOREM. Ifa hexagon is circumscribed about a conic, its
three diagonals are concurrent.

We saw, in § 8.4, that the familiar conics of Euclidean geometry have equa-
tions of the second degree in Cartesian coordinates. The same equations
in affine coordinates remain valid in affine geometry, and yield homogene-
ous equations of the second degree in barycentric coordinates (§ 13.7) and
in projective coordinates (§ 14.2). Thus 14.69 serves to reconcile von Staudt’s
definition of a conic with the classical definitions. In particular,

X1X3 = X22

is a conic touching the lines x3 = 0 and x; = 0 at the respective points
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€2

by

Figure 14.7d

(1,0, 0) and (0, 0, 1). This conic can be parametrized in the form

X1:X2:X3:[21131

El

which exhibits it as the locus of the point of intersection of corresponding
members of the projectively related pencils of lines

X1 = txe and X; = fXx3.

If det (c,p) = 0, the quadratic form Z2c,zx, Xz may be expressible as the
product of two linear forms Za,x, and Zbzx,. Accordingly, a pair of lines
1s sometimes regarded as a degenerate conic. In this sense, Axiom 14.15 is
a special case of Pascal’s theorem.

EXERCISES

1. If a quadrangle is inscribed in a conic, its diagonal points form a self-polar tri-
angle. The tangents at the vertices of the quadrangle form a circumscribed quadrilat-
eral whose diagonals are the sides of the same triangle [Coxeter 2, pp. 85, 86].

2. Referring to the projectivity x — y of Steiner’s theorem, investigate the special
positions of x and y when A4 or B coincides with D.

3. If a projectivity between pencils of lines x and y through P and Q has the effect
xpd 5 ydg, where d1s PQ, the locus of the point x ) is a conic through P and Q whose
tangents at these points are p and ¢. (This construction is often used to define a conic;
see, e.g., Robinson [1, p. 38])

4. Of the conics that touch two given lines at given points, those which meet a third
line (not through either of the points) do so in pairs of an involution [Coxeter 2, p. 90].

5. [Iftwo triangles are self-polar for a given polarity, their six vertices lie on a conic
or on two lines [Coxeter 2, p. 93].

6. If two triangles have six distinct vertices, all lying on a conic, they are self-polar
for some polarity [Coxeter 2, p. 94].

7. In PG(2, 3) (Ex. 3 at the end of § 14.1), the polarity P; — p; or ( PsPioP1r2) Popo)
determines a conic consisting of the four points Py, Py, Pg, P11 and the four lines pq,
pr.Ps.Pi1. (Hint: PoPyPgPis T P1P7PsPy Y Pop2PsP12.)

8. The equation x12 4 x32 — x3% = O represents a conic for which the triangle of
reference is self-polar. Verify Pascal’s theorem as applied to the inscribed hexagon

0,1, H O, -1, 1H (1,0, 1) (—1,0,1) (3,4, 5) 4, 3, 5).
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14.8 PROJECTIVE SPACE

Our Geometry is an abstract Geometry. The reasoning could be fol-
lowed by a disembodied spirit who had no idea of a physical point;
just as a man blind from birth could understand the Electromagnetic
Theory of Light.

H. G. Forder [1, p. 43]

Axiom 14.12 had the effect of restricting the geometry to a single plane.
If we remove this restriction, we must know exactly what we mean by a
plane. First we define a flar pencil to be the set of lines joining a range of
points (on a line) to another point. Then we define a plane to be the set of
points on the lines of a flat pencil and the set of lines joining pairs of these
points. Accordingly we replace Axiom 14.12 by three new axioms. The first
(which may be regarded as a projective version of Pasch’s axiom, 12.27) al-
lows us to forget the role of a particular flat pencil in the definition of a plane.
The second enables us to speak of more than one plane. The third (cf.
12.431) restricts the number of dimensions to three.

AXIOM 14.81 If A, B, C, D are four distinct points such that AB meets
CD, then AC meets BD.

AXIOM 14.82 There is at least one point not in the plane ABC.

AXIOM 14.83 Any two planes meet in a line.

We now have a different principle of duality: points, lines and planes cor-
respond to planes, lines and points (cf. § 10.5). Two intersecting lines, a
and b, determine a point a - b and a plane ab; these are dual concepts. Two
lines that do not intersect are said to be skew. The theory of collineations
and correlations [Coxeter 3, pp. 63-70] is analogous to the two-dimensional
case, except that the number of self-conjugate points on a line is no longer
restricted to 0, 1, or 2. In fact, instead of two kinds of polarity we now have
four: one “elliptic,” having no self-conjugate points, two “hyperbolic,” whose
self-conjugate points form a quadric (nonruled or ruled), and one, the null
polarity (or “null system’), in which every point in space is self-conjugate!

The idea of defining a quadric as the locus of self-conjugate points in a
three-dimensional polarity (of the second or third kind) is due to von Staudt.
Another approach, using a two-dimensional polarity in an arbitrary plane
w, was devised by F. Seydewitz.* The quadric appears as the locus of the
point

PA - Qa,
where P and Q are fixed points (on the quadric) while A4 is a variable point
on w and a is its polar. This definition allows the quadric to degenerate to
a cone or a pair of planes.
To sample the flavor of solid projective geometry, let us consider a few

* Archiv flir Mathematik und Physik, 9 (1848), p. 158,
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Figure 14.8a

typical theorems. Suppose a complete quadrangle PQRS yields a quad-
rangular set (AD)(BE)(CF)on aline g, as in Figure14.84. In another plane
through g, let the sides of a triangle P'Q’'R’ pass through A, B, C, and let
DP meet EQ’ in §’. Theorem 14.42 tells us that 8’ lies on R’F. This re-
mark yields two interesting configurations: one consisting of eight lines (Fig-
ure 14.8b), and the other of two mutually inscribed tetrahedra.

GALLUCCI'S THEOREM. If three skew lines all meet three other skew lines,
any transversal to the first set of three meets any transversal to the second set.

Proof.. Let the two sets of lines be PQ', P'Q, RS; PQ, P'Q', R’S. This
notation agrees with Figure 14.8q, for, since PS and Q'R’ both pass through
A, PQ’ meets RS, and since QS and R'P’ both pass through B, P'Q meets
R’'S. The transversal from R to PQ’ and P'Q is

RPQ’ - RP'Q = REQ - RDP’ = RY'.
The transversal from R’ to PQ and P'Q’ is
R'PQ-RPQ = RFQ-RF(Q = RF.

Since &' lies on R'F, these transversals meet, as desired.
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MOBIUS'S THEOREM. If the four vertices of one tetrahedron lie respectively
in the four face planes of another, while three vertices of the second lie in three
face planes of the first, then the remaining vertex of the second lies in the re-
maining face plane of the first.

Proof. Let PQRS’ and P'Q'R’S be the two tetrahedra, with

P, QR s, P, Q, S
in the respective planes
Q'R'S, P'R'S, P'Q’'S, PPO'R’, QRS’', PRS’, PQR,

as in Figure 14.8a. Since R'S’ passes through F, on PQ, the remaining ver-
tex R’ lies in the remaining plane PQ.S’, as desired.

Changing the notation from

S, P, QO R P Q R §
to
S, Sia, S2a, Sss, Sz, Sis, Si2, Siess

we deduce the first of a remarkable “chain” of theorems due to Homersham
Cox:*

COX'S FIRST THEOREM.  Let 01, 02, 03, 04 be four planes of general position
through a point S. Let Si; be an arbitrary point on the line o, 0;. Let oy
denote the plane SwS@ijk Then thefourplanes 0234, 0134, 0124, 0123 allpass
through one point S1234.

Clearly, o1, o2, 03, 0123 are the face planes of the tetrahedron P'Q’'R’S,
while 0234, 0134, 0124, 04 are those of the inscribed-circumscribed tetrahedron
PQRS’. Let o5 be a fifth plane through S. Then Sys, S2s, S35, S5 are four
points in 05; 0455 is a plane through the line S;55;5; and S5 is the point
Oij5 * Oiks - Oj5. By the dual of Cox’s first theorem, the four points Sp345,
S1345, S1245, S1235 all lie in one plane. Interchanging the roles of o4 and o3,
we see that Syo34 lies in this same plane S23455134551245, which we naturally
call 012345. Hence

COX'S SECOND THEOREM. Let o4, . . ., 05 be five planes of general posi-
tion through S. Then theﬁve points S2345, S1345, S1245, S1235, S1234 all lie in
one plane 012345

Adding the extra digits 56 to all the subscripts in the first theorem, we
deduce

COX'S THIRD THEOREM. The sixplanes 023456, 013456, 012456, 012356, 012346,
012345 allpass through one point S123456-

The pattern is now clear: we can continue indefinitely. “Cox’s (d—3)rd

* Quarterly Journal of Mathematics, 25 (1891), p. 67. See also H. W, Richmond. Journal of
the London Mathematical Society, 16 (1941), pp. 105-112, and Coxeter, Bulletin of the American
Mathematical Society, 56 (1950), p. 446. When we describe four planes through a point as being
“of general position,” we mean that their six lines of intersection are all distinct.
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theorem” provides a configuration of 2¢-1 points and 2¢-1 planes, with d of
the planes through each point and d of the points in each plane.

Our next result would be difficult to obtain without using coordinates.
Since the equation of the general quadric

C11X12 + ... 4+ C44X42 + 2c19X1X0 + ... + 2C34X3X4 =0

has 4 + 6 = 10 terms, a unique quadric £ = 0 can be drawn through nine
points of general position; for, by substituting each of the nine given sets
of xX’sin £ = 0, we obtain nine linear equations to solve for the mutual
ratios of the ten ¢’s. Similarly, a “pencil” (or singly infinite system) of
quadrics

>+ ‘LLE/ =0

can be drawn through eight points of general position, and a “bundle” (or
doubly infinite system) of quadrics

S+ p + 2 =0

can be drawn through seven points of general position. But, by solving the
simultaneous quadratic equations

S=0 =0 3'=0

for the mutual ratios of the four x’s, we obtain eight points of intersection
for these three quadrics. Naturally these eight points lie on every quadric
of the bundle. Hence

Seven points of general position determine a unique eighth point, such that
every quadric through the seven passes also through the eighth.

This idea of the eighth associated point provides an alternative proof for
Cox’s first theorem (and therefore also for the theorems of M&bius and
Gallucci). Let S1234 be defined as the common point of the three planes
0234, 0134, 0124. (The theorem states that Syz34 lies also on 0123.) Since the
plane pairs 010234, 020134, 030124 form three degenerate quadrics through
the eight points

S, S14, S24, S34, S23, S13, S12, S1234,

these are eight associated points. The first seven belong also to the plane
pair 040123. Since S1234 does not lie in o4, it must lie in 6123, as desired.

The locus of lines meeting three given skew lines is called a regulus. Gal-
lucci’s theorem shows that the lines meeting three generators of the regulus
(including the original three lines) form another “associated” regulus, such
that every generator of either regulus meets every generator of the other.
The two reguli are the two systems of generators of a ruled quadric.

Let ay, b1, c1, dq be four generators of the first regulus, and as, bz, c2, do
four generators of the second, as in Figure 14.8¢. The three lines

as = bicz - boc1, bz = c1a2 * c2a1, c3 = aibe ¢ axby
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evidently form a triangle whose vertices are aj-as, b1*be, ¢1co. G. P.
Dandelin, in 1824, coined the name hexagramme mystique for the skew
hexagon aybec,azbice. Taking the section of its sides by a plane § of gen-
eral position, he obtained a plane hexagon A;B2C14.B1C; whose sides
A1Bz, B2Cy, . . . lie in the planes aibs, bacy, . . . (Figure 14.84). The points
of intersection of pairs of opposite sides, namely,

A3 = B1C2 * B2C1, B3 = C1A2 * CgAl, C3 = A1B2 ‘ A2B1,

each lying in both the planes agbscs and 9, are collinear. By allowing c; to
vary while the remaining sides of the skew hexagon remain fixed, we see
from the Braikenridge-Maclaurin construction (which is the converse of
Pascal’s theorem, Figure 14.7¢), that

The section of a ruled quadric, by a plane of general position, is a conic.

If 8, instead of being a plane of general position, is the plane did,, the
vertices of the hexagon 41B.C,4:8,C; line alternately on d» and dj, as in
Axiom 14.15. Thus Pappus’s theorem may be regarded as a “degenerate”
case of Pascal’s theorem. In fact, instead of assuming Pappus’s theorem
and deducing Gallucci’s theorem, we could have taken the latter as an axiom
and deduced the former. Bachmann [1, p. 254] gives a particularly fine fig-
ure to illustrate this deduction.

EXERCISES

1. If 4 and b are two skew lines and R is a point not on either of them, Ra + Rb is
the only transversal from R to the two lines.

2. Any plane through a generator of a ruled quadric contains another generator.
(Such a plane is a rangent plane.) Any other plane section of the ruled quadric is a
conic.

3. Iftwo tetrahedra are trebly perspective they are quadruply perspective (cf. § 14.3).
More precisely, if 41424344 is perspective with each of BsBiB4B3, B3BsB1Ba,
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B4B3B2B,, it is also perspective with ByByBsBs. (Hine: Since A;B; meets A;B;, A;B;
must meet 4;B;.)

4. The four centers of perspective that were implied in Ex. 3 form a third tetra-
hedron which is perspective with either of the first two from each vertex of the remain-
ing one.

5. In the finite space PG(3, 3), which has 4 points on each line, there are altogether
40 points, 40 planes, and how many lines?

14,9 EUCLIDEAN SPACE

The set of lines drawn from the artist's eye to the various points of
the object . . . constitute the projection of the object and are called
the Euclidean cone. Then the section of this cone made by the can-
vas is the desired drawing. . . . Parallel lines in the object converge
in the picture to the point where the canvas is pierced by the line from
the eye parallel to the given lines.

S. H. Gould [1, p. 299]

The elementary approach to affine space is to regard it as Euclidean space
without a metric; the elementary approach to projective space is to regard
it as affine space plus the plane at infinity and then to ignore the special
role of that plane. It is equally effective to begin with projective space and
derive affine space by specializing any one plane, calling it the plane at in-
finity. (This is still, of course, a projective plane.) Each affine concept has
its projective definition: for example, the midpoint of A B is the harmonic
conjugate, with respect to 4 and B, of the point at infinity on 4B [Coxeter
2, p. 119]. We then derive Euclidean space by specializing one elliptic po-
larity in the plane at infinity, calling it the absolute polarity. Two lines are
orthogonal if their points at infinity are conjugate in the absolute polarity;
a line and a plane are orthogonal if the point at infinity on the line is the
pole of the line at infinity in the plane. A sphere is the locus of the point
of intersection of a line through one fixed point and the perpendicular plane
through another; thus it is a special quadric according to Seydewitz’s defi-
nition. Two segments with a common end are congruent if they are radii
of the same sphere [Coxeter 2, p. 146].

When we use projective coordinates (x1, X2, X3, X4), referred to an arbi-
trary tetrahedron

(1,0,0,0) 0, 1,0,0) (0,0,1,0) (0,0,0, D),

it is convenient to take the plane at infinity to be x; = 0. Any other equa-
tion becomes an equation in affine coordinates x, x2, x3 by the simple de-
vice of setting x4 = 1. In affine terms, the tetrahedron of reference for the
projective coordinates is formed by the origin and the points at infinity on
the three axes. Finally, we pass from affine space to Euclidean space by
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declaring that two points (x1, x2, x3) and (1, y2, ys) are in perpendicular
directions from the origin if they satisfy the bilinear equation

X1y1 + Xayz2 + xzyz3 = 0,
that is, if the points at infinity

(x1, X2, x3.0) and (y1, y2, y3, 0)

are conjugate in the absolute polarity.

All the theorems that we proved in § 14.8 remain valid in Euclidean space.
An interesting variant of Cox’s chain of theorems can be obtained by means
of the following specialization. Instead of an arbitrary point on the line
0; * 05, we take Sy; to be the second intersection of this line with a fixed sphere
through S. Since the sphere is a quadric through the first seven of the eight
associated points

S’ Sl4, S24, S34, SZS, SIS, SIZ, S1234,

it passes through Si234 too, and similarly through S;235 and the rest of the
24-1 points. The 2¢-1 planes meet the sphere in 2¢-1 circles, which remain
circles when we make an arbitrary stereographic projection, asin §6.9. We
thus obtain Clifford’s chain of theorems* in the inversive (or Euclidean)
plane.

CLIFFORD’S FIRST THEOREM. Let 01, 02, 03, 04 be four circles of general po-
sition through a point S. Let Si; be the second intersection of the circles o;
and 0, Let oy denote the circle S;SiSjx. Then the four circles 0334, 0134,
0124, 0123 all pass through one point S1234.

CLIFFORD'S SECOND THEOREM. Let o5 be a fifth circle through S. Then
theﬁve pOinlS S2345, S1345, S1245, 51235, S1234 all lie on one circle 012345.

CLIFFORD’S THIRD THEOREM. The Six circles 023456+ 013456, 012456, 012356,
012346, 012345 allpass through one point S123456~

And so on!

EXERCISES

1. Why is the absolute polarity elliptic?
2. Draw a careful figure for Clifford’s first theorem.

3. The circumcircles of the four triangles formed by four general lines all pass
through one point (cf. Ex. 2 at the end of § 5.5).

4. The circumcenters of the four triangles of Ex. 3 all lie on a circle which passes also
through the point of concurrence of the four circumcircles [Forder 3, pp. 16-22; Baker
1,p.328].

*W. K. Clifford, Mathematical Papers (London, 1882), p. 51. Apparently Clifford did not
state these theorems in their full generality. Instead of circles through S he took oy, 0g, . . . to
be straight lines. In other words, he took S to be the point at infinity of the inversive plane.
Thus his special form of the theorems ecould have been derived from the configuration of circles
on the sphere by taking the center of the stereographic projection to be the point S on the sphere
[Baker 1, p. 133].-
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Absolute geometry

1n the present chapter we shall re-examine the material of some of the
earlier chapters in the light of the axiomatic approach outlined in Chapter
12, regarding classical geometry as ordered geometry enriched with the
axioms of congruence 15.11-15.15, the last of which is a restatement of 1.26.
Exceptin §§ 15.6 and 15.8, we shall work in the domain of absolute geometry,
that is, we shall take care not to assume any form of Euclid’s fifth postu-
late. Accordingly, our results will be valid not only in Euclidean geometry
but also in the non-Euclidean geometry of Gauss, Lobachevsky, and Bolyai.

In § 15.4 we shall give a simple account of the complete enumeration of
finite groups of isometries. According to Weyl [1, p. 79], “This is the mod-
ern equivalent to the tabulation of the regular polyhedra by the Greeks.”
The relevance of these kinematical results to crystallography makes it na-
tural, in § 15.6, to reintroduce the full machinery of Euclidean geometry.
But in § 15.7 we shall return to absolute geometry for a discussion of finite
groups generated by reflections. Many of the methods used remain valid
also in spherical geometry.

15.1 CONGRUENCE

Every teacher certainly should know something of non-Euclidean ge-
ometry. . . . It forms one of the few parts of mathematics which . . .
is talked about in wide circles, so that any teacher may be asked about
it at any moment.

F.Klein [2, p. 135]

To give arigorous approach to absolute geometry, we begin with ordered
geometry (Chapter 12) and introduce congruence as a third primitive concept:
an undefined equivalence relation among point pairs (or segments, or inter-
vals). We use the notation AB = CD to mean “AB is congruent to CD.”
The following axioms are those of Pasch with some refinements due to Hil-
bert and R. L. Moore [see Kerékjartd 1, pp. 90-101].

263
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Axioms of Congruence

15.11 If A and B are distinct points, then on any ray going out from C
there is just one point D such that AB = CD.

15.12 IfAB = CD and CD = EF, then AB = EF.
15.13 AB = BA.

15.14 If[ABC] and [A'B'C'] and AB= A'B’' and BC = B'C, then
AC = A'C.
15.15 IfABCand A’B'C are two triangles with BC = B'C’, CA = C'4’,

AB = A’B’, while D and D' are two further points such that [BCD] and [B'C'D’]
and BD =B'D’, then AD = A'D’.

By two applications of 15.13, we have A B = AB; that is, congruence is re-
flexive. From 15.11 and 15.12 we easily deduce that the relation AB = CD
implies CD = A B; that is, congruence is symmetric. Axiom 15.12 itself says
that congruence is transitive. Hence congruence is an equivalence relation.
This result, along with the additive property of 15.14, provides the basis fora
theory of length [Forder 1, p. 95]. Axiom 15.15 enables us to extend the re-
lation of congruence from point pairs or segments to angles [Forder 1, p. 132].

We follow Euclid in defining a right angle to be an angle that is congruent
to its supplement; and we agree to measure angles on such a scale that the
magnitude of a right angle is 7.

The statement 4B = CD for segments is clearly equivalent to the state-
ment 4B = CD for lengths, so no confusion arises from using the same sym-
bol AB for a segment and its length. A similar remark applies to angles.

The circle with center O and radius r is defined as the locus of a variable
point P such that OP = r. A point Q such that OQ > r is said to be out-
side the circle. Points neither on nor outside the circle are said to be inside.
It can be proved [Forder 1, p. 131] that if a circle with center 4 has a point in-
side and a point outside a circle with center C, then the two circles meet in
just one point on each side of the line AC. Euclid’s first four postulates
may now be treated as theorems, and we can prove all his propositions as
far as 1.26; also 1.27 and 28 with the word “parallel” replaced by “noninter-
secting.”” We can define reflection as in § 1.3, and derive its simple conse-
quences such as pons asinorum (Euclid 1.5) and the symmetry of a circle
about its diameters (II1.3; see § 1.5). But we must be careful to avoid any ap-
peal to our usual idea about the sum of the angles of a triangle; for example,
we can no longer assert that angles in the same segment of a circle are equal
(Euclid II1.21). Lacking such theorems as VI.2—4, which depend on the af-
fine properties of parallelism, we have to look for some quite different way
to prove the concurrence of the medians of a triangle.* On the other hand,
the concurrence of the altitudes (of an acute-angled triangle) arises as a by-
product of Fagnano’s problem, which can still be treated as in §1.8. (Fer-
mat’s problem would require a different treatment because we can no longer

assume the angles of an equilateral triangle to be #/3.)
* Rarhimann 1 nn 7478
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EXERCISES

1. Complete the proof'that congruence is symmetric: if 4B = CD then CD = A4B.
2. How much of § 1.5 remains valid in absolute geometry? [Kerékjarto 1, pp. 161-
163.] (See especially Exercises | and 3.)

3. For any simple quadrangle inscribed in a circle, the sum of two opposite angles
is equal to the sum of the remaining two angles [Sommerville 1, p. 84].

15.2 PARALLELISM

| have resolved to publish a work on the theory of parallels as soon as |
have put the material in order. . . . The goal is not yet reached, but
| have made such wonderful discoveries that | have been almost over-
whelmed by them. . .. | have created a new universe from nothing.

Jonos Bolyai (1802 -1860)
(From a letter to his father in 1823)

Following Gauss, Bolyai, and Lobachevsky, we say that two lines are
parallel if they “almost meet.” For the precise meaning of this phrase, see
§ 12.6. (We use the notation p; for one of the two rays into which the line
p is decomposed by a point that lies on it.)

The idea of the incenter (§ 1.5) may be extended from a triangle to the
figure formed by two parallel lines and a transversal, enabling us to prove
that parallelism is symmetric:

D 7

Figurel 5.2a

15.21 If py is parallel to q., then q, is parallel to p;.

Proof. [Sommerville 1, p. 32]. If py, through A4, is parallel to ¢;, through
B, as in Figure 15.2q, the internal bisector AD of the angle at 4 completes a
triangle ABD. Let the internal bisector of B meet AD in I. Draw perpen-
diculars 1J, IK, IL, to py, AB, g1. Reflecting in /4 and IB, we see that IJ
= IK = IL. Letrqbe theinternal bisector of / LIJ. Reflection in the line
r interchanges J and L, and therefore interchanges p and ¢. Since p is paral-
lel to g, it follows that g is parallel to p in the same sense, that is, g4 is parallel
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to p1. (In the terminology of Gauss, J and L are corresponding points on the
two parallel rays.)

We can now use the methods of ordered geometry to prove that paral-
lelism is transitive:

15.22 If py is parallel to q1, and qy is parallel to ry, then py is parallel
tory.

Proof [Gauss 1, vol. 8, pp. 205-206]. We have to show that, if p; and r
are both parallel to ¢y, they are parallel to each other. We see at once that p;
and r; cannot meet; for if they did, we would have two intersecting lines
p and r both parallel to ¢ in the given sense. By Theorem 12.64, we may
assume that p;, ¢q, r; begin from three collinear points 4, B, C. For the
rest of the proof we distinguish the case in which B lies between 4 and C
from the case in which it does not.

A A
Py Py
B c
\ ql \ }‘1
C B
f D

q

Figure 15.2b Figure 15.2¢

If[ABC], as in Figure 15.2b, any ray from 4 within the angle between AC
and p; meets ¢; (since p; is parallel to ¢;) and then meets ry (since gy is paral-
lel to r1). Therefore py is parallel to ry.

If Bis not between 4 and C, suppose for definiteness that [4CB], as in
Figure 15.2c. Any ray from A within the angle between A C and p, meets
q1,sayin D. Since r separates 4 from D, it meets the segment AD. There-
fore p is parallel to 7.

In this second part of the proof we have not used the parallelism of ¢; and
ri. Infact,

15.23 Ifaray ry lies between two parallel rays, it is parallel to both.

Having proved that parallelism is an equivalence relation, we consider the
set of lines parallel to a given ray. We naturally call this a pencil of parallels,
since it contains a unique line through any given point [Coxeter 2, p. 5].
Pursuing its analogy with an ordinary pencil (consisting of all the lines
through a point), we may also call it a point at infinity or, following Hilbert,
an end. Instead of saying that two rays (or lines) are parallel, or that they be-
long to a certain pencil of parallels M, we say that they have M for a common
end. In the same spirit, the ray through A4 that belongs to the given pencil of
parallels is denoted by A M, as if it were a segment; the same symbol AM can
also be used for the whole line.
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Let AM, BM be parallel rays, and € an arbitrarily small angle. Within the
angle BAM (Figure 15.2d), take a ray from A4 making with A M an angle
less than e. This ray cuts BM in some point C. On CM (which is C/B),
take D so that CD = CA. The isosceles triangle CAD yields

LADC = L CAD < /CAM < .

Hence, when BD tends to infinity, so that A D tends to the position A M,
Z ADB tends to zero.
This conclusion motivates the following assertion of Bolyai [1, p. 207]:

15.24 When two parallel lines are regarded as meeting at infinity, the
angle of intersection must be considered as being equal to zero.

A A L
N g N»f
n {
B ¢ ' D B c D

Figure 15.2d Figure 15.2e

When AM and BM are parallel rays, we call the figure A BM an asymp-
totic triangle. Such triangles behave much like finite triangles. In particu-
lar, two of them are congruent if they agree in the finite side and one angle
[Carslaw 1, p. 49]:

15.25 If two asymptotic triangles ABM, A’B'M’ have AB = A’B’ and
A = A', thenalso B = B'.

It is a consequence of Axiom 15.11 that, if two lines have a common per-
pendicular, they do not intersect. The following theorem provides a kind
of converse for this statement.

15.26 [f two lines are neither intersecting nor parallel, they have a com-
mon perpendicular.

Proof. From A on the first line 4L, draw A B perpendicular to the sec-
ond line BM, as in Figure 15.2e. If AB is perpendicular to AL there is no
more to be said. If not, suppose L is on that side of A B for which £ BAL
is acute. Since the two lines are neither intersecting nor parallel, there is a
smaller angle BAM such that AM is parallel to BM. If [BCD] on BM, we
can apply Euclid I.16 to the triangle ACD, with the conclusion that the in-
ternal angle at D is less than the external angle at C. Hence, when BD in-
creases from 0 to oo, so that / DAL decreases from / BAL to / MAL,
/ ADB decreases from a right angle to zero. At the beginning of this process
we have

/DAL < L ADB

(since Z BAL is acute); but at the end the inequality is reversed (since
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/ MAL is positive). Hence there must be some intermediate position for
which
L DAL = / ADB.

(To be precise, we can apply Dedekind’s axiom 12.51 to the points on BM
satisfying the two opposite inequalities.) For such a point D (Figure 15.2f)
we obtain two triangles OAE, ODF by drawing EF perpendicular to BD
through O, the midpoint of AD. Since these triangles are congruent, EF is
perpendicular not only to BD but also to AL.

Nonintersecting lines that are not parallel are said to be ultraparallel (or
“hyperparallel”). We are not asserting the existence of such lines, but merely
showing how they must behave if they do exist.

A E

0]

B F D
Figure 15.2f

EXERCISES

1. Prove 15.25 without referring to Carslaw 1.
2. Give a complete proof that, if two lines have a common perpendicular, they do
not intersect.

3. Example 4 on p. 16 remains valid when A is an end so that the triangle is asymp-
totic.

15.3 ISOMETRY

Beside the actual universe | can set in imagination other universes in
which the laws are different.

J. L. Synge [2, p. 21]

The whole theory of finite groups of isometries (§§ 2.3-3.1) belongs to
absolute geometry, because it is concerned with isometries having at least
one invariant point. The first departure from our previous treatment (§ 3.2)
is in the discussion of isometries without invariant points. We must now
distinguish between a translation, which is the product of half-turns about
two distinct points, and a parallel displacement, which is the product of re-
flections in two parallel lines.

The product of half-turns about two distinct points O, O’ is a translation
along a given line (called the axis of the translation) in a given sense through
a given distance, namely, along OO’ in the sense of the ray O’/0 through
the distance 200’. Since a translation is determined by its axis and directed
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distance, the product of half-turns about O, O’ is the same as the product
of half-turns about Q, Q’, provided the directed segment Q' is congruent
to OO’ on the same line (Figure 3.2a). If P is on this line, the distance PP”"
is just twice O0’. (If not, it may be greater!)

By the argument used in proving 3.21, the product of two translations
with the same axis, or with intersecting axes, is a translation. (It is only in
the former case that we can be sure of commutativity.) More precisely, we
have

15.31 (Donkin’s theorem*) The product of three translations along the
directed sides of a triangle, through twice the lengths of these sides, is the
identity.

We shall see later that the product of two translations with nonintersect-
ing axes may be a rotation.

By the argument used in proving 3.22, if two lines have a common per-
pendicular, the product of reflections in them is a translation along this com-
mon perpendicular through twice the distance between them. (Such lines
may be either parallel or ultraparallel according to the nature of the geom-
etry.)

Again, as in 3.13, every isometry is the product of at most three reflec-
tions. If the isometry is direct, the number of reflections is even, namely 2.
It follows from 15.26 that

15.32 Every direct isometry (of the plane) with no invariant point is either
a parallel displacement or a translation.

It is remarkable that absolute geometry includes the whole theory of glide
reflection. The only changes needed in the previous treatment (§ 3.3) are
where the word “parallel” was used. (In Figure 3.35 we must define m, m’
as being perpendicular to OO’; they are not necessarily parallel to each
other.) As an immediate application of these ideas we have Hjelmslev’s
theorem, which is one of the best instances of a genuinely surprising result
belonging to absolute geometry. The treatment in § 3.6 remains valid with-
out changing a single word!

Likewise, the one-dimensional groups of § 3.7 belong to absolute geom-
etry, the only change being that again the mirrors m, m’ (Figure 3.75) should
not be said to be “parallel” but both perpendicular to the same (horizontal)
line. On the other hand, the whole theory of lattices (Chapter 4) and of
similarity (Chapter 5) must be abandoned.

The extension of absolute geometry from two dimensions to three presents
no difficulty. In particular, much of the Euclidean theory of isometry (§ 7.1)
remains valid in absolute space. It is still true that every direct isometry
is the product of two half-turns, and that every opposite isometry with

* W, F. Donkin, On the geometrical theory of rotation, Philosophical Magazine (4), 1, (1851),
187-192. Lamb [1, p. 6] used half-turns about the vertices 4, B, C of the given triangle to con-
struct three new triangles which, he said, “are therefore directly equal to one another, and ‘sym-
metrically’ equal to 4BC.” This was a mistake: all four triangles are directly congruent!
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an invariant point is a rotatory inversion (possibly reducing to a reflection
or to a central inversion). Moreover, the classical enumeration of the five
Platonic solids (§§ 10.1-10.3) is part of absolute geometry. The few neces-
sary changes are easily supplied; for example, the term rectangle must be
interpreted as meaning a quadrangle whose angles are all equal (though not
necessarily right angles), and a square is the special case when also the sides
are equal.

EXERCISES

1. Iflisaline outside the plane of a triangle A BC, what can be said about the three
lines in which this plane meets the three planes A/, Bl, CI1? (If two of the three lines
intersect, or are parallel, or have a common perpendicular. the same can be said of all
three. This property of three lines mj, mq, ms is equivalent to RjRsR3 = R3R3R; in
the notation of § 3.4.)

2. The product of reflections in the lines p and r of Figure 15.2a is a parallel dis-
placement which transforms J into L.

15.4 FINITE GROUPS OF ROTATIONS

These groups, in particular the last three, are an immensely attractive
subject for geometric investigation.

H. Weyl [1, p. 79]

One of the simplest kinds of transformation is a permutation (or rearrange-
ment) of a finite number of named objects. For instance, one way to per-
mute the six letters a, b, ¢, d, e, fis to transpose (or interchange) a and b,
to change c into d, dinto e, e into ¢, and to leave funaltered. This permu-
tation is denoted by (a b)(c d €). The two “independent” parts, (a ) and
(c d e), are called cycles of periods 2 and 3. A permutation that consists of
just one cycle is said to be cyclic. Clearly, the cyclic group C, may be rep-
resented by the powers of the generating permutation (a1a. . . . a,); for in-
stance, the four elements of C4 are

1, (abcd), (ac)bd), (adchbh).
A cyclic permutation of period 2, such as (a b), is called a transposition.
Since
(a1as . .. an) = (a1an)(azay) . . .,

any permutation may be expressed as a product of transpositions. A per-
mutation is said to be even or odd according to the parity of the number of
cycles of even period; for instance, (a ¢)(b d) is even, but (a b)(c d e) is odd.
The identity, 1, has no cycles at all, and is accordingly classified as an even
permutation. It is easily proved [see Coxeter 1, pp. 40-41] that every prod-
uct of transpositions is even or odd according to the parity of the number
of transpositions. [t follows that the multiplication of even and odd per-
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mutations behaves like the addition of even and odd numbers; for example,
the product of two odd permutations is even.

It follows also that every group of permutations either consists entirely
of even permutations or contains equal numbers of even and odd permuta-
tions. The group of all permutations of n objects is called the symmetric
group of order n! (or of degree n) and is denoted by S,,. The subgroup con-
sisting of all the even permutations is called the alternating group of order
1 n! (or of degree n) and is denoted by 4,. In particular, S is the same
group as C,, and A3 the same as C;, s0 we write

Se = C,, Az = (Cs.

More interestingly, S5 = D; (see Figure 2.7a). For, the six elements of
the dihedral group Ds, being symmetry operations of an equilateral triangle,
may be regarded as permutations of the three sides of the triangle. The
even permutations

1, (@abc), (ach)

(which form the subgroup A3 = Cs) are rotations, whereas the odd permu-
tations
(bc), (ca), (ab)

are reflections in the three medians. If we regard the triangle as lying in
three-dimensional (absolute) space, the rotations are about an axis through
the center of the triangle, perpendicular to its plane. The reflections may
then be interpreted in two alternative ways, yielding two groups which are
geometrically distinct but abstractly identical or isomorphic: we may either
reflect in three planes through the axis or rotate through half-turns about
the medians themselves. In the latter representation, all the six elements
of D3 appear as rotations. We may describe this as the group of direct sym-
metry operations of a triangular prism. More generally, the 2#n direct sym-
metry operations of an n-gonal prism form the dihedral group D,, whereas
of course the n direct symmetry operations of an n#-gonal pyramid form
the cyclic group C,. The rotations of C, all have the same axis, and D, is
derived from C, by adding half-turns about # lines symmetrically disposed
in a plane perpendicular to that axis.

We have thus found two infinite families of finite groups of rotations.
Other such groups are the groups of direct symmetry operations of the five
Platonic solids {p, ¢}. These are only three groups, not five, because any
rotation that takes { p, ¢} into itself also takes the reciprocal {gq, p} into it-
self: the octahedron has the same group of rotations as the cube, and the
icosahedron the same as the dodecahedron.

The regular tetrahedron {3, 3} is evidently symmetrical by reflection in
the plane that joins any edge to the midpoint of the opposite edge. Asa
permutation of the four faces a, b, ¢, d (Figure 15.4a), this reflection is just
a transposition. Thus the complete symmetry group of the tetrahedron,
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Figure 15.4a

being generated by such reflections, is isomorphic to the symmetric group
S4, which is generated by transpositions; and the rotation group, being gen-
erated by products of pairs of reflections, is isomorphic to the alternating
group A4, which is generated by products of pairs of transpositions. The
12 rotations may be counted as follows. The perpendicular from a vertex
to the opposite face is the axis of a trigonal rotation (i.e., a rotation of pe-
riod 3); the 4 vertices yield 8 such rotations. The line joining the midpoint
of two opposite edges is the axis of a half-turn (or digonal rotation); the 3
pairs of opposite edges yield 3 such half-turns. Including the identity, we
thus have 8 + 3 + 1 = 12 rotations. As permutations, the 8 trigonal ro-
tations are

(bed), (bdc), (acd), (adc), (abd), (adb), (abc), (ach)
and the 3 half-turns are

(bcYad), (ca)bd), (ab)cd).

Figure 15.4b

The octahedron {3, 4} can be derived from the tetrahedron by truncation:
its eight faces consist of the four vertex figures of the tetrahedron and trun-
cated versions of the four faces. Every symmetry operation of the tetra-
hedron is retained as a symmetry operation of the octahedron, but the octa-
hedron also has symmetry operations that interchange the two sets of four
faces. For instance, the line joining two opposite vertices is the axis of a
tetragonal rotation (of period 4), and the line joining the midpoints of two
opposite edges is the axis of a half-turn., When the four pairs of opposite
faces are marked a, b, ¢, d, as in Figure 15.4b, such a half-turn appears as a
transposition, which is one of the permutations that belong to S4 but not
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Figure 15.4¢

to A4. It follows that the rotation group of the octahedron (or of the cube)
is isomorphic to the symmetric group Sj.

In Figure 15.4c, the twenty faces of the icosahedron {3, 5} have been
marked q, b, ¢, d, e in sets of four, in such a way that two faces marked alike
have nothing in common, not even a vertex. In fact, the four a’s (for in-
stance) lie in the planes of the faces of a regular tetrahedron, and the re-
spectively opposite faces (marked b, ¢, d, €) form the reciprocal tetrahedron.
The twelve rotations of either tetrahedron into itself (represented by the
even permutations of b, c, d, e) are also symmetry operations of the whole
icosahedron. This behavior of the four a’s is imitated by the b’s, ¢’s, &s
and ¢€’s, so that altogether we have all the even permutations of the five let-
ters: the rotation group of the icosahedron (or of the dodecahedron) is iso-
morphic to the alternating group 4s. The 60 rotations may be counted as
follows: 4 pentagonal rotations about each of 6 axes, 2 trigonal rotations
about each of 10 axes, 1 half-turn about each of 15 axes, and the identity
[Coxeter 1, p. 50].

We shall find that the above list exhausts the finite groups of rotations.
As a first step in this direction, we observe that all the axes of rotation must
pass through a fixed point. In fact, we can just as easily prove a stronger
result:

15.41 Every finite group of isometries leaves at least one point invariant.

Proof. A finite group of isometries transforms any given point into a finite
set of points, and transforms the whole set of points into itself. This, like
any finite (or bounded) set of points, determines a unique smallest sphere that
contains all the points on its surface or inside: unique because, if there were
two equal smallest spheres, the points would belong to their common part,
which is a “lens”; and the sphere that has the rim of the lens for a great
circle is smaller than either of the two equal spheres, contradicting our sup-
position that these spheres are as small as possible. (The shaded area in
Figure 15.4d is a section of the lens.) The group transforms this unique
sphere into itself. Its surface contains some of the points, and therefore all
of them. Its center is the desired invariant point.
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Figure 15.4d

It follows that any finite group of rotations may be regarded as operat-
ing on the surface of a sphere. In such a group G, each rotation, other than
the identity, leaves just two points invariant, namely the poles where the
axis of rotation intersects the sphere. A pole P is said to be p-gonal (p > 2)
if it belongs to a rotation of period p. The p rotations about P, through vari-
ous multiples of the angle 27/p, are those rotations of G which leave P invari-
ant. Any other rotation of G transforms P into an “equivalent” pole, which
is likewise p-gonal. Thus all the poles fall into sets of equivalent poles. All
the polesin a set have the same period p, but two poles of the same period
do not necessarily belong to the same set; they belong to the same set only
if one is transformed into the other by a rotation that belongs to G.

Any set of equivalent p-gonal poles consists of exactly n/p poles, where n
is the order of G. To prove this, take a point Q on the sphere, arbitrarily
near to a pole P belonging to the set. The p rotations about P transform
Q into a small p-gon round P. The other rotations of G transform this p-
gon into congruent p-gons round all the other poles in the set. But the n
rotations of G transform Q into just # points (including Q itself). Since
these n points are distributed into p-gons round the poles, the number of
poles in the set must be n/p.

The n — 1 rotations of G, other than the identity, consist of p — 1 for
each p-gonal axis, thatis, 4 (p — 1) for each p-gonal pole, or

3(p — Dn/p
for each set of n/p equivalent poles. Hence
n—1=1n J(p — 1y/p,
where the summation is over the sets of poles. This equation may be ex-
pressed as
13-

Ifn = 1, so that G consists of the identity alone, there are no poles, and the
sum on the right has no term. In all other cases n > 2, and therefore

2
1 < ——ﬁ<2'
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It follows that the number of sets of poles can only be 2 or 3; for, the single
term | — 1/p would be less than 1, and the sum of 4 or more terms would be

> 41 — 1) = 2.

If there are 2 sets of poles, we have

D1 D2
that is n n_»
s It +p2

But two positive integers can have the sum 2 only if each equals 1; thus

p1 = p2: =1,
each of the 2 sets of poles consists of one n-gonal pole, and we have the
cyclic group C, with a pole at each end of its single axis.
Finally, in the case of 3 sets of poles we have

£}

2 ., _ 1 1 1
2 -5 =1 + 1 + 1

P P2 Ps3
whence
1 1 1 2
15.42 4+ 2=14 £
P + P2 + P3 + n

Since this is greater than 1 4+ 1 4+ 1 = I, the three periods p; cannot all be
3 or more. Hence at least one of them is 2, say ps = 2, and we have

1 1 1,2

p_1 + p—2 =3 + 1’
whence (1 — 2)(p2 — 2) = 41 — pypa/n) < 4
(cf. 10.33), so that the only possibilities (with p; < p» for convenience) are:
p1=2, po=p, n=2p, pr=3, p» =3, n=12
p1:3,p2:4,n:24; p1:3,p2:5,n:60.

We recognize these as the dihedral, tetrahedral, octahedral and icosahedral
groups.
This completes our proof [Klein 3, p. 129] that

15.43 The only finite groups of rotations in three dimensions are the cyclic
groups Cp, (p = 1,2, ...), the dihedral groups D, (p = 2,3,...), the tetra-
hedral group A4, the octahedral group S4, and the icosahedral group As.

(To avoid repetition, we have excluded D, which, when considered as a
group of rotations, is not only abstractly but geometrically identical with
Ca)

Any solid having one of these groups for its complete symmetry group
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Figure 15.4e

(such as the Archimedean snub cube* shown in Figure 15.4e, whose group
is S4) can occur in two enantiomorphous varieties, dextro and laevo (ie.,
right- and left-handed): mirror images that cannot be superposed by a con-
tinuous motion.

EXERCISES

1. Interpret the following permutations as rotations of the octahedron (Figure
15.4b):

(abcd), (abc), (ab), (ab)cd).
Count the rotations of each type, and check with the known order of S.

2. Using the symbol ( py, p2, p3) for the group having three sets of poles of periods
D1, D2, P3, consider the possibility of stretching the notation so as to allow (1, p, p) = G,
as well as

2,2, p)= D, (2,3,3) = Ay,
2,3,4=S (2,3,5) =4

45

15.5 FINITE GROUPS OF ISOMETRIES

Having enumerated the finite groups of rotations, we can easily solve the
wider problem of enumerating the finite groups of isometries (cf. §2.7).
Since every such group leaves one point invariant, we are concerned only
with isometries having fixed points. Such an isometry is a rotation or a ro-
tatory inversion according as it is direct or opposite (7.15, 7.41).

If a finite group of isometries consists entirely of rotations, it is one of
the groups G considered in § 15.4. If not, it contains such a group G as a
subgroup of index 2, that is, it is a group of order 2n consisting of n rota-
tions Sy, Sa, . .., S, and an equal number of rotatory inversions Ty,

* The vertices of the snub cube constitute a distribution of 24 points on a sphere for which the
smallest distance between any 2 is as great as possible. This was conjectured by K. Schutte and
B. L. van der Waerden (Mathematische Annalen, 123 (1951), pp. 108, 123) and was proved by
R. M. Robinson (/bid., 144 (1961), pp. 17-48). The analogous distribution of 6 or 12 points is
achieved by the vertices of an octahedron or an icosahedron, respectively. For 8 points the fig-
ure is not, as we might at first expect, a cube, but a square antiprism [Fejes T6th 1, pp. 162-164].
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Ts, ..., Tsa. For, if the group consists of n rotations S; and (say) m rota-
tory inversions T; we can multiply by T so as to express the same n + m
isometries as S;T; and T;T;. The n isometries S; Ty, being rotatory inver-
sions, are the same as T; (suitably rearranged if necessary), and the m isom-
etries T;T1, being rotations, are the same as S;. Therefore m = n.

If the central inversion I belongs to the group, the » rotatory inversions
are simply

Sl =18; ((=1,2,...,n),

and the group is the direct product G X {I}, where G is the subgroup con-
sisting of the S’s and {I} denotes the group of order 2 generated by I. (As
an abstract group, {I} is, of course, the same as C, or Dy.)

If I does not belong, the 2n transformations S; and T;I form a group of
rotations of order 2n which has the same multiplication table as the given
group consisting of S; and T;. For, if S;T; = Ty,

SiT;1 = Til,
and if TiTj = Sk,
TIATA = T:I2T; = TiT; = Sk

In other words, a group of n rotations and » rotatory inversions, not in-
cluding I, is isomorphic to a rotation group G’ of order 2n which has a sub-
group G of order n. To complete our enumeration, we merely have to seek
such pairs of related rotation groups. Each pair yields a “mixed” group,
say G'G, consisting of all the rotations in the smaller group G, along with

the remaining rotations in G’ each multiplied by the central inversion L
Looking back at § 15.4, we see that the possible pairs are

C2nCna DnCm Dy Dy, (72 even), S4As.
Thus we can complete Table [II on p. 413.

EXERCISES

1. Determine the symmetry groups of the following figures: (a) an orthoscheme
000,0,0; (Figure 10.4¢) with OyO; = 0,03; (b) an r-gonal antiprism (n even or odd).

2. Designate in the G’G notation the direct product of the group of order 3 gener-
ated by a rotation about a vertical axis and the group of order 2 generated by the re-
flection in a horizontal plane.
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15.6 GEOMETRICAL CRYSTALLOGRAPHY

The sense in which a snail's shell winds is an inheritable character
founded in its genetic constitution, as is . . . the winding of the intestinal
duct in the species Homo sapiens. . .. Also the deeper chemical const-
tution of our human body shows that we have a screw, a screw that is
turning the same way in every one of us.* .. . A horrid manifestation of
this genotypical asymmetry is a metabolic disease called phenylketo-
nuria, leading to insanity, that man contracts when a small quantity of
laevo-phenylalanine is added to his food, while the dextro- form has no
such disastrous effects.

H. Weyl [1, p. 30]

The discussion of symmetry groups has been phrased in such a way as to
be valid not only in Euclidean space but in absolute space. However, it
seems appropriate to mention the application of these ideas to the practical
science of crystallography. Accordingly, in this digression the geometry is
strictly Euclidean.

Crystallographers are interested in those finite groups of isometries which
arise as subgroups (and factor groups) of symmetry groups of three-dimen-
sional lattices. By §4.5, these are the special cases in which the only rota-
tions that occur have periods 2, 3, 4 or 6. This crystallographic restriction
reduces the rotation groups to

Cy, Co, C3, Cy, Cg, Dy, D3, Dy, Dg, Ay, Sy,

the direct products to these eleven each multipled by {1}, and the mixed
groups to

C2Cy, C4Cy, CeCs, D3Co, D3Cs, DyCy, DeCq, DyDy, DgD3, S4A4.

(Of course, C; x {1} 1is just {I} itself.)

These 32 groups are called the crystallographic point groups or “crystal
classes.” Every crystal has one of them for its symmetry group, and every
group except CgCs occurs in at least one known mineral. In the more fa-
miliar notation of Schoenflies [see, e.g., Burckhardt 1, p. 71], the groups are
respectively

Cy, Cy, Cs, C4, Cq, D2, D3, Dy, D¢, T, O,
Ci, Can, Cai, Capn, Con, Dany, D3, Dan, Den, Th, Oh,
Cs, S4, Cap, Cop, Cayy, Cap, Cov, D2g, Dan, Ty

To avoid possible confusion, observe that our C4C> and Sy (S for “sym-
metric”’) are Schoenflies’s Sy and O (for “octahedral”). The 32 groups are
customarily divided into seven crystal systems, as follows:

Triclinic: Cy, {I}.

Monoclinic: Co, Cp X {I}, CoCy.
Orthorhombic: Ds, Dy x {1}, D,Cs.
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Rhombohedral: Cs, C3 X {1}, D;, D3 x {1}, DsGCs.
Tetragonal: Cy, Cs x (I}, CsCo Dy Dy X {1}, DyCs, DyD,.
Hexagonal: Cs, Co x {I}, CeCs, Dg, Dg X {1}, D¢Cs, DgDs.
Cubic: Ay, As X {13, Sy, Sa X {1}, Ssds

Table I (on p. 413) is a complete list of the 17 discrete groups of isometries
in two dimensions involving two independent translations. The analogous
groups in three dimensions are the discrete groups of isometries involving
three independent translations. The enumeration of these space groups is
the central problem of mathematical crystallography. The complete list con-
tains 65 + 165 = 230 groups.

The first 65 are composed entirely of direct isometries. Although these
were enumerated as long ago as 1869 by C. Jordan [see Hilton 1, p. 258],
they are usually attributed to L. Sohncke who, in 1879, pointed out their ap-
plication to crystallography. The most obvioug group consists of transla-
tions alone. The remaining 64 of the 65 contain also rotations and screw
displacements; 22 of them occur in 11 enantiomorphous pairs which are
mirror images of each other (one containing right-handed screw displace-
ments and the other the reflected left-handed screw displacements). This
explains the phenomenon of optical activity [Sayers and Eustace 1, pp. 238-
241, 248-252). From the standpoint of pure geometry or pure group theory,
it would be more natural to ignore this distinction of sense, thus reducing the
number 65 to 54, and the total of 230 to 219 [Burckhardt 1, p. 161].

The remaining 165 groups contain not only direct but also opposite isome-
tries: reflections, rotatory reflections (or rotatory inversions), and glide reflec-
tions. Their enumeration, by Fedorov in Russia (1890), Schoenflies in
Germany (1891), and Barlow in England (1894), provides one of the most
striking instances of independent discovery in different places using different
methods. Fedorov, who obtained the 230 as 73 4+ 54 + 103 instead of 65 +
165, was probably unaware of the preliminary work of Jordan and Sohncke.
It is quite certain that Schoenflies knew nothing of Fedorov, and that Bar-
low’s work was independent of both.

EXERCISE

Determine the symmetry groups of the following figures: (a) a rectangular parallel-
epiped (e.g., a brick), (b) a rhombohedron; (c) a regular dodecahedron with an inscribed
cube (whose 8 vertices occur among the 20 vertices of the dodecahedron).

15.7 THE POLYHEDRAL KALEIDOSCOPE

In combining three reflections . . . the effect is highly pleasing

Sir Dovid Brewster (1781 -1848)
[Brewster 1, p. 93]

Table III (on p. 413) is a complete list of the finite groups of isometries.
In the preceding section, we selected from this list those groups which satisfy
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the crystallographic restriction. Another significant way to make a selection
(partly overlapping with the previous way) is to pick out those groups which
are generated by reflections, namely,

D,Cp(n > 1), Dz,D,(nodd), D, X {I}(neven),
SyAq, Sq X {I}, As X {1).

(We have now returned to absolute geometry!)

D1C (Schoenflies’s Cs, which we previously denoted by C>Cy) is the group
of order 2 generated by a single reflection. D,C; or D2 D; (Schoenflies’s Cs,)
is the group of order 4 generated by two orthogonal reflections. The remain-
ing groups D, C, are the symmetry groups of the n-gonal pyramids. In other
words, these are the groups D, of § 2.7 in a different notation. (We now re-
serve the symbol D,, for the dihedral group of rotations, which is, of course,
isomorphic to D,C,. Weyl[1, p. 80] makes the distinction by calling the ro-
tation group D', and the mixed group D', Cy.)

D, x {I}1is a group of order 8 (abstractly C; X C: X C3) generated by
three orthogonal reflections. The remaining groups D.,D, (nodd) and
D, X {1} (n even) are the symmetry groups of the n-gonal prisms, or of their
reciprocals, the dipyramids.

S4Ad4, the symmetry group of the regular tetrahedron, is derived from the
rotation group A4 by adjoining reflections, such as the reflection in the plane
ABA’B’ (Figure 10.54) which joins the edge 4B to the midpoint of the op-
posite edge CD. (The product of this reflection and the central inversion is
the half-turn about the join of the midpoints of the two opposite edges CD,
C'D of the cube. This half-turn, which interchanges the two reciprocal tetra-
hedra ABCD, A’B’C’'D’, is one of the twelve rotations in S4 that do not be-
long to the subgroup A4; thus it illustrates our special meaning for the
“mixed” symbol S444.) Since the remaining Platonic solids are centrally
symmetrical, their symmetry groups are simply Sy X {I} and 45 X {I}.

For a practical demonstration in Euclidean space, take the two hinged mirrors of § 2.7, inclined
at 180°/n, which demonstrate the group D, C,. Standing them upright on a separate horizontal
mirror, we obtain the symmetry group of the #-gonal prism, i.e., the direct product of D,,C,, and the
group of order 2 generated by the horizontal reflection. To demonstrate the three remaining
groups, remove the third mirror, and let the first two stand vertically on the table at an angle of 60°,
asin the demonstration of D3C3. Now hold the third mirror obliquely, with its horizontal edge /
on the table top at right angles to one of the vertical mirrors and touching the front lower corner of
the other. Gradually rotating this third mirror about its edge / from an almost horizontal posi-
tion (by raising its nearer edge, opposite to /), we observe at a certain stage two faces of a regu-
lar tetrahedron {3, 3}. Each face is subdivided into six right-angled triangles, one of which is
actually the exposed portion of the table top. At a later stage we see three faces of an octahedron
{3, 4}, still later, four faces of an icosahedron {3, 5}. Finally, when the adjustable mirror is ver-
tical like the others, we see a theoretically infinite number of faces of the regular tessellation
{3, 6}, subdivided in the manner of Figure 4.64. This device, employing ordinary rectangular
mirrors, is a simplified version of M&bius’s trihedral kaleidoscope in which the three mirrors are
cut in the shape of suitable sectors of a circle [Coxeter 1, p. 83].

When the E edges of the general Platonic solid { p, ¢} are projected from
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its center onto a concentric sphere, they become £ arcs of great circles, de-
composing the surface into F regions which are “spherical p-gons.” In this
manner the polyhedron yields a “spherical tessellation” which closely re-
sembles the plane tessellation of §4.6. The symmetry group of {p, ¢} is
derived from the symmetry group of one face by adding the reflection in a
side of that face. Thus it is generated by reflections in the sides of a spheri-
cal triangle whose angles are «#/p (at the center of a face), #/2 (at the
midpoint of an edge), and #/q (at a vertex). This spherical triangle is a
fundamental region for the group, since it is transformed into neighboring
regions by the three generating reflections.

Figure 15.7a

The network of such triangles, filling the surface of the sphere, is cut out
by all the planes of symmetry of the polyhedron, namely the planes joining
the center to the edges of both {p, ¢} and its reciprocal {q, p}. In Figure
15.7a (where p and q are 3 and 5), alternate regions have been blackened so
as to exhibit both the complete symmetry group A5 X {I} and the rotational
subgroup A5, which preserves the coloring,.

Instead of deriving the network of spherical triangles from the regular
polyhedron, we may conversely derive the polyhedron from the network.
The ten triangles in the middle of Figure 15.7a evidently combine to form
a face of the blown-up dodecahedron, and the six triangles surrounding a
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point where the angles are 60° combine to form a face of the blown-up
icosahedron.

EXERCISES

1. Interpret the symbol { p, 2} as a spherical tessellation (“dihedron’) whose faces
consist of two hemispheres, and {2, p} as another whose faces consist of p lunes.

2. How many planes of symmetry does each Platonic solid have? Provided p and
g are greater than 2, this number is always a multiple of 3, namely 3¢ in the notation
of Ex. | at the end of § 10.4.

3. Dividing 47 by the area of the fundamental region, obtain a formula for the order
of the symmetry group of {p, g}. Reconcile this with the formula for E (the number of
edges) in 10.32.

15.8 DISCRETE GROUPS GENERATED BY INVERSIONS

In the present section we make one more digression into Euclidean space,
so as to be able to talk about inversion. (The absolute theory of inversion
presents difficulties that would take us too far afield. [See Sommerville 1,
Chapter VIIL])

Figure 15.7a, being an orthogonal projection, represents 10 of the 15 great
circles by ellipses. (The difficult task of drawing it was undertaken by J. F.
Petrie about 1932). An easier, and perhaps more significant, way to repre-
sent such figures is by stereographic projection (§ 6.9), so that the great circles
remain circles (or lines) [Burnside 1, pp. 406-407]. The reader can readily do
this for himself, with the aid of the following simple instructions.

v x

PT S

00

0 I
Figure 15.8a

Figure 15.8a shows a square PQRS with center O, and a regular pentagon
VWXYZ with its sides extended to form a pentagram V'X'Z'W’Y’. With
radius PQ and centers P, Q, R, S, draw four circles. These, along with two
lines through O parallel to the sides of the square, represent 6 greai circles,
one in each of the 6 planes of symmetry of the tetrahedron {3, 3}, which
are the planes joining pairs of opposite edges of a cube. Adding the cir-
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cumcircle and diagonals of the square, we have altogether 9 great circles,
one in each of the 9 planes of symmetry of the cube {4, 3}, which include
3 planes parallel to its faces.

With radius VX' (=VX) and centers V, W, X, Y, Z draw five circles.
With radius VW (=V’'W’) and centers V', W, X', Y’, Z’, draw five more
circles. These ten circles, along with the fivelines VV', WW’ XX', YY', ZZ’,
represent 15 great circles (Figure 15.7a), one in each of the 15 planes of sym-
metry of the icosahedron {3, 5} or of the dodecahedron {5, 3}. (These planes
Jjoin pairs of opposite edges of either solid.)

To justify these statements we merely have to examine the curvilinear tri-
angles* and observe that each has angles n/p, #/q, n/2.

Since stereographic projection is an inversion (Figure 6.9a), and since an
inversion transforms a reflection into an inversion, the figures so constructed
are, in fact, representations of the abstract groups Sy, S4 X Cz, and A5 X Cs
as groups generated by inversions. In other words, they are configurations
of circles so arranged that the whole figure is symmetrical by inversion in
each circle. (Of course, any straight lines that occur are to be regarded as
circles of infinite radius. As we saw in § 6.4, inversion in such a “circle” is
simply reflection in the line.) Any one of the regions into which the plane
is decomposed will serve as a fundamental region, and the generators of the
group may be taken to be the inversions in its sides.

For a group generated by just one inversion, we may invert the circle into
a straight line so as to obtain the group D; of order 2, generated by a single
reflection (§ 2.5). The groups generated by inversions in two intersecting
circles are essentially the same as the groups D, of order 2n, generated by
reflections in two intersecting lines (§2.7). If the circles of two generating
inversions are in contact, they can be inverted into parallel lines, and we
have the limiting case D, (Figure 3.7b). Two nonintersecting circles can
be inverted into concentric circles. Inversions in them generate an infinite
sequence of concentric circles whose radii are in geometric progression.
Abstractly, the group is again D,, but the center is a “point of accumula-
tion” (§ 7.6). So is the point of contact in the case of the group generated
by inversions in two touching circles. A group is said to be discrete if it
has no points of accumulation. Thus, in describing discrete groups gener-
ated by inversions, we may insist that every two of the generating circles in-
tersect properly, and do not touch.

For a discrete group generated by three inversions, the fundamental region
is a curvilinear triangle whose angles are submultiples of #: say #/pi1, 7/pe,
w/ps. For instance, two radii of a circle, forming an angle =/p, cut out a
sector which may be regarded as a “triangle” with angles =/p, w/2, #/2; this
is a fundamental region for the group D, x Di of order 4p, generated by re-
flections in the radii and inversion in the circle. In this case

* For the effect of projecting in a different direction, see Coxeter, American Mathematical
Monthly, 45 (1938), pp. 523-525, Figs. 4 and 5.
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1 1 1
15.81 P1+P2+P3>1’
so that the angle sum of the triangle is greater than #: an obvious conse-
quence of the fact that the sector is derived from a spherical triangle (see
§ 6.9) by stereographic projection, which preserves angles. Every solution
of the inequality 15.81 (cf. 15.42) is a triangle that can be drawn with great
circles on a sphere. We thus obtain again the symmetry groups

S4, S4 X Co, As X Cs

of the Platonic solids.

When 1/py + 1/ps + 1/p3 = 1, so that the angle sum is exactly =, we
have the infinite “Euclidean” groups pém, p4m, p31m (see Table I and
Figure 4.6d). We could transform all the straight lines into circles by means
of an arbitrary inversion; but then, since the pattern is infinitely extended,
the center of inversion would be a point of accumulation.

When 1/p; + 1/p2 + 1/p3 < 1, so that the angle sum of the fundamental
region is less than 7, we may still take two of the three sides to be straight, but
now their point of intersection A is outside the circle g to which the third side
belongs, with the result that there is a circle £ orthogonal to all three (Fig-
ure 15.8b); the tangents from A to g are radii of £.

Since £ is invariant for each of the generating inversions, it is invariant
for the whole group. The circle ¢ decomposes the interior of € into two

Figure 15.8b
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unequal regions and inverts each of these regions into the other. There-
fore the number of triangles is the same in both regions. But the larger
region includes a replica of the smaller. Hence, by Bolzano’s definition of an
infinite set (namely, a set that has the same power as a proper subset), the
number of triangles is infinite; that is, the group is infinite.

Figure 15.8¢

The case when py, po, p3 are 6, 4, 2 is shown in Figure 15.8¢. Unlike Fig-
ure 15.7a, this is not a picture of a solid object. Our familiarity with three-
dimensional space enables us to accept the idea that the triangles in Figure
15.7a are all the same size, even though the peripheral ones are made to look
smaller by perspective foreshortening. In the case of Figure 15.8¢, the
smaller peripheral triangles are essentially the same shape as those in the
middle (since they have the same angles), but we no longer find it easy to
imagine that they are, in some sense, the same size. In trying to stretch our
imagination to this extent, we are taking a first step towards appreciating
hyperbolic geometry, which is the subject of our next chapter.

The reader may wonder why we admit such groups as being worthy of con-
sideration, seeing that the circle £ contains infinitely many points of accumu-
lation. However, when we accept the non-Euclidean standpoint, so that the
circles and inversions are regarded as lines and reflections, the consequent
distortion of distance makes  infinitely far away, so that the points of ac-
cumulation disappear.
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EXERCISES

1. If a system of concentric circles is transformed into itself by inversion in each
circle, the radii are in geometric progression.

2. If three circles form a “triangle” with angles #/p1, 7/ps, w/ps, the inversions R;,
Rs, Rj in its sides satisfy the relations

R12 = R22 = R32 = (R2R3)pl = (R3R1)p2 = (R1R2)p3 = 1.

These relations suffice to define the abstract group generated by R;, Re, R3 [Coxeter
and Moser 1, pp. 37, 55.

3. Given an angle 7/ p; at the center A of a circle  of unit radius, as in Figure 15.85,
find expressions (in terms of p; and py) for the radius of the circle g and for the distance
from A to its center, in the case when p3 = 2.

4. Invert Figure 15.8¢ in a circle whose center lies on £; that is, replace the circle
by a straight line, so that all the inverting circles have their centers on this line. (Such
an arrangement provides an alternative proof that the group is infinite. For if its order
is g, the infinite half plane is filled with g curvilinear triangles, each having a finite area!)

5. InFigure 15.8¢, two of the small triangles (one white and one black) with a com-
mon hypotenuse form together a “curvilinear kite” having three right angles and one
angle of 60°. Trace part of the figure so as to exhibit a network of such kites, alter-
nately white and black. We now have an instance of a group generated by four in-
versions. Can it happen that more than four inversions are needed to generate a
discrete group?
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Hyperbolic geometry

Absolute geometry is not categorical: it is two geometries in one. To be
precise, it leaves open the question of the existence of ultraparallel lines (see
theend of § 15.2). In § 16.1 we shall compare the two possible answers, giv-
ing the unfamiliar the same status as the familiar. In § 16.2 we shall justify
this action by means of a proof of relative consistency. Thereafter, casting
aside all scruples, we shall plunge wholeheartedly into the “new universe”
which Bolyai “created from nothing.”

16.1 THE EUCLIDEAN AND HYPERBOLIC AXIOMS OF PARALLELISM

In the author there lives the perfectly purified conviction (such as he
expects too from every thoughtful reader) that by the elucidation of
this subject one of the most important and brilliant contributions has
been made to the real victory of knowledge, to the education of the
intelligence, and consequently to the uplifting of the fortunes of men.

J. Bolyai (1802 -1860)
[Carslaw 1, p. 31]

In § 12.6, we mentioned the question whether the two rays parallel to a
given line r from an outside point 4 are, or are not, collinear. By applying
a suitable isometry, we see that the answer is independent of the position
of r.

It is true, though less obvious, that, for a given r, the answer is independent
of the position of 4. Suppose, if possible, that the rays parallel to r from A
are the two halves of a line ¢ while the rays parallel to » from another point A’
form an angle, as in Figure 16.1a. By the transitivity of parallelism, these
rays from A’ are parallel to ¢ and also to the infinite sequence of parallel lines
derived from g and r by applying the group D,, generated by reflections in g
and r (Figure 3.7b). We obtain a manifest absurdity by considering any one
of these lines that lies beyond A’ (i.e., in such a position that A’ lies between
that line and r). (Strictly, this argument makes use of the so-called Axiom
of Archimedes, 13.31, which is a consequence of 12.51.)

N0y
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//A\

Figure 16.1a

Thus we have a clear-cut distinction between two kinds of geometry, called
Euclidean and hyperbolic, which are derived from absolute geometry by add-
ing just one of the following two alternative axioms:

THE EUCLIDEAN AXIOM. For some point A and some line r, not through A,
there is not more than one line through A, in the plane Ar, not meeting r.

THE HYPERBOLIC AXIOM.  For some point A and some line r, not through A,
there is more than one line through A, in the plane Ar, not meeting r.

EXERCISE

Each of these axioms implies the stronger statement with “some point 4 and some
line r” replaced by “any point A and any line r.” The Euclidean axiom, so amended,
is equivalent to the celebrated Postulate V (our 1.25). How does Postulate V break
down if we assume the hyperbolic axiom?

16.2 THE QUESTION OF CONSISTENCY

What are we ta think of the question: Is Euclidean Geometry true? [t

has no meaning. We might as well ask . . . if Cartesian coordinates are

true and palar coordinates false. One geomefry cannot be more true
than another; it can only be more convenjent.

H. Paincaré (1854 -1912)

(Science and Hypothesis, New Yark, 1952)

We observe that the Euclidean and hyperbolic axioms differ by just one
word: the vital word “not.” It is meaningless to ask which of the two ge-
ometries is true, and practically impossible to decide which provides a more
convenient basis for describing astronomical space. From the standpoint of
pure mathematics, a more important question is whether either axiom is logi-
cally consistent with the remaining axioms of absolute geometry. Even this
is difficult to answer; for according to the philosopher Goédel, there is no in-
ternal proof of consistency for a system that includes infinite sets. We have
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to be content with relative consistency: if Euclidean geometry is free from
contradiction, so is hyperbolic geometry, and vice versa. Relative consist-
ency is established by finding in each geometry a mode! of the other.

One Euclidean model of the hyperbolic plane (due to Poincaré) was men-
tioned in § 15.8. This uses a circle 2, as in Figure 16.2a. Each pair of inverse
points represents a hyperbolic point, and each circle orthogonal to § repre-
sents a hyperbolic line. The two parallels to r from A4 are simply the circles
through A that touch r at its points of intersection with £. (These points are
the “ends” of r) We call this a conformal model because angles retain their
proper values though distances are inevitably distorted.

A

e A
‘ ’
7
Q w
Figure 16.2a Figure 16.2b

A different Euclidean model, suggested by Beltrami (1835-1900), uses an-
other circle w, as in Figure 16.2b. Each point inside « represents a hyper-
bolic point. The two parallels to r from A are the chords joining A4 to the ends
of the chord r. (Chords whose lines intersect outside w represent ultra-
parallel lines.) We call this a projective model because straight lines remain
straight. Nothing is lost if we replace the circle w in the Euclidean plane by a
conic in the projective plane. In fact, much is gained; for it is possible to ex-
tend the hyperbolic plane into a projective plane by means of entities defined
in the hyperbolic geometry itself [Coxeter 3, p. 196]. In this way we can
prove that hyperbolic geometry is unique or categorical [Borsuk and Szmie-
lew 1, p. 345], unlike absolute geometry, which includes two contrasting
possibilities.

When using models, it is desirable to have two rather than one, so as to
avoid the temptation to give either of them undue prominence. Our geo-
metric reasoning should all depend on the axioms. The models, having
served their purpose of establishing relative consistency [Pedoe 1, p. 61;
Sommerville 1, pp. 154-159], are no more essential than diagrams.

Klein [4, p. 296] exhibited a connection between the conformal and pro-
jective models in the manner of Figure 16.2¢. A sphere, having the same
radius as w, touches the (horizontal) plane at S, the center of both w and £2.
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Figure 16.2¢

Beginning with the projective model, we use orthogonal (vertical) projection
to map w on the “equator” n of the sphere, and each interior point on two
points: one in the southern hemisphere and another (not shown) in the north-
ern hemisphere. Every chord of w yields a circle in a vertical plane, that is,
a circle orthogonal to 5. 'We now map the sphere back into the plane by
stereographic projection, so that n projects into the larger circle {2, concen-
tric with w. Because of the angle-preserving and circle-preserving nature
of stereographic projection, the vertical circles yield horizontal circles ortho-
gonal to €2, and we have the conformal model.

Instead of stereographic projection onto the tangent plane at the “south
pole” S (i.e., inversion with respect to a sphere of radius NS), we could have
used stereographic projection (from the same “north pole” N) onto the equa-
torial plane (i.e., inversion with respect to a sphere through 7) so as to make
both w and Q coincide with p [Coxeter 3, p. 260]. Klein’s procedure is justi-
fied by its property of making the two models agree in the immediate vicinity
of §. This must have seemed to him more important than making them
agree “at infinity.”

It must be remembered that both models are in one respect misleading:
they give us the impression that the center S should play a special role,
whereas, in the abstract hyperbolic plane, all points are alike.

For the sake of completeness, we should mention the problem that the in-
habitants of a hyperbolic world would face in trying to visualize the Euclid-
ean plane. One solution [Coxeter 3, pp. 197-198] is that they could repre-
sent the Euclidean points and lines by the lines and planes parallel to a given
ray in hyperbolic space!

EXERCISES

1. Reflection in aline of the hyperbolic plane appears, in the conformal model, as in-
version with respect to a circle, and in the projective model as a harmonic homology.
What is the corresponding transformation in the space of Klein’s sphere?
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2. Circles appear as circles (not meeting ) in the conformal model, and therefore
as circles on the sphere (say, in the southern hemisphere) and as ellipses in the pro-
jective model.

16.3 THE ANGLE OF PARALLELISM

.. a sea-change into something rich and strange.

W. Shakespeare (1564 -1616)
(The Tempest, Act 1, Scene 2)

A
N
O] M
B r
Figure 16.3a

For the rest of this chapter the geometry will be hyperbolic, that is,
we shall assume the hyperbolic axiom, which implies that, for any point A
and line 7, not through A, the two parallels form an angle N4M, as in Fig-
ure 16.3a. From A draw A B perpendicular to r. Reflection in 4 B shows
that £ BAM and Z NAB are equal acute angles. Following Lobachevsky,
we call either of them the angle of parallelism corresponding to the distance
AB, and write

/ BAM = II(AB).

Before we can prove that this function is monotonic, we need a few more
properties of asymptotic triangles. While proving 15.26 we discovered that,
if a transversal (4D in Figure 15.2f) meets two lines in such a way that the
“alternate” angles are equal, then the two lines are ultraparallel. Hence
[Carslaw 1, p. 48]:

16.31 In an asymptotic triangle EFM, the external angle at E (or F) is
greater than the internal angle at F (or E).

In other words, the sum of the angles of an asymptotic triangle is less
than 7. This will enable us to prove a kind of converse for Theorem 15.25,
to the effect that an asymptotic triangle is determined by its two positive
angles:

16.32 Iftwo asymptotic triangles AEM, A’/E'M" have A = A’ and E = E,
then AE = A'E'.
Proof [Carslaw 1,p.50]. If AE and A’E’ are not equal, one of them must
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A A’

F E

Figure 16.3b

be the greater; let it be A’E’, as in Figure 16.3b. On E/A, take Fso that AF
= A’E’, and draw FM parallel to AM. By 16.31 and 15.25, we have

L MEA > /MFA = /MEA4A = /MEA,

which is absurd.

These results will enable us to establish the existence of a common parallel
to two given rays forming an angle NOM, that is, a line M N which is parallel
to OM at one end and to ON at the other. From the given rays OM, ON,
cut off any two equal segments OA, OA’, as in Figure 16.3¢c. Draw A'M
parallel to OM, and AN parallel to ON. Bisect the angles NAM and NA'M
by lines @ and a’. 'We shall prove that these lines are ultraparallel, and that
the desired common parallel M N is perpendicular to both of them.

0
)
|
a !
N } M
T T

\
L

Figure 16.3¢

Let A’M meet AN in C, and g in E. Since the whole figure is symmetrical
by reflection in OC, the two angles at A and the two angles at A’ are all equal.

If possible, let a and @’ have a common point L, which is, of course, equi-
distant from 4 and A’. Applying 15.25 to the congruent asymptotic triangles
ALM and A’LM, we deduce that £ MLA = £ MLA’, which is absurd.

If possible, let @ and a’ be parallel, with a common end L. Applying 16.32
to the congruent asymptotic triangles 4 EM and A’EL, we deduce that AE =
A’E, whence E coincides with C, which is absurd.

We conclude that @ and a’ are ultraparallel. By 15.26, they have a com-
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mon perpendicular FF’. Applying 15.25 to the congruent asymptotic tri-
angles AFM and A’F’M_ we conclude that

LMFA = / MF'A'.

If F'F were not parallel to OM, we would have an asymptotic triangle FF'M
whose angle sum is 7, contradicting 16.31. Hence, in fact, F’Fis parallel to
OM, and similarly FF’ to ON; that is, the line FF’ is a common parallel to
the two rays as desired.

Moreover, this common parallel is unigue, since two such would be paral-
lel to each other at both ends, contradicting the “clear-cut distinction”
between the Euclidean and hyperbolic properties of parallelism (Figure
16.1a). Itfollows that

16.33 Any two ultraparallel lines have a unique common perpendicular.

For, given a and a’, we can reconstruct Figure 16,3¢ as follows: draw any
common perpendicular FF’, take O on its perpendicular bisector, and let the
two parallels through O to the line FF' meet ain 4, a’ in A",

For the sake of brevity, we have been content to assert the existence of a
line through a given point parallel to a given ray, and of a common perpen-
dicular to two given ultraparallel lines. Actual “ruler and compasses” con-
structions for these lines have been given by Bolyai and Hilbert, respectively
[see Coxeter 3, pp. 204, 191]. Hilbert apparently failed to notice that his
construction for the common parallel to A M and A’N remains valid if these
lines meet in a point that is not equidistant from 4 and A’, or even if they do
not meet at all. In fact [Carslaw 1, p. 76],

16.34 Any two nonparallel rays have a unique common parallel.

This result justifies our use of ends as if they were ordinary points: any
two ends, M and N, determine a unique line MN.

Figure 16.3d

The line through A parallel to BM (Figure 16.3a or d) determines the
angle of parallelism II(4B). Conversely, we can now find a distance x
whose angle of parallelism II(x) is equal to any given acute angle [Carslaw
1, p. 77]. In other words, given an acute angle CAM, we can find a line
BM which is both perpendicular to AC and parallel to AM. We merely have



294 HYPERBOLIC GEOMETRY

to reflect AM in AC, obtaining AN, and then draw the common parallel
MN, which meets AC in the desired point B. Incidentally, since we can
draw through any point a ray parallel to a given ray, it follows that

16.35 For any two nonperpendicular lines we can find a line which is per-
pendicular to one and parallel to the other.

If A’ is on the ray A/B, so that A’B > AB (as in Figure 16.3d), then
II(4’By < II(AB).

(This is simply 16.31, applied to the asymptotic triangle AA4’M.) It follows
that the function 11(x) decreases steadily from { = to 0 when x increases from
0 to 0.

We naturally call AMN a doubly asymptotic triangle [Coxeter 3, p. 188].
We have seen that such a “triangle” is determined by its one positive an-
gle; in other words,

16.36 Two doubly asymptotic triangles are congruent if they have equal
angles.

Applying 16.34 to rays belonging to two parallel lines LM, LN, we ob-
tain a third line parallel to both, forming a trebly asymptotic triangle LMN.
In view of Bolyai’s remark 15.24, we may regard such a triangle as a doubly
asymptotic triangle whose angle is zero. Accordingly, we shall not be sur-
prised to find that

16.37 Any two trebly asymptotic triangles are congruent.

Proof (due to D. W. Crowe). Given any two trebly asymptotic triangles,
dissect each into two right-angled doubly asymptotic triangles by drawing
an altitude (perpendicular to one side and parallel to another, as in 16.35).
By 16.36, all the four doubly asymptotic triangles are congruent. There-
fore the two trebly asymptotic triangles must be congruent.

EXERCISES

1. Draw figures for Theorems 16.33-16.35 in terms of the conformal and projective
models.

2. If a quadrangle 4 BED has right angles at D and E while AD = BE, then the
angles at 4 and B are equal acute angles. (Hint: Draw AM and BM parallel to D/E;
apply 16.31 to the asymptotic triangle A BM.)

3. The sum of the angles of any triangle is less than two right angles. (Hint: For
a given triangle ABC, draw AD, BE, CF perpendicular to the line joining the midpoints
of BC and CA.)

4. Given an asymptotic triangle A BM with acute angles at both 4 and B, draw
AD perpendicular to BM, and BE perpendicular to 4 M, meeting in H. Draw HF
perpendicular to AB. Then FH is parallel to AM [Bonola 1, p. 106]. What happens
if we deal similarly with rays through 4 and B which are not parallel but ultra-
parallel?

5. If two trebly asymptotic triangles have a common side, by what isometry are
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they related? (Of course, two trebly asymptotic triangles may have a common side
without having a common altitude).

6. The inradius of a trebly asymptotic triangle is the distance whose angle of paral-
lelism is 60°.

7. From any point on a side of a trebly asymptotic triangle, lines drawn perpen-
dicular to the other two sides are themselves perpendicular [Bachmann 1, p. 222].

16.4 THE FINITENESS OF TRIANGLES

| could be bounded in a nutshell and
count myself a king of infinite space.

W. Shakespeare
(Hamlet, Act Il, Scene 2)

One of the most elegant passages in the literature on hyperbolic geom-
etry since the time of Lobachevsky is the proof by Liebmann [1, p. 43] that
the area of a triangle remains finite when all its sides are infinite. C. L.
Dodgson (alias Lewis Carroll) could not bring himself to accept this the-
orem; consequently he believed non-Euclidean geometry to be nonsense.

Instead of pursuing a philosophical discussion of the meaning of area
[Carslaw 1, pp. 84-90], let us be content to regard it as a numerical func-
tion, defined for every simple closed polygon, invariant under isometries,
and additive when two polygons are juxtaposed.

Let ABM be any asymptotic triangle. Reflect it in the bisector AF of
the angle A to obtain A4, N, as in Figure 16.4a, F being the point where
the bisector meets the common parallel MN. Reflect the line BM in the
bisector A1F; of / NA1M to obtain AN (with A2 on AM), and then reflect

B 11254
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Figure 16.4a
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this in AF. Continuing in this manner, we construct a network of triangles
whose “vertical” sides bisect the angles at B, A, Ay, Aq, As, . . . and are per-
pendicular to MN at G, F, Fy, Fz, F3, . ... These points are evenly spaced
along MN, since they are all derived from F and F; by the group D, gen-
erated by reflections in AF and A1F;; for instance, G is the image of F in
the mirror AF. The numbered triangles which fit together to fill the asymp-
totic triangle A BM are respectively congruent to those which fit together
within the finite pentagon ABGF;A4; in fact, any two triangles that are num-
bered alike are related by some power of the translation from G to F (or
from F to Fz). Hence the area of the asymptotic triangle is less than or
equal to the area of the pentagon:

16.41  Any asymptotic triangle has a finite area.

Since any doubly asymptotic triangle (Figure 16.3a) can be dissected into
two asymptotic triangles, it follows that

16.42 Any doubly asymptotic triangle has a finite area.

By 16.36, the area of a doubly asymptotic triangle is a function of its an-
gle. Comparing the triangles A MN and A’ MN of Figure 16.3d, we see that
this is a decreasing function: the larger triangle has the smaller angle.

Since any trebly asymptotic triangle can be dissected into two doubly
asymptotic triangles (as in the proof of 16.37), 16.42 implies

16.43 Any trebly asymptotic triangle has a finite area.

By 16.37, this area is a constant, depending only on our chosen unit of
measurement.

16.5 AREA AND ANGULAR DEFECT

Gauss . . . did not recognize the existence of a logically sound non-
Euclidean geametry by intuition or by a flash of genius: . . . on the
contrary, he had spent upon this subject many laborious hours before
he had overcome the inherited prejudice against it. [He] did not let
any rumour of his opinions get abroad, being certain that he would
be misunderstood. Only to a few trusted friends did he reveal some-
thing of his work.

R. Bonola [1, pp. 66-67]

Janos Bolyai, or Bolyai Janos (as it is written in Hungarian), announced
his discovery of absolute geometry in an appendix to a book by his father,
Bolyai Farkas, who was a friend of Gauss. When Gauss saw this book and
read the appendix, he wrote a remarkable letter to his old friend, congratu-
lating Janos and admitting that he himself had thought along the same lines
without publishing the results. The original letter (of March 6, 1832) is lost,
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but the younger Bolyai’s copy of it has been preserved, and it was eventu-
ally published in Gauss’s collected works [Gauss 1, vol. 8, pp. 220-225].

This letter contains a wonderful proof that the area of a triangle ABC is
proportional to its angular defect

mT— A - B - C:

the amount by which its angle sum falls short of two right angles. The fol-
lowing paraphrase fills up a few gaps in the argument, while retaining
Gauss’s systematic division into seven steps, numbered with Roman nu-
merals.

1. All trebly asymptotic triangles are congruent. (This is our 16.37.)

I1. The area of a trebly asymptotic triangle has a finite value, say t. (This
is our 16.43.)

II. The area of a doubly asymptotic triangle AMN is a function of its an-
gle, NAM, say f(¢), where ¢ is the supplement of this angle. Given the angle
¢, we can construct the triangle in a unique fashion (Figure 16.5a; cf. 16.3¢).
Gauss used the supplement, rather than the angle NA M itself, to ensure that
f(¢)1s an increasing function of ¢. (See the remark after 16.42.)

f(r = @)\ f(®)
()

N d>7r—d>M

Figure 16.5a Figure 16.5b

IV. f(¢) + f(m — ¢) = 1.

This may be seen by fitting together two doubly asymptotic triangles AMN
and ANL with supplementary angles, as in Figure 16.55. Here it is under-
stood that 0< ¢ < #. But when ¢ approaches zero, the doubly asymptotic
triangle collapses, and when ¢ approaches = it tends to become trebly asymp-
totic. Hence

16.51 f(O):O, f(W):l,
and IVisvalid for 0 < ¢ < 7.
V.J@) + /W) +/m— ¢ —4) =1
This, with ¢ > 0,4y > 0, ¢ + ¢ < 7, may be seen by fitting together three

doubly asymptotic triangles whose angles add up to 27, as in Figure 16.5c¢.
It evidently remains valid when ¢ or ¥ is zeroor ¢ + ¢ = 7.
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VL f(¢) + f() = f(d + ¥). N

This, with ¢ > 0,¢ > 0, ¢ + ¢ < =, is obtained algebraically, by writing
¢ + yinstead of ¢ in I'V and then using V. It follows that f(¢) is simply a
multiple of ¢, namely,

16.52 f(®) = no
where, by 16.51, p = t/m.

J. H. Lindsay has pointed out that this deduction can be made without
assuming the function to be continuous. By VI, with ¢ = ,

/() =1 f(29).

Thus 16.52 holds when ¢ = i, again when ¢ = 4=, and so on; that is, it
holds when ¢ is 7 divided by any power of 2. Appealing again to VI, we
deduce that f(¢) = pu¢ whenever ¢ = nm, where n is a number which ter-
minates when expressed as a “decimal” in the scale of 2 [cf. Coxeter 3, p.
102]). For brevity, let us call this a binary number.

Suppose, if possible, that, for some particular value of ¢, f(¢) # pé.
Choose a binary number n between the two distinct real numbers ¢/7 and

f(o)/pm. If f(¢) > po, so that
¢ < nm </@ ,
N

we have, since f(¢) is an increasing function,

(@) <[fnm) = pnm < f(9),

which is absurd. If, on the other hand, f(¢) < p¢p,we can argue the same way
with all the inequalities reversed. Hence, in fact, f(¢) = p¢ for all the values
of ¢ (from 0 to 7).

N N
uB
ToyTr-¢ ,uA
oty
M L e M

Figure 16.5¢ Figure 16.5d

VII. The area A of any triangle ABC (with finite sides) is a constant multiple
of its angular defect:

A=pm—A—B-C).

For this final step, Gauss exhibited ABC as part of a trebly asymptotic
triangle by extending its sides in cyclic order, as in Figure 16.54. The re-
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maining parts are doubly asymptotic triangles whose areas are pA4, pB, uC.
Hence

A—{-uA—{-[.LB—{-[.LC:t:[MT,

and the desired formula follows at once.

If we wish, we can follow Lobachevsky in using such a unit of measure-
ment* that the area of a trebly asymptotic triangle is 7. Then p = 1, and
the formula is simply

16.53 A=m—-A-B—-C

This is strikingly reminiscent of the formula 6.92, which tells us that the
area of a spherical triangle drawn on a sphere of radius R is

(4 4+ B+ C— mR2.

In fact, setting R? = —1, we find that Gauss’s result agrees formally with
the area of a triangle drawn on a sphere of radius . Long before the time
of Gauss, it was suggested by J. H. Lambert (1728-1777) that, if a non-
Euclidean plane exists, it should resemble a sphere of radius i. This analogy
enabled him to derive the formulas of hyperbolic trigonometry (which were
later developed rigorously by Lobachevsky) from the classical formulas of
spherical trigonometry. Its full significance did not appear till Minkowski
(1864-1909) discovered the geometry of space-time, which provided a geo-
metrical basis for Einstein’s special theory of relativity. We know now that,
in a (2 + 1)-dimensional space-time, the hyperbolic plane can be repre-
sented without distortion on either sheet of a sphere of time-like radius. In
the underlying affine space, this kind of sphere is a hyperboloid of two
sheets.t
EXERCISES

1. Gauss’s formula 16.53 remains valid when the triangle has one or more zero
angles.

2. The area of any simple p-gon is equal to its angular defect: the amount by which
its angle sum falls short of that of a p-gon in the Euclidean plane. (Hint: Dissect the
polygon into triangles. Of course, we are now assuming p = 1.) In Figure 16.44, the
area of A BM is equal to that of ABGF;A4,.

3. The product of three translations along the directed sides of a triangle (through
the lengths of these sides themselves) is a rotation through the angular defect of the
triangle. (These translations are half as long as those in Donkin’s theorem, 15.31.)
[Lamb 1, p. 7.]

4. The product of half-turns about the midpoints of the sides of a simple quadrangle
(in their natural order) is a rotation through the angular defect of the quadrangle.

5. Any polygon whose angle sum is a submultiple of 2« can be repeated, by half-

* Coxeter, Hyperbolic triangles, Scripta Mathematica, 22 (1956), p. 9.

+ Coxeter, A geometrical background for de Sitter’s world, American Mathematical Monthly, 50
(1943), p. 220.
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turns about the midpoints of its sides, so as to cover the whole plane without interstices
[cf. Somerville 1, p. 86, Ex. 15]. (Hint: See Figures 4.2b and ¢.)

16.6 CIRCLES, HOROCYCLES, AND EQUIDISTANT CURVES

A circle is the orthogonal trajectory of a pencil of lines with a real vertex . ..
A haracycle is the orthogonal trajectory of a pencil of parallel lines. . .. The
orthogonal trajectory of a pencil of lines with an ideal vertex . . . is called an
equidistant-curve.

D. M. Y. Sommerville (1879-1934)
[Sommerville 1, pp. 51-52]

By 15.26, any two distinct lines are either intersecting, parallel, or ultra-
parallel. In other words, they belong to a pencil of lines of one of three
kinds: an ordinary pencil, consisting of all the lines through one point, a
pencil of parallels, consisting of all the lines parallel to a given ray, or a pen-
cil of ultraparallels, consisting of all the lines perpendicular to a given line.
By 15.32, the product of reflections in the two lines is a rotation, a parallel
displacement, or a translation, respectively. By fixing one of the two lines
and allowing the other to vary in the pencil, we see that each of these three
kinds of direct isometry can be applied as a continuous motion.

A circle with center O may be defined either asin § 15.1 or to be the locus
of a point P which is derived from a fixed point Q (distinct from O) by con-
tinuous rotation about O, or to be the locus of the image of Q by reflection in
all the lines through O. When the radius OQ becomes infinite, we have a
horocycle with center M (at infinity): the locus of a point which is derived
from a fixed point Q by a continuous parallel displacement, or the locus of
the image of Q by reflection in all the lines parallel to the ray QM [Coxeter
3, p. 213]. The rays parallel to QM are called the diameters of the horo-
cycle. The first “0” in the word “horocycle” is short, as in “horror,”

The locus of a point at a constant distance from a fixed line o is not a pair
of parallel lines, as it would be in the Euclidean plane, but an equidistant
curve (ot “hypercycle”), having two branches, one on each side of its axis o.
Either branch may be described as the locus of a point which is derived from
a fixed point Q (not on o) by continuous translation along o, or as the locus of
the image of Q by reflection in all the lines perpendicular to o.

Orthogonal to the pencil of lines through O we have a pencil of concentric
circles. A rotation about O permutes the lines and slides each circle along
itself. Orthogonal to the pencil of parallels with a common end M we have a
pencil of concentric horocycles. A parallel displacement with center M per-
mutes the parallel lines and slides each horocycle along itself. Orthogonal to
the pencil of ultraparallels perpendicular to o we have a pencil of ccaxal equi-
distant curves, A translation along o permutes the ultraparallel lines and
slides each equidistant curve along itself.
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We are now ready to fulfill the promise, made after 15.31, to show that
“the product of two translations with nonintersecting axes may be a rotation,”
Referring to Figure 16.3d, we see that the line through C perpendicular to AB
is ultraparallel to AM and AN. Therefore, it has a common perpendicular
GH with AM, and a common perpendicular FE with AN, forming a penta-
gon AEFGH with right angles at E, F, G, H as in Figure 16.6a. The re-
maining angle (at 4) may be as small as we please; if it is zero, the pentagon
is “asymptotic.” The product of reflections in AE and FG is a translation
along EF (through 2EF), The product of reflections in FG and AH is a
translation along GH (through 2GH). Hence the product of these two trans-
lations is the same as the product of reflections in AF and A H, which is a ro-
tation or, if 4 is an “end,” a parallel displacement. Since the axes of the two
translations are both perpendicular to FG, we have thus proved that the
product of translations along two ultraparallel lines may be either a rotation
or a parallel displacement. (Of course, it may just as easily be another trans-
lation.)

Figure 16.6a Figure 16.6b

The product of translations along two parallel lines, AM and BM, leaves
invariant the common end M, therefore it cannot be a rotation, but must
be either a translation along another line through M or a parallel displace-
ment with center M. We shall soon see that the latter possibility arises when
the two given translations are of equal length, one towards M and the other
away from M. In fact, the translation along AM from A to A’ (Figure 16.6b)
transforms the arc A B of a horocycle through 4 into an equal arc A’B’ of the
concentric horocycle through 4’. Let By denote the point in which the latter
arc is cut by the diameter through B. The translation along this diameter
from By to B transforms the arc BoA’ of the second horocycle into the equal
arc BA” of the first. Thus the product of the two translations is the parallel
displacement that transforms the arc 4 Binto A”B"; it slides this horocycle
(and every concentric horocycle) along itself.

EXERCISES

1. The three vertices of a (finite) triangle all lie on each of three equidistant curves,
whose axes join midpoints of pairs of sides, and on a fourth “cycle,” which may be either
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a circle or a horocycle or another equidistant curve (with all three vertices on one
branch). [Sommerville 1, pp. 54, 189.]

2. The threesides of a (finite) triangle all touch a circle (the incircle) and three other
“cycles,” each of which may be of any one of the three kinds,

3. In Figure 15.24, the horocycle through J with diameter p; passes also through L.

4. How many horocycles will pass through two given points? '

5. An equidistant curve may have as many as four intersections with a circle or a
horocycle or another equidistant curve,

6. Develop the analogy between conics in the affine plane and generalized circles
in the hyperbolic plane. A horocycle, like a parabola, goes to infinity in one direction: if
the points P and Q on it are variable and fixed, respectively, the limiting position of
the line QP is the diameter through Q. An equidistant curve, like a hyperbola, has
two branches.

7. Unlike the conjugate axis of a hyperbola, the axis of an equidistant curve is on
the concave side of each branch.

16.7 POINCARE’'S “HALF-PLANE” MODEL

There is a gain in simplicity when the fundamental circle is taken as a
straight line, say the axis of x. . . . We may avoid dealing with pairs
of points by considering only those points above the x-axis. A proper
circle is represented by a circle lying entirely above the x-axis; a
horocycle by a circle touching the x-axis; an equidistant-curve by the
upper part of a circle cutting the x-axis together with the reflexion of
the part which lies below the axis.

D. M. Y. Sammerville [1, pp. 188-189]

From the conformal model (Figure 16.2a) in which the lines are repre-
sented by circles (and lines) orthogonal to a fixed circle &, Poincaré derived
another conformal model by inversion in a circle whose center lies on . The
inverse of Q is a line, say a “horizontal” line, which we shall again denote by
2. The points of the hyperbolic plane are represented by pairs of points
which are images of each other by reflection in Q, and the lines are repre-
sented by circles and lines orthogonal to €2, that is, circles whose centers lie
on £, and vertical lines [Burnside 1, p. 387].

Through a pair of points which are images in 2, we can draw an inter-
secting pencil of coaxal circles (like Figure 6.5a turned through a right angle)
representing an ordinary pencil of lines. The orthogonal nonintersecting
pencil, having Q for its radical axis, represents a pencil of concentric circles.
The limiting points of the nonintersecting pencil represent the common cen-
ter of the concentric circles.

Another pencil of circles (situated as in Figure 6.5a itself) can be drawn
through two points on €. One member of this pencil, having its center on
2, represents a line 0. The remaining circles (or strictly, pairs of them re-
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lated by reflection in ) represent coaxal equidistant curves with axis o, For,
the orthogonal nonintersecting pencil represents the pencil of ultraparallel
lines perpendicular to o.

A tangent pencil of circles whose centers lie on  (Figure 6.5b) represents
a pencil of parallels, whereas the orthogonal tangent pencil (touching ) rep-
resents a pencil of concentric horocycles. One particular pencil of parallels
(special in the model but, of course, not special in the hyperbolic geometry it-
self) is represented by all the vertical lines (which pass, like Q itself, through
the point at infinity of the inversive plane). The horocycles having these
lines for diameters are represented by all the horizontal lines except & (or
strictly, pairs of such lines related by reflection in Q). Since reflections in
the vertical lines represent reflections in the parallel lines, horizontal trans-
lations represent parallel displacements. Hence the horizontal lines (other
than & itself) represent the horocycles isometrically: equal segments repre-
sent equal arcs.

EXERCISES

1. What figure is represented by two lines forn ing an angle that is bisected by Q?

2. When two ultraparallel lines are represented by nonintersecting circles (in either
of Poincaré’s conformal models), the distance between the lines, measured along their
common perpendicular, appears as the inversive distance between the circles (see Ex-
ercise 5 of § 6.6).

3. The angle of parallelism (Figure 16.3d on page 293) is

II(x) = 2 arctan e—=,

16.8 THE HOROSPHERE AND THE EUCLIDEAN PLANE

F. L. Wachter (1792-1817) . . . in a letter to Gauss (Dec., 1816} . . .
speaks of the surface to which a sphere tends as its radius approaches
infinity. . . . He affirms that even in the case of the Fifth Pastulate being
false, there would be a geametry on this surface identical with that of
the ardinary plane.

R. Bonola [1, pp. 62-63]

The ideas in §§ 16.6 and 16,7 extend in an obvious manner from two to
three dimensions. The locus of images of a point Q by reflection in all the
planes through a point O is a sphere with radius OQ. As a limiting case we
have a horosphere with center M (at infinity): the locus of images of a point Q
by reflection in all the planes parallel to the ray QM [Coxeter 3, p. 218]. The
locus of images of a point Q by reflection in all the planes perpendicular to a
fixed plane w is one sheet of an equidistant surface, which consists of points at
a constant distance from  on either side.

There is a conformal model in inversive space in which the points of
hyperbolic space are represented by pairs of points related by reflection in
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a fixed “horizontal” plane {, and the planes are represented by spheres and
planes orthogonal to £, that is, spheres whose centers lie on @, and vertical
planes. The representation of lines (which are intersections of planes) fol-
lows immediately. Of particular interest is the bundle of vertical lines,
which represents the bundle of lines parallel to a given ray QM (special in
the model, though not in the hyperbolic geometry itself). The horospheres
that have these lines for diameters are represented by all the horizontal
planes except {2. Since every vertical plane provides a model (of the kind
described in §16.7) for a plane in the hyperbolic space, each horizontal
plane (except {) represents a horosphere, and every line in the plane repre-
sents a horocycle on the horosphere. Since distances along such lines agree
with distances along the corresponding horocycles, the representation of the
horosphere by the Euclidean plane is isometric: for any figure in the Eucli-
dean plane there is a congruent figure on the horosphere (with lines replaced
by horocycles).

This astonishing theorem was discovered independently by Bolyai and Lo-
bachevsky. For two different proofs, see Coxeter [3, pp. 197, 251]. It means
that, along with ordinary spherical geometry, the inhabitants of a hyperbolic
world would also study horospherical geometry, which is the same as Eucli-
dean geometry!



