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Preface

Here are notes in English from Ordinal Analysis II, given at
the Nesin Matematik Köyü in Şirince, February –, .
English is the language I wrote on the blackboards of the
Nişanyan Kütüphanesi, while speaking mostly in Turkish. One
student proposed that I speak in English, but another student
objected.

At the beginning of the first day, when there were around
fifty students, I wrote the sequence of ordinals—() on page
—across all four boards in the library. On the last day, there
were seven students.

I had given Ordinal Analysis I in the previous week, in the
Arf Dersliği. The two courses together together covered much
of what I had done in Aksiyomatik Kümeler Kuramı in the
previous semester at Mimar Sinan.
Ordinal Analysis I introduced the Zermelo–Fraenkel axioms

as they were needed to develop and prove the desired
properties of the class ON of ordinals.

Ordinal Analysis II assumed those properties (listed on page
) and developed the arithmetic of the ordinals.

The latter course is summarized on page . I did not typeset
new notes for the first course. I did not assume that students
in the second course had taken the first. In all but one or two
cases they had not. One student from the Mimar-Sinan course
did attend the entirety of Ordinal Analysis II.

I started that course, thinking that I would progressively





introduce concrete examples of well-ordered sets:
) ω, closed under addition, multiplication, and exponen-

tiation, but containing no limits;
) ω ⊔ ω, isomorphic to ω + ω and containing a single

limit;
) ω×ω, isomorphic to ω ·ω, closed under addition, and

containing infinitely many limits, which themselves have
no limit;

) the set of operations on ω that have finite support: this
set is isomorphic to ω

ω, is closed under addition and
multiplication, and has limits of limits;

) the set of finite rooted trees: this set is isomorphic to ε0

and closed under all of the operations.
In the event, I did not isolate the last two examples, but I
interpreted arbitrary powers αβ as sets of functions, and after
ω I considered only ON itself as being closed under all of the
operations.

I often left proofs as exercises. Had there been time, I would
have had students give their proofs at the board: I do this at
Mimar Sinan, and I have done it in other courses at the Math
Village. This time I wanted to cover all of my Mimar-Sinan
course in two-thirds of the time.

Some students asked for references. These would include:
• the notes (in Turkish) from my Mimar-Sinan course;
• any set-theory textbook, particularly Levy, Basic Set

Theory (Dover, ), which has perhaps been my own
main reference;

• Ali Nesin’s Açık Ders text, Aksiyomatik Kümeler Ku-
ramı (Dönem ), on the website of the Türkiye Bilimler
Akademisi. I have recommended this text to students at
Mimar Sinan and used as a source for Turkish terminol-
ogy.
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My Personal Journey

I was not prepared for the question of references. Since I
started learning real mathematics from one Donald J. Brown
in my last two years (–) at St. Albans School in Washing-
ton, D.C., I have understood the main text of a mathematics
course to be the teacher’s own lectures. Mr Brown had us
copy down exactly what he wrote on the blackboards of his
classroom, and he inspected our notebooks (though perhaps
mainly to see that we had reinforced the holes in our sheets of
paper so that they would not easily tear from our three-ring
binders).

Mr Brown did have us buy supplementary books, to be used
particularly as sources of exercises.∗ One of the books was Spi-
vak’s Calculus. I read this, while understanding that Spivak’s

∗For the record, the books were the following, roughly in order of use.
• Kutepov and Rubanov, Problem Book: Algebra and Elementary

Functions (Moscow: Mir, );
• Dorofeev, Potapov, and Rozov, Elementary Mathematics: Selected

Topics and Problem Solving (Moscow: Mir, );
• Spivak, Calculus, Second Edition (Berkeley: Publish or Perish,

);
• Salas and Hille, Calculus: One and Several Variables, Part I, Third

Edition (New York: Wiley, );
• Petit Bois, Tables of Indefinite Integrals (New York: Dover, );
• Apostol, Mathematical Analysis, Second Edition (Reading, Mas-

sachusetts: Addison-Wesley, ).
I am able to list these books, because I have kept them.





approach to the subject was not “official” when it differed from
our own (as it did for example in the development of the real
numbers as a complete ordered field, and later in the defini-
tions of the trigonometric functions). I might have preferred
Spivak’s or another approach; If I ever taught my own course.
I could do things my way.

This is what I have often done, starting when I was assigned
to join two colleagues in teaching Fundamentals of Mathemat-
ics at METU in Ankara in the fall of -. One of those
colleagues (who was from Germany) proposed that he and I
write the text of the course. Part of my own share of the
writing became the text that Ayşe Berkman used when teach-
ing Set Theory at METU in the fall of -. I revised and
rewrote that text when teaching the set-theory course for my-
self in -, -, and -. When I moved to Istanbul, I
prepared texts in Turkish for the course Aksiyomatik Kümeler
Kuramı, which I have given so far in -, -, -,
-, and -.

Without going back and reviewing all of those texts (though
they are all on my webpage at Mimar Sinan), I think the pro-
gression has been as follows. Initially I tried to write down
what a teacher should know, or at least what I wanted to
know. I pared down down what I wrote as I learned the ma-
terial and the students. I have come to emphasize ordinal
arithmetic, through computation with Cantor normal forms,
because, as I understand it, the Turkish national university
entrance examinations are largely computational, at least as
far as mathematics is concerned.

It has also come to seem worthwhile to me to develop an
analogy between the “well-order” of the ordinal numbers and
the complete dense ordering of the real numbers. I am not
a set theorist in the sense of publishing new research in the

 My Personal Journey



subject, and I do not expect my students to become set the-
orists (though one of them has). Students are more likely to
work with analysis than set theory. The former had been my
own introduction to modern mathematical rigor, through Mr
Brown’s two-year course of honors precalculus and calculus.
All students of mathematics learn such techniques as differen-
tiation and integration, which are justified by the aforemen-
tioned rigor. Students may forget the techniques, but they
ought to retain an awareness of the possibility of justifying
them. The standards of justification are universal, precisely
because they are the individual property of each of us.





Summary

Monday Paradoxes of Russell and Burali-Forti. ω and ω⊔ω

as well-ordered sets. Addition on ω is defined by recur-
sion; its properties are proved by induction. Addition of
a natural number to an element of ω ⊔ω in two ways,
only one being continuous.

Tuesday Continuity of functions, especially increasing func-
tions, from ordered sets to ordered sets.

Wednesday The desired properties of R lead to Dedekind’s
construction; of ON, to von Neumann’s. Transfinite re-
cursion. α + β ∼= α ⊔ β.

Thursday History of our subject. Properties of addition and
multiplication of ordinals proved by transfinite induc-
tion. An increasing operation on ON is continuous if
and only if its value at every limit is the supremum of
its values at the preceding ordinals. α·β ∼= α×β. Cantor
normal forms of elements of ω×ω and ω

ω.
Friday Ordinal exponentiation. Cantor normal forms of arbi-

trary ordinals and the generalization to arbitrary bases.
αβ is isomorphic to the set of functions from β to α with
finite support.

Saturday Computation with Cantor normal forms. Each of
α+ β, α · β, and αβ is equipollent with the greater of α
and β, if these are infinite.





 Monday

The ordinal numbers or ordinals compose this linear order :∗

0, 1, 2, . . . ;ω,ω+ 1,ω+ 2, . . . ;ω+ω = ω · 2,

ω · 2 + 1, . . . ;ω · 3,ω · 3 + 1, . . . ;ω ·ω = ω
2,

ω
2 + 1, . . . ;ω2 +ω,ω2 +ω+ 1, . . . ;ω3, . . . ;ωω,

ω
ω + 1, . . . ,ωω

ω

, . . . ; ε0, ε0 + 1, . . . ; ε1, . . . ;ω1, . . .



















()

• ω is omega, “large o,” the minuscule case of the last letter
of the Greek alphabet; we shall understand

ω = {0, 1, 2, . . .},

the set of natural numbers. (The set {1, 2, 3, . . .} of
counting numbers can be denoted by N.)

• ε0 will be the first solution; ε1, the next; to the equation

ω
x = x.

• ω1 will be the least ordinal α such that the set

{x : x < α}

is uncountable, meaning there is no bijection with ω

or a subset of it.†

∗The definition of linear ordering is spelled out on page .
†People asked about the εx and ω1, so I talked about them.





Moreover, the ordinals have the following properties:
. Every α of them has a successor, α′ or α + 1, which is

the first of those that are greater than it.
. Every set A of them that has no greatest element still

has a supremum or least upper bound, sup(A).

Theorem  (Burali-Forti Paradox). The class of ordinals is
not a set.

Proof. Since every ordinal has a successor, the class of ordinals
has no supremum, so it cannot be a set.

The class of ordinals is “too big” to be a set. Another exam-
ple is given by the following.

Theorem  (Russell Paradox). The class {x : x /∈ x} is not
a set.

A technical property of the ordinals is the following.
. They are left-narrow:∗ for each α of them, the class

{x : x < α} or pred(α) is a set.

Theorem . The class of ordinals is well-ordered: it is left-
narrow, and every nonempty set A of them has a least element,
min(A).

Proof. Let B be a nonempty set of ordinals, and let

A =
⋂

x∈B

pred(x) = {x : ∀y (y ∈ B ⇒ y < x)}.

This is a set of ordinals, so it has a supremum, α.
• If α /∈ A, then it is the least element of B.

∗In class, I did not use this term, which is from Levy, I.(vii), p. .
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• If α ∈ A, then its successor is the least element of B.

Conversely, the following are true in every well-ordered class.
. If α is not the greatest element, then

α′ = min{x : α < x}.

. If A has an upper bound, then

sup(A) = min{x : ∀y (y ∈ A ⇒ y 6 x)}.

In ω, every element is either the least element, namely 0,
or the successor of an element.

Theorem . ω admits (finite) induction: If A ⊆ ω and
) 0 ∈ A,
) ∀x (x ∈ A ⇒ x′ ∈ A),

then A = ω.

Proof. The least element ωrA can be neither 0 nor a succes-
sor, so there isn’t one. Therefore ωr A = ∅.

For any sets A and B, we define

A ⊔ B = (A× {0}) ∪ (B × {1}),

the disjoint union of A and B.

Theorem . ω ⊔ω is well-ordered by the rule

(a, e) < (b, f) ⇔ e < f ∨ (e = f ∧ a < b).

Proof. In order,

ω ⊔ω = {(0, 0), (1, 0), (2, 0), . . . ; (0, 1), (1, 1), (2, 1), . . .}.

Thus ω ⊔ω is well-ordered. Indeed, for nonempty subsets A,

min(A) =

{

(min{x : (x, 0) ∈ A}, 0), if ∃x (x, 0) ∈ A;

(min{x : (x, 1) ∈ A}, 1), if ∀x (x, 0) /∈ A.





In ω⊔ω, (0, 1) is neither the least element nor the successor
of an element. We call such an element of a well-ordered set a
limit. Thus a limit is an element a such that

∃x x < a ∧ ∀x (x < a ⇒ x′ < a).

Let us denote this condition by

lim(a).

Theorem . ω ⊔ω admits transfinite induction: If A ⊆
ω ⊔ω and

) 0 ∈ A,
) ∀x (x ∈ A ⇒ x′ ∈ A),
) ∀x (lim(x) ∧ pred(x) ⊆ A ⇒ x ∈ A),

then A = ω.

Proof. The least element (ω⊔ω)rA can be neither 0, nor a
successor, nor a limit.

Theorem . On ω, functions can be defined by (finite) re-
cursion: If A is any set, and b ∈ A, and f : A → A, then a
unique function g from ω to A exists such that

) g(0) = b,
) ∀x g(x′) = f(g(x)).

Proof. If it exists, such a function is unique, by induction.
Likewise, for each n in ω, if it exists, a function gn from
pred(n′) to A such that

) gn(0) = b;
) ∀x (x < n ⇒ g(x′) = f(g(x)),

is unique, by induction. By induction, gn does exist for all n
in ω, since

) g0 can be {(0, b)},
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) gn′ can be gn ∪ {(n′, f(gn(n)))}.
Now we can define

g(n) = gn(n).

Now for each n in ω we define the operation

x 7→ n+ x

on ω by the rules
) n + 0 = n,
) n + k′ = (n+ k)′.

Now we have addition as a binary operation on ω.

Theorem . For each n in ω, the operation x 7→ n + x is
strictly increasing.

Proof. We prove

k < m ⇒ n + k < n +m

by induction on the rightmost letter, m.
. Since always k 6< 0, we conclude

k < 0 ⇒ n+ k < n+ 0.

. Suppose k < ℓ ⇒ n + k < n + ℓ. Say now k < ℓ′. Then
k 6 ℓ. There are two cases.

a) If k = ℓ, then n + k = n+ ℓ.
b) If k < ℓ, then n + k < n+ ℓ by hypothesis.

In either case,

n + k 6 n+ ℓ < (n + ℓ)′ [definition]

= n + ℓ′. [definition]

Theorem . Addition on ω is associative.





Proof. We prove

(n + k) +m = n + (k +m)

by induction on m.∗

. By definition,

(n + k) + 0 = n+ k = n+ (k + 0).

. Suppose (n+ k) + ℓ = n+ (k + ℓ). Then

(n + k) + ℓ′ = ((n + k) + ℓ)′ [definition]

= (n + (k + ℓ))′ [hypothesis]

= n + (k + ℓ)′ [definition]

= n + (k + ℓ′). [definition]

Lemma . On ω,
0 + n = n.

Proof. We use induction.†

. By definition,
0 + 0 = 0.

. Suppose 0 +m = m. Then

0 +m′ = (0 +m)′ [definition]

= m′. [hypothesis]

Lemma . On ω,

(n+ k)′ = n′ + k.

∗I did not give the remainder of the proof.
†In class I combined this and the next lemma as one, leaving the

proof of the first part as an exercise.
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Proof. We use induction on k.
. By definition,

(n + 0)′ = n′ = n′ + 0.

. Suppose (n+m)′ = n′ +m. Then

(n +m′)′ = (n+m)′′ [definition]

= (n′ +m)′ [hypothesis]

= n′ +m′. [definition]

Theorem . Addition is commutative on ω.

Proof. We prove n + k = k + n by induction on n. First,

0 + k = k [Lemma ]

= k + 0. [definition]

Next, if m+ k = k +m, then

m′ + k = (m+ k)′ [Lemma ]

= (k +m)′ [hypothesis]

= k +m′. [definition]

Theorem . For each n in ω, the function x 7→ x + n is
strictly increasing.

Proof. Theorems  and .

We can embed ω in ω ⊔ω by the rule

x 7→ (x, 0).

Then we can identify each element of ω with its image, but
define

ω+ n = (n, 1).





In order then,

ω ⊔ω = {0, 1, 2, . . . ;ω,ω+ 1,ω+ 2, . . . }.

For each k in ω, we extend the operation

x 7→ x+ k

from the domain ω to the domain ω ⊔ω by defining

(ω+ n) + k = ω+ (n+ k).

The operation is still strictly increasing. However,

sup{x+ k : x < ω} = ω,

which is strictly less than ω + k if k > 0. Therefore, as we
shall see, the operation then is not continuous at ω. If we
define

x 7→ k + x

on ω ⊔ω by
k + (ω+ n) = ω+ n,

then the operation is still strictly increasing. Also,

sup{k + x : x < ω} = ω = k +ω,

so the operation is continuous at ω.
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 Tuesday

To define continuity, suppose f is a function from a linear
order A to a linear order B, and c ∈ A. For example, A and
B could be the set of real numbers. Then f is continuous at
c, provided that for all ε1 and ε2 in B such that

ε1 < f(c) < ε2,

for some δ1 and δ2 in A such that

δ1 < c < δ2,

for all x in A,

δ1 < x < δ2 ⇒ ε1 < f(x) < ε2.

In case B or A has a minimum or maximum, and f(c) or c is
it, we must allow

• ε1 or δ1 to be −∞,
• ε2 or δ2 to be ∞.

In case B is well-ordered, we shall understand

(−∞)′ = min(B), max(B)′ = ∞,

and likewise for A.

Theorem . Suppose A and B are well-ordered, f : A → B,
and c ∈ A.





. If c is the least element or a successor in A, then f is
continuous at c.

. Suppose c is a limit. The following are equivalent.
a) f is continuous at c.
b) For all ε such that ε < f(c), for some δ such that

δ < c, for all x in A,

δ < x < c ⇒ ε < f(x) 6 f(c).

c) For all ε such that ε < f(c), for some δ such that
δ < c,

ε < min
δ<x<c

f(x), sup
δ<x<c

f(x) = f(c).

Proof. . If c is not a limit in A, we may suppose c = d′ for
some d in {−∞} ∪A. Also c′ ∈ A ∪ {∞}. Thus

d < c < c′.

Moreover,

∀x (d < x < c′ ⇒ x = c).

Thus for all ε1 and ε2 in B such that

ε1 < f(c) < ε2,

for all x in A,

d < x < c′ ⇒ ε1 < f(x) < ε2.

Therefore f is continuous at c.

. Now suppose c is a limit.
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a) Suppose f is continuous at c, and ε < f(c). For some δ
such that δ < c, for all x in A,

δ < x < c′ ⇒ ε < f(x) < f(c)′

and therefore

δ < x 6 c ⇒ ε < f(x) 6 f(c).

b) Suppose that, for all ε such that ε < f(c), for some δ
such that δ < c,

∀x (δ < x < c ⇒ ε < f(x) 6 f(c)).

This means precisely

ε < min
δ<x<c

f(x), sup
δ<x<c

f(x) 6 f(c).

Suppose if possible that, for all δ such that δ < c,

sup
δ<x<c

f(x) < f(c).

Now let ε = supδ<x<c f(x). By our hypothesis, for some
d such that d < c,

∀x (d < x < c ⇒ ε < f(x) 6 f(c)).

Since c is a limit, there is a in A such that max(d, δ) <
a < c. Then

f(a) 6 sup
δ<x<c

f(x) = ε < f(a),

which is absurd.





c) Suppose for all ε such that ε < f(c), for some δ such that
δ < c,

ε < min
δ<x<c

f(x), sup
δ<x<c

f(x) = f(c).

Then

∀x (δ < x < c′ ⇒ ε < f(x) 6 f(c) < f(c)′.

Thus f is continuous at c.

Corollary. Under the conditions of the theorem, if f is also
increasing, then it is continuous at a limit c if and only if

sup
x<c

f(x) = f(c).

The set ω ⊔ ω is ω × {0, 1}, a subset of ω × ω. This is
well-ordered by the rule of Theorem . Let us use the notation

ω · n+ k = (k, n).

The elements ω · n are limits when n > 0. Now we can define

(ω ·n+k)+(ω ·m+ ℓ) =

{

ω · n+ (k + ℓ), if m = 0,

ω · (n+m) + ℓ, if m > 0.
()

Theorem . For each α in ω×ω, the operation

x 7→ α + x

is strictly increasing and continuous; the operation

x 7→ x+ α

is increasing, though not strictly, and is not continuous unless
α = 0.
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We could also define

(ω · n + k)⊕ (ω ·m+ ℓ) = ω · (n +m) + (k + ℓ).

Then ⊕ is commutative and associative, but continuous in
neither argument.





 Wednesday

What is an ordinal number? Well, what is an real number? To
do real analysis, all one need know is that the real numbers
together compose a complete ordered field, R. That this is
complete means every nonempty subset with an upper bound
has a least upper bound, or supremum.

Every ordered field includes the ordered field Q of rational
numbers. In an ordered field, if Q has an upper bound a, then
a− 1 is also an upper bound; therefore there is no least upper
bound.

Ordered fields in which Q is bounded do exist. For example,
if

Q[X ] = {polynomials in X over Q},

Q(X) =

{

f

g
: f ∈ Q[X ] ∧ g ∈ Q[X ]r {0}

}

,

this field can be ordered by the rule

a0 + a1X + · · ·+ amX
m

b0 + b1X + · · ·+ bnXn
> 0 ⇔

am
bn

> 0.

Hence for all a in Q, X − a > 0, and so X > a. Thus X is an
upper bound of Q.

An ordered field in which Q has no upper bound is called
Archimedean. Being complete, R must be Archimedean.





Because of this, Q is dense in R: between any two real num-
bers lies a rational number. Therefore the function f on R

given by

f(α) = {x ∈ Q : x < α}

is injective. Moreover, its range is the set of subsets A of Q
such that

∅ ⊂ A ⊂ Q,

∀x ∀y (x < y ∧ y ∈ A ⇒ x ∈ A).

Thus we can define the range of f without having f or R. This
means we can define R as the range of f .

One then must extend the definitions of addition and multi-
plication on Q to R. For every a in Q, the functions x 7→ a+x
and x 7→ a · x are continuous on Q; they will remain so on R.

To do ordinal analysis, all we need know is that the ordinal
numbers together compose a class ON with certain properties:

. ON is well-ordered. This means:
a) ON is linearly ordered, so that for any α, β, and

γ in ON,

α 6< α,

α < β ∧ β < γ ⇒ α < γ,

α 6 β ∨ α > β.

b) every nonempty subset A of ON has a least ele-
ment, min(A).

c) the class pred(α) or {x : x < α} of predecessors of
a given ordinal α is a set.∗

∗It follows now that every nonempty class of ordinals has a least
element, but I did not spell this out.





. ON is non-empty, so it has a least element, 0.
. ON has no greatest element, so every element α of ON

has a successor, α′, namely min{x : x > α}.
. Every subset A of ON has an upper bound and therefore

a supremum, sup(A), namely

min{x : ∀y (y ∈ A ⇒ y 6 x)}.

. ON contains limits, namely elements that are neither 0
nor successors; the least limit is ω.

Can we prove that there are more limits than ω? As we did
from ω to ω ⊔ω, we recursively define x 7→ ω + x from the
subset pred(ω) of ON to ON itself by

ω+ 0 = ω, ω+ x′ = (ω+ x)′.

Then sup{ω + x : x < ω} is the next limit after ω. It exists
by the Replacement Axiom: the image of a set under a
function is still a set.

For any α in ON, we define x 7→ α+ x by transfinite recur-
sion:

. α+ 0 = α.
. α+ β ′ = (α + β)′.
. lim(γ) ⇒ α + γ = sup{α+ x : x < γ}.

We can do this by the following.

Theorem  (Transfinite Recursion). If α ∈ ON and F is
an operation on ON, then a unique operation G on ON exists
such that

) G(0) = α,
) ∀x (G(x′) = F (G(x))),
) ∀x (lim(x) ⇒ G(x) = sup(G[pred(x)]).
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Proof. By transfinite induction, there is at most one such G.
For the same reason, for each β in ON, there is at most one
function gβ from pred(β ′) to ON with the properties of G,
and also

δ 6 γ 6 β ⇒ gβ(δ) = gγ(δ).

Again by transfinite induction, there is at least one such gβ for
each β; for we can let

g0 = {(0, α)},

gβ′ = gβ ∪ {(β ′,F (gβ(β)))},

lim(γ) ⇒ gγ =
⋃

{gx : x < γ} ∪ {(γ, sup{gx(x) : x < γ})}.

Then G can be x 7→ gx(x).

By a modification of the proof, there is G such that
) G(0) = ∅,
) ∀x G(x′) = G(x) ∪ {G(x)},
) ∀x (lim(x) ⇒ G(x) = G[pred(x)]).

In this case,
∀x (G(x) = G[pred(x)]).

Then G[ON] consists of sets that are
• well-ordered by ∈,
• transitive,

where a set A is transitive if

∀x ∀y (y ∈ x ∧ x ∈ A ⇒ y ∈ A),

that is,
∀x (x ∈ A ⇒ x ⊆ A).

One can show that every transitive set that is well-ordered by
∈ belongs to the range of G. Thus we can define ON as this





range. Now each α in ON is pred(α); also,

α′ = α ∪ {α}.

Hence

0 = ∅, 1 = 0′ = {0}, 2 = 1′ = {0, 1},

and so on. Also, if A is a set of ordinals, then

sup(A) =
⋃

A = {x : ∃y (y ∈ A ∧ x ∈ y)}.

Theorem . For all α and β in ON,

α + β ∼= α ⊔ β,

where α ⊔ β is well-ordered by the rule,

(a, b) < (c, d) ⇔ b < d ∨ (b = d ∧ a < c).

Proof. Since α+ β = α ∪ {α+ x : x < β}, the map

x 7→

{

(x, 0), if x < α,

(y, 1), if x = α + y < α + β

is an order-preserving bijection from α + β to α ⊔ β.

We know from yesterday that x 7→ α + x is always contin-
uous. What is the least positive ordinal, after ω,∗ on which
(x, y) 7→ x+ y is closed?

∗I forgot this condition in class.
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Some history:
Archimedes (died  b.c.e.): examples of integral calculus
Newton, Leibniz (born , ): calculus
Dedekind (b. ): definition of R (discovered , pub-

lished )
Cantor (b. ): ordinals beyond ω ()
Zermelo (b. ): most of our set-theory axioms ()
Skolem, Fraenkel (b. , ): the Replacement Axiom

()
von Neumann (b. ): definition of ON ()

Yesterday we defined addition on ON by transfinite recur-
sion. We proved the following on Monday, as Theorem , for
addition on ω.

Theorem . For each α in ON, the operation x 7→ α + x
on ON is strictly increasing.

Proof. We prove

β < γ ⇒ α + β < α+ γ

by transfinite induction on γ. The first and limit steps are just
as for Theorem :

. The claim is true when γ = 0.
. If, for some δ, the claim is true when γ = δ, then it is

true when γ = δ′.





For the third step, the limit step, we suppose δ is a limit and
the claim is true whenever γ < δ. Suppose also β < δ. Then

β < γ < δ

for some γ (for example, γ = β ′). Therefore

α + β < α + γ 6 sup
x<δ

(α + x) = α + δ,

so our claim is true when γ = δ. This completes the proof by
transfinite induction.

Now x 7→ α + x is also continuous, by Theorem  and its
corollary from Tuesday: if an operation F on ON (or from
any well-ordered set or class to a well-ordered set or class) is
increasing, then F is continuous if and only if, at every limit
γ,

F (γ) = sup
x<γ

F (x) = supF [γ].

We proved the following as Theorem , for addition on ω.

Theorem . Addition on ON is associative.

Proof. We prove

α+ (β + γ) = (α + β) + γ

by transfinite induction on γ. The first two steps are just as
for Theorem . Suppose now δ is a limit, and the claim is true
whenever γ < δ. Then

α + (β + δ) = α + sup
x<δ

(β + x) [definition]

= sup
x<δ

(α + (β + x)) [Theorem ]

= sup
x<δ

((α + β) + x) [hypothesis]

= (α + β) + δ. [definition]
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Here we have used the following.

Theorem . Suppose
• F is an increasing, continuous operation on ON,
• A is a nonempty subset of ON,
• α = sup(A).
. If α /∈ A, then

supF [A] = supF [α].

. In any case,
F (α) = supF [A].

Proof. The second part is easy when α ∈ A. Suppose α /∈
A. Then α must be a limit, so, since F is increasing and
continuous,

F (α) = supF [α].

The second part now follows from the first. Since A ⊆ α and
F is increasing,

supF [A] 6 supF [α].

When β < α, then β < γ for some γ in A, and therefore, again
since F is increasing,

supF [α] 6 supF [A].

Note that

α + 1 = α + 0′ = (α + 0)′ = α′.

Thus
1 +ω = sup

x<ω

(1 + x) = ω < ω
′ = ω+ 1,

so addition is not commutative; likewise, for all n in ω,

n +ω = ω.





The following generalizes Lemma  (used to prove Theorem
, that addition is commutative on ω).

Theorem . For all α in ON,

0 + α = α.

Proof. Transfinite induction.

The following is the version of Theorem  (that x 7→ x+n
is strictly increasing on ω) for ON.

Theorem . For all α in ON, the operation x 7→ x + α is
increasing, that is,

β < γ ⇒ β + α 6 γ + α.

Proof. Transfinite induction on α.

It follows from Theorems  and  that α is closed under
addition if (and only if) it is closed under x 7→ x + x. This
operation is x 7→ x · 2 by the following definition.

. α · 0 = 0.
. α · β ′ = α · β + α.
. lim(γ) ⇒ α · γ = sup{α · x : x < γ}.

By Theorem ,

α · 1 = α · 0′ = α · 0 + α = 0 + α = α,

α · 2 = α · 1′ = α · 1 + α = α + α,

and so on.

Theorem . For all α in ON,
) 0 · α = 0,
) 1 · α = α.
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Proof. Transfinite induction.

The operation x 7→ α · x is now
• increasing and continuous when α = 0;
• strictly increasing and continuous when α = 1.

It is strictly increasing and continuous whenever α > 1, by an
analogue of Theorem .

Theorem . For all α, β, and γ in ON,

α · (β · γ) = (α · β) · γ,

α · (β + γ) = α · β + α · γ.

Proof. Induction on γ in either case.

Multiplication is not commutative, because for example for
all n in ω, if n > 1, then

n ·ω = sup
x<ω

(n · x) = ω = ω · 1 < ω · n.

Theorem . For all α and β in ON,

α · β ∼= α× β,

where α× β is well-ordered by the rule,

(a, b) < (c, d) ⇔ b < d ∨ (b = d ∧ a < c).

Proof. α · β = {α · y + x : x < α ∧ y < β}, and the map

α · y + x 7→ (x, y)

is a well-defined order-preserving bijection from α · β to α ×
β.





If γ < ω ·ω, then

γ = ω · b+ a

for some a and b in ω. Then ω · b+ a is the Cantor normal

form of γ. Compare with how every number less than 10 · 10
can be written as

10 · b+ a

for some a and b in 10 (which is {0, 1, 2, . . . , 9}).
We add Cantor normal forms of elements of ω · ω by the

rule () from Tuesday.

Theorem . For each α in ω, the product α · ω is closed
under addition.

Proof. Suppose β < α ·ω. Then

β < α · n

for some n in ω, and thus

β · 2 < α · n · 2 < α ·ω.

Thus 0, ω, and ω ·ω are closed under addition. Here ω ·ω
is ω

2 by the following definition:
. α0 = 1.
. αβ′

= αβ · α.
. lim(γ) ⇒ αγ = sup{αx : 0 < x < γ}.

We shall see that every nonzero element of ωω has a Cantor
normal form

ω
n0 · k0 +ω

n1 · k1 + · · ·+ω
nm · km,
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where

ω > n0 > n1 > · · · > nm,

0 < k0 < ω ∧ 0 < k1 < ω ∧ · · · ∧ 0 < km < ω.

The same will be true for every ordinal, if we remove the
requirement ω > n0.
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The following are now strictly increasing and continuous:
• x 7→ α + x for all α,
• x 7→ α · x when α > 0,
• x 7→ αx when α > 1.

Also

α0 = 1,

α1 = α0′ = α0 · α = 1 · α = α,

α2 = α1′ = α1 · α = α · α.

Theorem . For all α in ON,
. 0α = 0 if α > 0.
. 1α = 1.

Proof. Induction.

Theorem . For all α, β, and γ in ON,

αβ+γ = αβ · αγ,

αβ·γ = (αβ)γ .

Proof. Induction on γ.

Yesterday we could assign to each element γ of ω2 a Cantor
normal form ω · n+m as follows.





. If γ < ω, we are done. Suppose now

ω 6 γ < ω
2 = ω ·ω.

. We let
n = sup{x : ω · x 6 γ},

a nonzero element of ω, and then

ω · n 6 γ < ω · n′ = ω · n+ω.

. We let
m = sup{x : ω · n+ x 6 γ},

an element of ω, and then

γ = ω · n+m.

To find the Cantor normal form of an arbitrary ordinal, we
need to know that it is bounded by a power of ω. For this,
we use the following.

Theorem . For all α in ON, x 7→ x · α is increasing.

Proof. Induction on α.

Lemma . If α > 2, then for all γ in ON,

γ 6 αγ.

Proof. Induction.
. 0 < 1 = α0.
. Suppose β < αβ for some β.

a) If β = 0, then β ′ = 1 < α = αβ′

.
b) If β > 0, then by Theorem ,

β ′ = β + 1 6 β + β = β · 2 6 β · α 6 αβ · α = αβ′

.





. Suppose β is a limit and the claim is true when γ < β.
Then

β = sup
x<β

x 6 sup
x<β

(αx) = αβ.

We can now find the Cantor normal form of an arbitrary
nonzero γ in ON as follows. More generally, instead of ω as
a base, we can use an arbitrary α, as long as α > 1.

. We know from Lemma  that

γ < αγ′

,

and therefore γ′ is an upper bound of {x : αx 6 γ}, which
is also nonempty, because it contains 0. We let

β1 = sup{x : αx
6 γ},

and then, by Theorem ,

αβ1 = αsup{x : αx6γ}

= sup{αx : αx
6 γ} 6 γ < αβ1

′

= αβ1 · α.

. We let
α1 = sup{x : αβ1 · x 6 γ},

a nonzero element of α, and then, again by Theorem ,

αβ1 · α1 = αβ1 · sup{x : αβ1 · x 6 γ}

= sup{αβ1 · x : αβ1 · x 6 γ} 6 γ

< αβ1 · α1
′ = αβ1 · α1 + αβ1.

. We let
δ = sup{x : αβ1 · α1 + x 6 γ},
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an element of αβ1, and then, again by Theorem ,

αβ1 · α1 + δ = αβ1 · α1 + sup{x : αβ1 · α1 + x 6 γ}

= sup{αβ1 · α1 + x : αβ1 · α1 + x 6 γ} 6 γ

< αβ1 · α1 + δ′ = (αβ1 · α1 + δ)′.

Thus

γ = αβ1 · α1 + δ, δ < αβ1.

If δ > 0, then we apply to δ the same process that we did to
γ. Ultimately we obtain, for some m in ω, the expansion

γ = αβ1 · α1 + αβ2 · α2 + · · ·+ αβm · αm, ()

where

β1 > β2 > · · · > βm,
∧

16j6m

α > αj > 0.

The expansion has finitely many terms, since ON is well-
ordered, so the strictly decreasing sequence of βj must end.
If m = 0, the expansion is 0.

We have shown

α + β ∼= α ⊔ β, α · β ∼= α× β.

Now let
βα = {functions from β to α}.

Then we have established a function f 7→ fγ from αβ to βα,
where, if γ is as in (), with β > β1, then

fγ(x) =

{

αj, if x = βj,

0, otherwise.





The function is injective, briefly because all of the functions
mentioned at the beginning of today are strictly increasing.
The range of the function is

{

f ∈ βα : {x ∈ β : f(x) 6= 0} is finite
}

,

and we can well-order this so that it is isomorphic to αβ.
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We develop some rules for computing with Cantor normal
forms. We have already effectively proved the following.

Lemma . If α 6 β, then the equation

α + x = β

is solved by sup{x : α + x 6 β}.

Proof. Letting γ = sup{x : α + x 6 β}, We compute

α + γ = α + sup{x : α + x 6 β}

= sup{α + x : α + x 6 β} 6 β < α + γ′ = (α + γ)′,

so α + γ = β.

Lemma . If α > 0 and n < ω, then n+ω
α = ω

α.

Proof. . We know the claim is true when α = 1.
. Hence, when β > 1,

n+ω
β′

6 ω
β +ω

β+1 = ω
β · (n+ω) = ω

β′

.

(This did not require an inductive hypothesis.)
. If β is a limit and the claim is true when α < β, then (in

the standard way)

n+ω
β = n+ sup

x<β

ω
x = sup

x<β

(n+ω
x) = sup

x<β

ω
x = ω

β.





Theorem . If α < β, then

ω
α +ω

β = ω
β.

Proof. By Lemma , for some γ, β = α + γ, and then

ω
α +ω

β = ω
α +ω

α+γ = ω
α · (1 +ω

γ) = ω
α ·ωγ = ω

β.

We have seen that, every α has a Cantor normal form, given
by

α = ω
α1 · a1 + · · ·+ω

αm · am,

where
α1 > · · · > αm,

∧

16j6m

ω > aj > 0.

If α > 0, so that m > 1, let us say

deg(α) = α1, lc(α) = a1,

the degree and leading coefficient of α. Thus, for every
positive ordinal α, for some ordinal β,

α = ω
deg(α) · lc(α) + β, deg(β) < deg(α).

By Theorem , if deg(α) < deg(β), then

α+ β = β.

Now we can compute sums of Cantor normal forms. Thus for
example

(ωω+5 · 2 +ω
3 · 5 + 1) + (ωω +ω

2 · 6)

= ω
ω+5 · 2 +ω

ω +ω
2 · 6.

Lemma . If α > 0 and n ∈ N, then n ·ωα = ω
α.
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Proof. For some β, α = 1 + β. We know n ·ω = ω, and then

n ·ωα = n ·ω ·ωβ = ω ·ωβ = ω
α.

Theorem . Let β > deg(α) and n ∈ N.
. If k ∈ N, then

(ωβ · n+ α) · k = ω
β · n · k + α.

. If γ > 1, then

(ωβ · n + α) ·ωγ = ω
β+γ.

Proof. . We use (finite) induction.
a) The claim is trivially true when k = 1.
b) If it is true when k = ℓ, then

(ωβ · n + α) · (ℓ+ 1) = (ωβ · n+ α) · ℓ+ω
β · n+ α

= ω
β · n · ℓ+ α +ω

β · n+ α

= ω
β · n · ℓ+ω

β · n + α

= ω
β · n · (ℓ+ 1) + α.

. As in the proof of Lemma , we need only prove the claim
when γ = 1. We have

ω
β+1 = sup

x<ω

(ωβ · x) 6 sup
x<ω

((ωβ · n+ α) · x)

6 sup
x<ω

(ωβ · (n+ 1) · x) = ω
β+1,

while also supx<ω
((ωβ · n + α) · x) = (ωβ · n+ α) ·ω.

Now we can compute products of Cantor normal forms; for,
we have (under the obvious conditions)

(ωβ · n + α) · (ωγ1 · d1 + · · ·+ω
γm · dm + dm+1)

= ω
β+γ1 · d1 + · · ·+ω

β+γm · dm +ω
β · n · dm+1 + α,

the last two terms being deleted when dm+1 = 0.





Theorem . If k ∈ N, n ∈ ω, and ω 6 α, then

kω
n+1

= kω
1+n

= (kω)ω
n

= ω
ω

n

,

kω
α

= kω
1+α

= ω
ω

α

.

Lemma . α is a non-successor if and only if, for some β,
α = ω · β.

Proof. 0 is not a successor and is ω · 0. Suppose α > 0. In
Cantor normal form,

α = ω
α1 · a1 + · · ·+ω

αm · am + am+1,

where αm > 0 and am+1 ∈ ω. By Lemma , for some βi,

α = ω · (ωβ1 · a1 + · · ·+ω
βm · am) + am+1,

which is a limit if and only if am+1 > 0.

Theorem . If γ is a limit, then

(ωβ · n+ α)γ = ω
β·γ.

We end with cardinalities. If there is, from A to B,
• an injection, A 4 B;
• a bijection, A ≈ B;

is written.

Theorem  (Schröder–Bernstein). If

f : A
4
−→ B, g : B

4
−→ A,

then
A ≈ B.
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Zermelo’s proof. Under the hypothesis,

A ≈ g ◦ f [A], g ◦ f [A] ⊆ g[B] ⊆ A, g[B] ≈ B.

Thus, assuming

A ⊆ B ⊆ C, f : C
≈
−→ A,

we find a bijection g from B onto A. Let

E = {X ⊆ B : (B r A) ∪ f [X ] ⊆ X}.

Then

B ∈ E , X ∈ E ⇒ (B rA) ∪ F [X ] ∈ E .

Let
D =

⋂

E = {t : ∀X (X ∈ E ⇒ t ∈ X)}.

Then

D ∈ E , D = (Ar B) ∪ f [D].

Theorem . If α · β 6= 0 and max(α, β) > ω, then

α+ β ≈ max(α, β), α · β ≈ max(α, β).

Proof. Since

α + β ≈ α ⊔ β ≈ β ⊔ α ≈ β + α,

α · β ≈ α× β ≈ β × α ≈ β · α,

and also by Lemmas  and  we may assume ω 6 α 6 β.
Then

β 6 α+ β 6 β + β = β · 2 < β · α 6 β · β = β2.





Thus it is enough to show

β ≈ β2.

This is true when β = ω, since for example if

tn =
n · (n + 1)

2
,

then (k,m) 7→ tk+m+ k is a bijection from ω×ω to ω. Then
by finite induction, for all n in N,

ω
n ≈ ω.

Letting γ = deg(β), we know for some δ, where deg(δ) < γ,

β = ω
γ · lc(β) + δ ≈ δ + lc(β) ·ωγ = ω

γ.

We may assume now γ > ω. Since for any α and β

αβ ≈ {f ∈ βα : card(supp(f)) < ω}, ()

where by definition

card(supp(f)) < ω ⇔ {x ∈ β : f(x) 6= 0} is finite,

we have generally

α ≈ γ ∧ β ≈ δ ⇒ αβ ≈ γδ.

In our case,

β2 ≈ (ωγ)2 ≈ ω
ω

deg(γ)·2 ≈ ω
2·ωdeg(γ)

= ω
ω

deg(γ)

≈ ω
γ ≈ β.

Corollary. For all infinite α, for all n in N,

αn ≈ α.
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Theorem . If min(α, β) 6 2 and ω 6 max(α, β), then

αβ ≈ max(α, β).

Proof. From Lemma  we know

max(α, β) 6 αβ.

From (), an element of αβ uniquely determines an ordered
pair consisting of, for some n in ω,

• a subset {βi : i < n} of β, where β0 < · · · < βn−1;
• a function (αi : i < n) in nα.

Moreover, the finite subsets of β correspond precisely to the
elements of 2β. Thus

αβ
4 2β × αω.

Then also

2β 4
⋃

x<ω

xβ 4
⊔

x<ω

β ≈ ω× β ≈ β,

and likewise
αω ≈

⋃

x<ω

xα ≈ α.




