
Prime Numbers

A Nesin Mathematics Village course

David Pierce

February –, 
Last edited February , 

Matematik Bölümü
Mimar Sinan Güzel Sanatlar Üniversitesi

dpierce@msgsu.edu.tr

mat.msgsu.edu.tr/~dpierce/

polytropy.com





Preface

Here are notes for the second offering of my course on the
Prime Number Theorem. In preparing and delivering my lec-
tures, I used the typeset notes from the first offering. I had ar-
ranged those according to topic, though the Preface described
what I had done each day. The present notes are given by day
and cover only what I actually talked about in class. Therefore
the earlier notes are still useful.

The second time around, on the first day of my course, I
was given a list of  registered students. I was told that
more might attend, unofficially. I did not count, but there
were a lot of students in the audience of the Nişanyan Library.
Their numbers shrunk, day by day. On the seventh day, there
was one student, and I talked with him about algebraic num-
ber theory, since he expressed curiosity about number theory
in general. Other students from previous days were still in
the Village, but said they hadn’t known there would be class.
Had they come too, I would have summarized the material
relegated to the appendices.

Two days of material is so relegated, judging by page count.
Another time I may skip Bertrand’s Postulate, which took up
part of Tuesday and the entirety of Wednesday.
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. Monday

Let pn be the nth prime number, thus:

n 1 2 3 4 5 6 7 8 9 10 11 12 . . .
pn 2 3 5 7 11 13 17 19 23 29 31 37 . . .

If x ∈ R, we define

max
(

{k ∈ N : pk 6 x} ∪ {0}
)

= π(x).

Thus π(x) is the number of primes that do not exceed x:

π(x) = |{p : p 6 x}| =
∑

p6x

1.

We aim to understand π, whose graph is in Fig. ..

Theorem  (Euclid [, ix.]). limx→∞ π(x) = ∞.

Proof. We show that pk exists for each k in N. We use strong
induction. For some n in N, whenever k < n, suppose pk
exists. Then

p1p2 · · · pn−1 + 1 ≡ 1 (mod pk),

pk ∤ p1p2 · · · pn−1 + 1.

However, thus sum must have a prime factor, since

p1p2 · · · pn−1 + 1 > 2,

even when n = 0 (for then the product is 1). The least prime
factor is pn. By strong induction, pk exists for all counting
numbers k.
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Figure ..: y = π(x)

We can say a little more, as Hardy and Wright do [, p. ].
See Fig. ..

Theorem . For real numbers x exceeding 1,

π(x) > log2 log2 x. (.)

Proof. Since

log2 log2 x 6 0 ⇐⇒ log2 x 6 1 ⇐⇒ x 6 2,

the claim is true when x 6 2. If x > 2, then for some k in N,

22
k

> x > 22
k−1

.

From the two inequalities respectively, we have

k > log2 log2 x, π(x) > π(22
k−1

).

To prove (.) now, it is enough to show

π(22
k−1

) > k.
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Figure ..: y = π(x) and y = log2 log2 x

For this, it is enough to show

22
k−1

> pk. (.)

This follows by strong induction from the proof of Theorem .
Suppose, for some n in N, that (.) is true whenever k < n.
Then

pn 6 p1p2 · · · pn−1 + 1

6 22
0

22
1 · · ·22n−2

+ 1 = 22
0+21+···+2n−2

+ 1

= 22
n−1−1 + 1 6 2 · 22n−1−1 = 22

n−1

,

so (.) holds when k = n.

We aim to prove the Prime Number Theorem or PNT

(Theorem , page ), established in  by Hadamard and
de la Vallée-Poussin independently, namely

lim
x→∞

π(x) log x

x
= 1, (.)

 The Riemann Hypothesis



where log is the natural logarithm, loge. We can rewrite (.)
as either of

π(x) log x ∼ x, π(x) ∼ x

log x
.

We may say then that π(x) and x/ log x are asymptotic to
one another [, p. ]. For example, when we define

Li(x) =

∫ x

2

d t

log t
, (.)

we obtain
Li(x) ∼ x

log x
(.)

by L’Hôpital’s Rule. First we compute

Li(x)− x/ log x

x/ log x
=

log x · Li(x)− x

x
.

If the latter is f/g, then, since g grows without bound, we
compute

f ′

g′
=

(1/x) Li(x) + log x/ log x− 1

1
=

Li(x)

x
,

and if this is f/g, then f ′/g′ is 1/ log x, which tends to 0 as x
grows without bound.

A weaker form of the PNT is Chebyshev’s Theorem (The-
orem , page ), established around , that the functions

π(x) log x

x
,

x

π(x) log x

are bounded above on some interval [a,∞); we write this also
as

π(x) ≍ x

log x
,
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using the notation of Hardy and Wright [, p. ], in whose ter-
minology π(x) and x/ log x are of the same order of mag-

nitude. For example

2 + sin x ≍ 1.

Our first big result will be Bertrand’s Postulate (Theorem
, page ), that for every counting number n,

π(2n)− π(n) > 0. (.)

In the proof, we shall use that there is a sequence

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631 (.)

of primes, where each successive term is the greatest prime
that is less than twice the previous term. Because of this, any
n for which (.) fails must be at least 631.

 The Riemann Hypothesis



. Tuesday

As from Theorem  we derived Theorem , so from Bertrand’s
Postulate, which is an improvement on Theorem , we can
derive an improvement of Theorem , namely

π(x) > log2 x− 1,

and therefore, by an exercise, for large-enough x,

π(x) > log x.

To prove Bertrand’s Postulate itself, we define

ϑ(x) =
∑

p6x

log p.

Then for example

ϑ(10) = log 2 + log 3 + log 5 + log 7

= log(2 · 3 · 5 · 7) = log(210).

We shall often make use of the binomial coefficients, de-
fined by

(

n

k

)

=
n!

(n− k)! k!
, (.)

where 0 6 k 6 n.

Theorem  (Binomial Theorem). For all natural numbers n,

(x+ y)n =
n

∑

k=0

(

n

k

)

xn−kyk. (.)





Proof. By direct computation from (.),
(

m

0

)

= 1,

(

m

m

)

= 1,

and

1 6 k 6 m =⇒
(

m

k

)

+

(

m

k − 1

)

=

(

m+ 1

k

)

.

Then (.) is true when n = 0, and if it is true when n = m,
then

(x+ y)m+1 = (x+ y)

m
∑

k=0

(

m

k

)

xm−kyk

=
m
∑

k=0

(

m

k

)

xm+1−kyk +
m
∑

k=0

(

m

k

)

xm−kyk+1

= xm+1 +
m
∑

k=1

(

m

k

)

xm+1−kyk +
m−1
∑

k=0

(

m

k

)

xm−kyk+1 + ym+1

= xm+1 +
m
∑

k=1

(

m

k

)

xm+1−kyk +
m
∑

k=1

(

m

k − 1

)

xm+1−kyk + ym+1

= xm+1 +

m
∑

k=1

(

m+ 1

k

)

xm+1−kyk + ym+1 = (x+ y)m+1,

so (.) is true when n = m+ 1.

Corollary. Each binomial coefficient is a natural number.

We shall often use the following bound [, Thm , p. ].

Theorem . For all positive real numbers x,

ϑ(x) < 2x log 2. (.)

 The Riemann Hypothesis



Proof. Since

ϑ(x) = ϑ
(

[x]
)

,

where

[x] = max{n ∈ Z : n 6 x},
it is enough to prove the claim when x is a counting num-
ber. We shall use strong induction, but need some preliminary
work. Primes enter the argument through a standard exercise,

0 < k < p =⇒ p

∣

∣

∣

∣

(

p

k

)

. (.)

The proof uses Euclid’s Lemma [, Proposition vii.], that a
prime measuring a product measures one of the factors; sym-
bolically,

p | ab & p ∤ a =⇒ p | b.
Thus, in particular, since

p

∣

∣

∣

∣

(

p

k

)

· k! · (p− k)!,

but

0 < k < p =⇒ p ∤ k! · (p− k)!,

we can conclude (.). In the same way,

n− k 6 k < p 6 n =⇒ p

∣

∣

∣

∣

(

n

k

)

,

and therefore

n− k 6 k =⇒
∏

k<p6n

p

∣

∣

∣

∣

(

n

k

)

=⇒
∏

k<p6n

p 6

(

n

k

)

.
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Taking natural logarithms preserves the last inequality, and

log
∏

k<p6n

p =
∑

k<p6n

log p = ϑ(n)− ϑ(k),

so

n− k 6 k =⇒ ϑ(n)− ϑ(k) 6 log

(

n

k

)

. (.)

We can now proceed. We assume (.) holds when x is an
integer less than n. We have to consider four cases of n.

. In case n = 1, we have

ϑ(n) = ϑ(1) = 0 = 2n log 2.

. In case n = 2, we compute

ϑ(n) = ϑ(2) = log 2 < 4 log 2 = 2n log 2.

. In case n = 2m, where m > 1, then, 2m being composite,

ϑ(n) = ϑ(2m) = ϑ(2m− 1) < 2(2m− 1) log 2 < 2n log 2.

. We suppose finally n = 2m + 1, where again m > 1. As
a special case of (.),

ϑ(n) = ϑ(2m+ 1) 6 log

(

2m+ 1

m+ 1

)

+ ϑ(m+ 1). (.)

We have also
(

2m+ 1

m+ 1

)

=

(

2m+ 1

m

)

,

and these are distinct terms in the expansion of (1 + 1)2m+1,
by Theorem (); so

2

(

2m+ 1

m+ 1

)

6 22m+1,

(

2m+ 1

m+ 1

)

6 22m.
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Plugging this, and the strong inductive hypothesis

ϑ(m+ 1) < 2(m+ 1) log 2,

into (.), we obtain

ϑ(n) 6 2(2m+ 1) log 2 = log 2n log 2.

We need one more lemma for Bertrand’s Postulate.

Theorem . For all positive integers n,

log(n!) =
∑

p6n

log p ·
∞
∑

j=1

[ n

pj

]

. (.)

Proof. A proof will just express what one sees in an example:

10! = 1 · 2 · 3 · 22 · 5 · (2 · 3) · 7 · 23 · 32 · (2 · 5)
= 25+2+1 · 33+1 · 52 · 7

= 2[10/2]+[10/4]+[10/8] · 3[10/3]+[10/9] · 5[10/5] · 7[10/7]

= 2
∑

∞

j=1[10/2
j ] + 3

∑
∞

j=1[10/3
j ] + 5

∑
∞

j=1[10/5
j ] + 7

∑
∞

j=1[10/5
j ],

while {2, 3, 5, 7} = {p : p 6 10}.
One may observe 10! = 22

3 · 322 · 521 · 720, but the sequence
of exponents is entirely coincidental.

The sum in (.) has a term log p · [n/pj ] precisely for those
powers pj that are no greater than n. Thus we might write

log(n!) =
∑

pj6n

log p ·
[ n

pj

]

=
∑

k6n

Λ(k) ·
[n

k

]

,

where Λ is the von Mangoldt function, given by

Λ(n) =

{

log p, if n = pj for some positive j;

0, otherwise.
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We shall use this function in (??) on page ??. Meanwhile, here
is a puzzle; what is

∑

d|nΛ(d)? For example,

∑

d|12
Λ(d) = Λ(1) + Λ(2) + Λ(3) + Λ(4) + Λ(6) + Λ(12)

= 0 + log 2 + log 3 + log 2 + 0 + 0

= log(2 · 3 · 2) = log(12).

This is not an accident: always

∑

d|n
Λ(d) = logn.

We can understand this as a form of the Fundamental Theorem
of Arithmetic.

 The Riemann Hypothesis



. Wednesday

Theorem  (Bertrand’s Postulate). For every positive integer

n there is a prime p such that

n < p 6 2n. (.)

Proof. No prime factor of
(

2n
n

)

exceeds 2n. Thus it is enough

to show that
(

2n
n

)

has a prime factor exceeding n. There are
exponents n(p) such that

(

2n

n

)

=
∏

p62n

pn(p).

Thus

n(p) > 1 ⇐⇒ p

∣

∣

∣

∣

(

2n

n

)

, (.)

log

(

2n

n

)

=
∑

p62n

log p · n(p). (.)

Since also, by (.),

log

(

2n

n

)

= log
(

(2n)!
)

− 2 log(n!),

we have, by Theorem ,

n(p) =
∞
∑

j=1

([2n

pj

]

− 2
[ n

pj

])

. (.)





Here, in each case,

0 6

([2n

pj

]

− 2
[ n

pj

])

6 1, (.)

for,

[x] = m ⇐⇒ m 6 x < m+ 1 ⇐⇒ 2m 6 2x < 2m+ 2,

2m 6 2x < 2m+ 1 =⇒ [2x] = 2m,

2m+ 1 6 2x < 2m+ 2 =⇒ [2x] = 2m+ 1.

Moreover,

k > 2n =⇒
[

2n

k

]

− 2
[n

k

]

= 0, (.)

while
pj > 2n ⇐⇒ j log p > log(2n). (.)

Plugging (.), (.), and (.) into (.) gives

n(p) 6
∑

j6log(2n)/ log p

1 6
log(2n)

log p
. (.)

Therefore

2 6 n(p) =⇒ 2 log p 6 log(2n) =⇒ p 6
√
2n. (.)

From (.) and (.),

log

(

2n

n

)

=
∑

n(p)>1

log p · n(p)

=
∑

n(p)=1

log p+
∑

n(p)>2

log p · n(p). (.)

 The Riemann Hypothesis



We bound the two terms. Again by (.),

∑

n(p)=1

log p 6
∑

p|(2nn )

log p,

while by (.) and (.),

∑

n(p)>2

log p · n(p) 6
∑

n(p)>2

log(2n) 6 log(2n)
√
2n.

Thus (.) yields

log

(

2n

n

)

6
∑

p|(2nn )

log p+ log(2n)
√
2n. (.)

Thus we have an upper bound on log
(

2n
n

)

. We introduce a
lower bound by noting that, since

22n =

2n
∑

j=0

(

2n

j

)

= 2 +

2n−1
∑

j=1

(

2n

j

)

,

where there are 2n terms, the greatest being
(

2n
n

)

,

22n 6 2n

(

2n

n

)

,

2n log 2− log(2n) 6 log

(

2n

n

)

. (.)

Combining (.) and (.) yields

2n log 2 6
∑

p|(2nn )

log p+ log(2n)(1 +
√
2n). (.)
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The left-hand side dominates the second term on the right,
that is,

lim
x→∞

log(2n)(1 +
√
2n)

2n log 2
= 0,

since generally

lim
x→∞

log x

xs
= 0

when s > 0, by L’Hôpital’s Rule. We may write this theorem
as

s > 0 =⇒ log x ≺ xs. (.)

We shall show that
(

2n
n

)

must have prime factors exceeding n,
to compensate. By Theorem ,

∑

p

∣

∣(2nn ) & p6n

log p 6
∑

p6n

log p = ϑ(n) 6 2n log 2. (.)

Since this is just the left-hand side of (.), there is no prob-
lem so far. However,

2n

3
< p 6 n =⇒ 2p 6 2n < 3p

=⇒
[2n

p

]

− 2
[n

p

]

= 2− 2 · 1 = 0,

and also

2n

3
< p & n > 5 =⇒ p2 >

4n2

9
=

2n

9
· 2n > 2n

=⇒
[2n

p2

]

= 0,

and therefore

2n

3
< p 6 n & n > 5 =⇒ n(p) = 0.

 The Riemann Hypothesis



Thus, assuming n > 5, in the manner of (.) we have

∑

p

∣

∣(2nn ) & p6n

log p 6
∑

p62n/3

log p = ϑ

(

2n

3

)

6
4n

3
log 2.

Combining with (.) gives
∑

p

∣

∣(2nn ) & n<p

log p >
2n

3
log 2−

(

1 +
√
2n

)

log(2n). (.)

We already know that the right-hand side is positive when n
is large enough. It is enough to show 631 is large enough,
because of the sequence (.). Since 631 > 512 = 29, let us
assume now

n > 29, 2n > 210 = 1024,
√
2n > 25 = 32.

Multiplying the right-hand side of (.) by what will turn out
to be a convenient factor, we compute

3√
2n log

√
2n log 2

(

2n

3
log 2−

(

1 +
√
2n

)

log(2n)

)

=

√
2n

log
√
2n

− 2 · 3
log 2

(

1√
2n

+ 1

)

,

while

2 · 3
log 2

(

1

32
+ 1

)

=
2 · 3 · 33
25 log 2

6
2 · 100 · 25
210 log 2

6
2 · 100 · 25
1000 log 2

=
25

5 log 2
=

25

log(25)
.

Now the right-hand side of (.) is positive, because x/ log x
is an increasing function of x on [e,∞), since its derivative is
(log x− 1)/(log x)2.
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. Thursday

The Riemann zeta function is given by

ζ(s) =
∑

n∈N

1

ns
, (.)

where (in Riemann’s own notation)

s = σ + i t

and

σ > 1.

The convergence of the sum is absolute, by the Integral Test,
since

|ns| = nσ
∣

∣ni t
∣

∣ = nσ
∣

∣ei t logn
∣

∣ = nσ,

and
∫ ∞

1

dx

xσ
=

1

1− σ
· 1

xσ−1

∣

∣

∣

∞

1
=

1

σ − 1
. (.)

Theorem . When σ > 1, then

ζ(s) =
∏

p

1

1− p−s
. (.)

Proof. By definition,

ζ(s) =
1

1s
+

1

2s
+

1

3s
+

1

2s · 2s +
1

5s
+

1

2s · 3s + · · ·





while, by the rule
1

1− r
=

∞
∑

k=0

rk (.)

for geometric series,

∏

p

1

1− p−s
=

(

1 +
1

2s
+

1

22s
+ · · ·

)

·
(

1 +
1

3s
+

1

32s
+ · · ·

)

·
(

1 +
1

5s
+

1

52s
+ · · ·

)

· · ·

By the Fundamental Theorem of Arithmetic, the two sides
of (.) match up. (A proper proof would use the absolute
convergence of the sum expansion of ζ(s).)

In complex analysis, a holomorphic function is a differen-
tiable function, according to the rule from real analysis, with
complex numbers used for real numbers. We shall say more
later. Meanwhile:

Theorem . The function

ζ(s)− 1

s− 1

extends holomorphically to σ > 0.

Proof. When σ > 1, we have, by (.),

ζ(s)− 1

s− 1
=

∞
∑

n=1

1

ns
−
∫ ∞

1

d x

xs
=

∞
∑

n=1

∫ n+1

n

(

1

ns
− 1

xs

)

dx,

and the last series converges absolutely when σ > 0, since

1

ns
− 1

xs
= s

∫ x

n

d u

us+1
,

and this, on [n, n+ 1], is bounded absolutely by |s| /nσ+1.
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With more complex analysis we shall show

x ∼ ϑ(x).

Meanwhile, we prove Chebyshev’s Theorem (as stated [, Thm
, p. ] and proved [, §§.–, p. –] by Hardy and
Wright), and from this derive the corollary

ϑ(x) ∼ π(x) log x.

Landau also proves the theorem [, Thm , pp. –].

Theorem  (Chebyshev). For some positive A and B, for

large x,
Ax 6 π(x) log x 6 Bx;

that is,

π(x) ≍ x

log x
.

Proof for the first inequality. Since

ϑ(x) =
∑

p6x

log p 6
∑

p6x

log x = π(x) log x, (.)

it is enough to bound ϑ(x) below by a positive multiple of x.
To do so, we define

ψ(x) =

∞
∑

m=1

ϑ(x1/m).

Since

ϑ(y) > 0 ⇐⇒ y > 2,

x1/m
> 2 ⇐⇒ 1

m
log x > log 2 ⇐⇒ m 6

log x

log 2
,
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we have

ψ(x) =

[logx/ log 2]
∑

m=1

ϑ(x1/m) = ϑ(x) +

[log x/ log 2]
∑

m=2

ϑ(x1/m).

Also

m > 2 =⇒ ϑ(x1/m) 6 ϑ(
√
x) 6

√
x log

√
x 6

√
x log x,

so that

[logx/ log 2]
∑

m=2

ϑ(x1/m) 6
√
x log x · log x

log 2
≺ x

by (.). Thus
ψ(x)− ϑ(x) ≺ x.

It is now enough to bound ψ(x) below by a positive multiple
of x; for if Ax 6 ψ(x), then for x large enough,

ψ(x)− ϑ(x) 6 1

2
Ax,

1

2
Ax 6 ϑ(x).

Towards bounding ψ(x), we observe

ψ(x) =
∞
∑

m=1

∑

p6x1/m

log p

=

∞
∑

m=1

∑

pm6x

log p =
∑

p6x

log p ·
[

log x

log p

]

.

From our proof of Bertrand’s Postulate (Theorem ), specifi-
cally (.) and (.),

log

(

2n

n

)

=
∑

p62n

log p · n(p) 6
∑

p62n

log p ·
[

log(2n)

log p

]

.
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Thus

log

(

2n

n

)

6 ψ(2n).

Moreover,

2n =

n
∏

j=1

2 6

n
∏

j=1

n+ j

j
=

(

2n

n

)

, n log 2 6 log

(

2n

n

)

.

Suppose finally n = [x/2], that is,

n 6
x

2
< n + 1.

If also x > 6, so that x/6 > 1, then

x

3
=

x

2
− x

6
< n, 2n 6 x,

so that
log 2

3
· x 6 n log 2 6 ψ(2n) 6 ψ(x).
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Letting s = σ + i t in C, we have

• defined ζ(s) =
∑∞

n=1 1/n
2 when σ > 1;

• shown ζ(s) =
∏

p 1/(1− p−s);
• proved that some holomorphic function on σ > 0 agrees

with ζ(s)− 1/(s− 1) on σ > 1;
• proved that, for some positive A, for large real x, Ax 6

ϑ(x) 6 π(x) log x.

In our remaining time, we are going to show that:

• for some B, for large x, π(x) log x 6 Bx;
• π(x) log x ∼ ϑ(x);
• ζ(s) 6= 0 when σ > 1;
• some holomorphic function on σ > 1 agrees with Φ(s)−
1/(s− 1) on σ > 1, where Φ(s) =

∑

p log p/p
s;

• Theorem : when f is bounded on [0,∞) and integrable
on every bounded interval, and a holomorphic function
g(s) on σ > 0 agrees with

∫∞
0

f(x)e−sx d x on σ > 0,
then g(0) =

∫∞
0

f(x) d x.
•
∫∞
1
(ϑ(x)− x) d x/x2 converges.

• ϑ(x) ∼ x.

Proof for the second inequality. We bound π(x) log x above by
a multiple of x. From Theorem , we have such an upper
bound, namely 2x log 2, on ϑ(x). Moreover,

ϑ(x) =
∑

p6x

log p >
∑

x>p>
√
x

log
√
p >

∑

x>p>
√
x

log
√
x





=
(

π(x)− π(√x)
)

log
√
x. (.)

Since

π(
√
x) 6

√
x =

x√
x
6

x

log x
, log

√
x =

1

2
log x,

we obtain

ϑ(x) >

(

π(x)− x

log x

)

log x

2
, (.)

2ϑ(x) + x > π(x) log x,

and this is enough.

We can now obtain the following as a corollary.

Theorem .

ϑ(x) ∼ π(x) log x. (.)

Proof. As a variant of (.) and (.), if 0 < ε < 1, then

ϑ(x) >
∑

x1−ε<p6x

log(x1−ε) > (π(x)− x1−ε) log x · (1− ε),

ϑ(x) + x1−ε log x · (1− ε) > π(x) log x · (1− ε),

ϑ(x)

π(x) log x
+

x

π(x) log x
· log x

xε
· (1− ε) > 1− ε.

We can make the second term on the left as small as de-
sired, since x/π(x) log x is bounded above by Theorem , while
log x ≺ xε by (.). Thus when x is large enough we have

ϑ(x)

π(x) log x
> 1− 2ε.
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For all small ε, for large x, this is true. Since the left side is
bounded above by 1 by (.), we conclude

lim
x→∞

ϑ(x)

π(x) log x
= 1.

We turn to holomorphic functions. A subset Ω of C is open

if, for every element a of Ω, for some positive ε,

{z ∈ C : |z − a| < ε} ⊆ Ω.

If f : Ω → C and g : Ω → C and, for every a in Ω,

lim
z→a

f(z)− f(a)

z − a
= g(a), (.)

then g is the complex derivative—denoted by f ′—of f , and
f itself is holomorphic.

For example, complex conjugation z 7→ z is not holomorphic,
since

z − a

z − a
=

z − a

z − a
=

z − a
2

|z − a|2
,

and this is on the unit circle and can be anywhere on that
circle.

When we consider C as the real vector space R2, then com-
plex conjugation is a linear transformation of this space, and
then it is is own derivative at each point. Why then conjuga-
tion is not holomorphic is that it is not a linear transformation
of C as a complex vector space.

In detail, we can rewrite (.) as

lim
z→a

f(z)− f(a)− f ′(a)(z − a)

z − a
= 0.
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Suppose merely

lim
z→a

f(z)− f(a)− T (z − a)

z − a
= 0,

where T is an R-linear function, that is,

T (z + w) = T (z) + T (w), T (uz) = uT (z),

where u ∈ R. Then T is the real derivative of f at a. T is C-
linear if and only if it is multiplication by a complex number,
which in this case would be f ′(a), and f would be holomorphic.

In any case, the partial derivatives of f at a are as follows,
where h is a real number.

∂xf(a) = lim
h→0

f(a+ h)− f(a)

h
,

∂yf(a) = lim
h→0

f(a+ i h)− f(a)

h
= −i lim

h→0

f(a+ i h)− f(a)

i h
.

If f is holomorphic, we obtain the Cauchy–Riemann Equa-

tion,

∂xf(a) = −i ∂yf(a). (.)
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We know π(x) log x ∼ ϑ(x), and ζ(s) − 1/(s − 1) is defined
holomorphically on σ > 0, where s = σ + i t. It remains to
prove the following.

. When σ > 1, then ζ(s) 6= 0, and Φ(s) − 1/(s − 1) is
holomorphic, where

Φ(s) =
∑

p

log p

ps
. (.)

. Theorem : When f is bounded on [0,∞) and inte-
grable on every bounded interval, and a holomorphic
function g(s) on σ > 0 agrees with

∫∞
0

f(x)e−sx d x on
σ > 0, then g(0) =

∫∞
0

f(x) dx;
.

∫∞
1
(ϑ(x)− x) d x/x2 converges.

. If
∫∞
1
(f(x) − x) d x/x2 converges, and f is increasing,

then f(x) ∼ x.
The last theorem is just calculus:

Theorem . If f is an increasing function such that the

integral
∫ ∞

1

f(t)− t

t2
d t

converges, then

f(x) ∼ x.

Proof. Let f be an increasing function such that f(x) ≁ x.
There are two ways this can happen.





. Suppose first for some λ, λ > 1 and, for arbitrarily large
x,

f(x) > λx.

For such x, since f is increasing,

∫ λx

x

f(t)− t

t2
d t >

∫ λx

x

λx− t

t2
d t = I

for some I. Letting t = xu, so that d t = x d u, we have

I =

∫ λ

1

λx− ux

u2x2
x d u =

∫ λ

1

λ− u

u2
d u > 0.

However, if
∫∞
1

g converges, then for large x,
∣

∣

∫∞
x

g
∣

∣ < I/2 and
∣

∣

∫∞
λx

g
∣

∣ < I/2, so
∣

∣

∣

∫ λx

x
g
∣

∣

∣
< I.

. In the other case, for some λ, 0 < λ < 1 and for arbitrarily
large x,

f(x) 6 λx.

The argument is similar.

Theorem . The function

Φ(s)− 1

s− 1
,

where Φ is as in (.), extends holomorphically to σ > 1, and

ζ is non-zero here.

Proof. From (.), namely ζ(p) =
∏

p(1 − p−s)−1, we know
that ζ is nonzero on σ > 1. From

log ζ(s) = −
∑

p

log(1− p−s) = −
∑

p

log(1− e−s log p),
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taking the derivative, we compute

−ζ
′(s)

ζ(s)
=

∑

p

log p · p−s

1− p−s
=

∑

p

log p

ps − 1
.

Since
1

x− 1
=

1

x
+

1

x(x− 1)
,

we have now

− ζ′(s)

ζ(s)
=

∑

p

(

log p

ps
+

log p

ps(ps − 1)

)

= Φ(s) +
∑

p

log p

ps(ps − 1)
. (.)

The last series converges absolutely when σ > 1/2, since for
large p,

1

p2s − ps
<

2

p2s
.

It remains to show ζ(s) 6= 0 when σ = 1. Then our claim will
follow from complex analysis. Specifically, if f is holomorphic,
then, by Theorem  on page , f is analytic, which means
that, for every point a of its domain, for some coefficients an,
for z near a,

f(z) = a0 + a1(z − a) + a2(z − a)2 + · · · =
∞
∑

n=0

an(z − a)n.

• If a0 = . . . = ak−1 = 0, but ak 6= 0, then f has a zero of

order k at a.
• If a0 6= 0, and k > 0, then f(z)/(z − a)k has a pole of

order k at a.
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Suppose now

g(z) =
∞
∑

n=k

bn(z − a)n = bk(z − a)k + · · · ,

where k may be negative. The residue of g at a is b−1. Also

g′(z) = kbk(z − a)k−1 + · · · ,
g′(z)

g(z)
= k(z − a)−1 + · · · .

If k 6= 0, then g′/g has a pole of order 1 at a, and the residue
k of g′/g at a is the order of the zero at a, if there is one;
otherwise −k is the order of the pole at a.

By Theorem , since 1/(s− 1) has a pole of order 1 at 1, so
does ζ(s). Therefore ζ′/ζ has a pole of order 1, and residue 1,
at 1. By (.), so has Φ. Thus it remains to show ζ(s) 6= 0
when σ = 1.

Suppose if possible ζ has a zero of order µ at 1 + i a. Then
µ is the residue of ζ′/ζ at 1 + i a, so

µ = lim
z→1+ia

(z − 1− i a)ζ′(z)

ζ(z)

= lim
z→0

zζ′(1 + i a+ z)

ζ(1 + i a+ z)
= − lim

z→0
zΦ(1 + i a+ z). (.)

Likewise
1 = lim

z→0
zΦ(z), (.)

since Φ has a pole of order 1, and residue 1, at 1.
Either ζ has a zero of some order ν at 1+ 2i a, or else we let

ν = 0. For small positive ε, we compute
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2
∑

j=−2

(

4

2 + j

)

Φ(1 + ji a+ ε) =

2
∑

j=−2

(

4

2 + j

)

∑

p

log p

p1+ε+ji a

=
∑

p

log p

p1+ε

2
∑

j=−2

(

4

2 + j

)

1

pji a
=

∑

p

log p

p1+ε

(

1

pi a/2
+

1

p−i a/2

)4

=
∑

p

log p

p1+ε

(

2ℜ
( 1

pi a/2

)

)4

> 0. (.)

Here ℜ(z) = (z + z)/2, the real part of z. Since

Φ(s) = Φ(s),

so that
2ℜ(Φ(s)) = Φ(s) + Φ(s),

we have,

2
∑

j=−2

(

4

2 + j

)

Φ(1 + ji a+ ε)

= 2ℜ(Φ(1 + 2i a+ ε)) + 8ℜ(Φ(1 + i a+ ε))

+ 6ℜ(Φ(1 + ε)).

In the limit at ε, the product of the sum here with ε is −2ν −
8µ+6, by (.), and the similar computation for ν, and (.).
By (.), we have

−2ν − 8µ+ 6 > 0,

so µ cannot be positive.
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A. Analytic Functions

From the definition on page , analytic functions are holo-
morphic. We shall prove the converse.

We are considering a holomorphic function f on an open
subset Ω of C. Supposing γ : [a, b] → Ω, and making the
analysis

γ = γ0 + i γ1, (A.)

where γe : [a, b] → R, we define

∫ b

a

γ =

∫ b

a

γ0 + i

∫ b

a

γ1, (A.)

provided the integrals on the right exist. Suppose further
that γ is one-to-one and continuously differentiable, which
means that each γe has a continuous derivative and

γ′ = γ0
′ + i γ1

′.

Then γ has the initial point γ(a) and the terminal point

γ(b), and γ itself is an arc or path or line. We define the
line integral of f along γ using the substitution

z = γ(t), d z = γ′(t) d t,

obtaining
∫

γ

f(z) d z =

∫ b

a

f(γ(t))γ′(t) d t,





or simply
∫

γ

f =

∫ b

a

(f ◦ γ)γ′. (A.)

We say
∫

γ
f is path independent if it depends only on f ,

γ(a), and γ(b).

Theorem . The line integral of a continuous derivative of

a holomorphic function is path independent.

Proof. If f = F ′, then by the Chain Rule,

(F ◦ γ)′ = (F ′ ◦ γ)γ′ = (f ◦ γ)γ′,

and so by (A.) and the Fundamental Theorem of Calculus,
∫

γ

f =

∫ b

a

(F ◦ γ)′ = F (γ(b))− F (γ(a)).

An arc whose initial and terminal points are the same is
a closed curve. The line integrals of a function are path
independent if and only if the integrals around closed curves
are path independent. The latter case means those integrals
are zero.

For example, if n 6= 0 and f(z) = (z − a)n/n, then f is
holomorphic on its domain, which is C if n > 0, and {z ∈
C : z 6= a} if n < 0. Also

f ′(z) = (z − a)n−1,

so that (z−a)n−1 is the derivative of a holomorphic function of
z, unless n = 0. Therefore, letting

∮

denote an integral along a
counterclockwise closed curve in the domain of the integrand,
we have

n 6= 0 =⇒
∮

(z − a)n−1 d z = 0.

The case when n = 0 is different, as follows.
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Theorem . If γ describes a counterclockwise loop around

a, then
∫

γ

d z

z − a
= 2iπ.

Proof. We may assume a = 0. If δ is t 7→ ei t on [0, 2π], we
compute

∫

δ

d z

z
=

∫ 2π

0

i ei t d t

ei t
= i

∫ 2π

0

d t = 2iπ.

The general case follows from Theorem , since we can ana-
lyze δ−γ as a sum of closed curves, each surrounding a region
where 1/z is the derivative of a holomorphic function (which
we ambiguously call log z).

In the following, (A.) is Cauchy’s Integral Formula.

Theorem . If f is holomorphic on an open neighborhood of

a, and γ describes a counterclockwise loop, within that neigh-

borhood, around a, then

f(a) =
1

2iπ

∫

γ

f(z)

z − a
d z. (A.)

Proof. Again we may assume a = 0. By Theorem ,

f(0) =
1

2iπ

∫

γ

f(0)

z
d z. (A.)

As in the proof of Theorem , we may adjust γ, now shrinking
it to a circle of radius δ around 0. Given a positive ε, we may
let δ be small enough that

|f(z)− f(0)| < ε
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on γ. Using (A.), we compute

∣

∣

∣

∣

1

2iπ

∫

γ

f(z)

z
d z − f(0)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2iπ

∫

γ

f(z)− f(0)

z
d z

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∫ 1

0

f(δe2i πt)− f(0)

δe2i πt
2iπδe2iπt d t

∣

∣

∣

∣

6

∫ 1

0

∣

∣f(δe2iπt)− f(0)
∣

∣d t < ε.

This being so for all positive ε, then claim follows.

Theorem . Holomorphic functions are analytic.

Proof. Let γ describe a circle in the domain of a holomorphic
function f . We may assume the center of the circle is 0. Let
w be a point inside the circle. By Theorem , and then the
rule (.) for geometric series,

2iπf(w) =

∫

γ

f(z)

z − w
d z =

∫

γ

f(z)

z(1− w/z)
d z

=

∫

γ

f(z)

z

∑

n∈ω

(w

z

)n

d z =

∫

γ

∑

n∈ω

f(z)wn

zn+1
d z.

Since f(z) is bounded on γ (this being compact), the con-
vergence of the series is absolute, so we can interchange the
integration and summation:

f(w) =
∑

n∈ω

1

2iπ

(
∫

γ

f(z) d z

zn+1

)

wn.
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B. The Prime Number Theorem

We shall prove the Prime Number Theorem as Theorem 
below. This will use our earlier results, along with Theorem
, which will be a consequence of the following “analytic the-
orem.”

Theorem  (Newman []). Any function f that is bounded

and locally integrable on [0,∞) is globally integrable, provided

the function g given on σ > 0 by

g(s) =

∫ ∞

0

f(t)e−st d t

extends holomorphically to σ > 0. In this case, moreover,

g(0) =

∫ ∞

0

f(t) d t.

Proof. Defining

gx(z) =

∫ x

0

f(t)e−zt d t,

we want to prove

g(0) = lim
x→∞

gx(0). (B.)

Given large positive R, we can find positive δ so that g is
holomorphic on the region −δ 6 σ & |s| 6 R shown in
Figure B.. Let γ be a counterclockwise path around this





iR

R

−iR

−δ

Figure B..: A contour for integration

region. By Cauchy’s Integral Formula,

g(0)− gx(0) =
1

2iπ

∫

γ

(

g(z)− gx(z)
)d z

z
. (B.)

Now let

hx(s) = esx
(

1 +
s2

R2

)

,

so hx is holomorphic on C. The innovation of Newman is to
multiply g(z)− gx(z) by hx(z), so that, since hx(0) = 1, (B.)
becomes

g(0)− gx(0) =
1

2iπ

∫

γ

(

g(z)− gx(z)
)hx(z)

z
d z.

We shall bound the integral. We have
∣

∣

∣

∣

hx(s)

s

∣

∣

∣

∣

=
eσx

R

∣

∣

∣

∣

R

s
+

s

R

∣

∣

∣

∣

,
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and so

|s| = R =⇒
∣

∣

∣

∣

hx(s)

s

∣

∣

∣

∣

6
2eσx |σ|
R2

. (B.)

Since f is assumed to be bounded, we may let

B = sup
06t

|f(t)| ,

so that

σ > 0 =⇒ |g(s)− gx(s)| =
∣

∣

∣

∣

∫ ∞

x

f(t)e−st d t

∣

∣

∣

∣

6 B

∫ ∞

x

e−σt d t =
B

eσxσ
. (B.)

Combining the two estimates (B.) and (B.), letting γ+ be
the restriction of γ so that the range is in σ > 0, and thus the
length of γ+ is πR, we have

∣

∣

∣

∣

∫

γ+

(

g(z)− gx(z)
)hx(z)

z
d z

∣

∣

∣

∣

6 πR · B

eσxσ
· 2e

σxσ

R2
=

2πB

R
. (B.)

Letting γ− be the other part of γ, we have

∣

∣

∣

∣

∫

γ−

(

g(z)− gx(z)
)hx(z)

z
d z

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

γ−

g(z)
hx(z)

z
d z

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

γ−

gx(z)
hx(z)

z
d z

∣

∣

∣

∣

. (B.)

For the last integral, since gx is entire, we can replace γ− with
γ−

′ having the same endpoints, other points having negative
real part and absolute value R. Since, as in (B.),
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σ < 0 =⇒ |gx(s)| =
∣

∣

∣

∣

∫ x

0

f(t)e−st d t

∣

∣

∣

∣

6 B

∫ x

−∞
e−σt d t =

B

eσx |σ| ,

combining with (B.) gives, as in (B.),

∣

∣

∣

∣

∫

γ−

gx(z)
hx(z)

z
d z

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

γ−′

gx(z)
hx(z)

z
d z

∣

∣

∣

∣

6 πR · B

eσx |σ| ·
2eσx |σ|
R2

=
2πB

R
.

Thus we have a bound of 4πB/R on everything so far, and we
can make this bound as small as we like, by letting R grow
large. One integral remains to consider from (B.). We have

∫

γ−

g(z)
hx(z)

z
d z =

∫

γ−

ezxg(z)

(

1 +
z2

R2

)

d z

z
.

Here x occurs only in the factor ezx. For some large N , we
analyze γ− into components γN and γ′

N , according to whether
the real part of a point is greater than (that is, to the right
of) −δ/N or not. First,

∣

∣

∣

∣

∫

γN

ezxg(z)

(

1 +
z2

R2

)

d z

z

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

γN

g(z)

(

1 +
z2

R2

)

d z

z

∣

∣

∣

∣

.

We can make this bound, which is independent of x, as small
as we like, by making N large enough. Moreover,

∣

∣

∣

∣

∣

∫

γ′

N

ezxg(z)

(

1 +
z2

R2

)

d z

z

∣

∣

∣

∣

∣
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6 e−δx/N

∣

∣

∣

∣

∣

∫

γ′

N

g(z)

(

1 +
z2

R2

)

d z

z

∣

∣

∣

∣

∣

,

and we can make this as small as we like, given N , by making
x large enough. Thus for all large R, for all positive ε, for
sufficiently large x,

|g(0)− gx(0)| 6
4πB

R
+ ε.

This implies (B.).

We immediately apply Theorem .

Theorem . The integral

∫ ∞

1

ϑ(x)− x

x2
d x

converges.

Proof. As in the proof of Theorem , we consider the primes
as forming the increasing sequence (pn : n ∈ ω). Now

log p0 = ϑ(p0), log pn+1 = ϑ(pn+1)− ϑ(pn),

so that, when σ > 1,

Φ(s) =
∑

n∈ω

log pn
pns

=
ϑ(p0)

p0s
+
∑

n∈ω

−ϑ(pn) + ϑ(pn+1)

pn+1
s

=
∑

n∈ω
ϑ(pn)

(

1

pns
− 1

pn+1
s

)

=
∑

n∈ω
ϑ(pn)

∫ pn+1

pn

s dx

xs+1

= s
∑

n∈ω

∫ pn+1

pn

ϑ(x)

xs+1
dx = s

∫ ∞

1

ϑ(x)

xs+1
d x,
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and therefore

Φ(s + 1)

s + 1
− 1

s
=

∫ ∞

1

ϑ(x)

xs+2
d x−

∫ ∞

1

dx

xs+1
=

∫ ∞

1

ϑ(x)− x

xs+2
d x.

By Theorem , the left-hand side extends holomorphically to
σ > 0. We want to show that the equation still holds when
s = 0. To apply Theorem , we use the substitution

x = et, d x = et d t,

obtaining

∫ ∞

1

ϑ(x)− x

xs+2
d x =

∫ ∞

0

e−st

(

ϑ(et)

et
− 1

)

d t.

Since ϑ(et)/et is bounded by Theorem , we are done.

Theorem  (The Prime Number Theorem).

π(x) ∼ x

log x
. (B.)

Proof. By Theorems , , and ,

x ∼ ϑ(x) ∼ π(x) log x.

B. The Prime Number Theorem 
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