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Abstract
We do some algebra as it arises from number theory. We
prove the basic theorems about finite fields by analogy with
some basic theorems about the integers.



Preface

The course was scheduled for :–: in the Langlands der-
sliği. I have given the scheduled dates for the course, Monday
to Sunday; but I cancelled Sunday’s class so I could go home
Saturday night. Of the seven students who attended at least
one lecture each, only one was left on Saturday anyway.

This was my third winter teaching a similar course. The
present notes are edited from a version prepared from the notes
of last year’s course for my use during this course. Because all
but one or two of the students this year were in graduate pro-
grams, I apparently went faster than in previous years, and I
added the final section, on automorphism groups, in response.
In the beginning, after the Introduction, I skipped ahead to
§..
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 Introduction

• Q, R, and C are fields.

• Every field is a ring.

• Z is a ring that is not a field.

• The ring Zn of integers modulo n is a field if and only if
n is a prime p.

• From Zp, we shall create new finite fields as C is created
from R.

• An important tool will be the Euclidean Algorithm.

• This will be part of an analogy between Z and the ring
K[X ] of polynomials in X over a field K.





 Rings

. Ordered ring of integers

This section is a summary of things the reader may already
already aware of. Some terminology may be new.

The integers or whole numbers compose the structure
denoted by

Z

for the German Zahl “number.” The structure is a commuta-

tive ring for having the following three properties.

. Z is a commutative monoid with respect to multipli-
cation, because this is commutative and associative and
has an identity or neutral element, so that the following
equations are identities—are universally true—in Z:

xy = yx,

x(yz) = (xy)z,

x · 1 = x.







(.)

. Z is an abelian group with respect to addition, because
it is a commutative monoid in which every element has
a negative or additive inverse, so that the following are





identities:

x+ y = y + x,

x+ (y + z) = (x+ y) + z,

x+ 0 = x,

x− x = 0.







(.)

. Multiplication distributes over addition in Z:

x · (y + z) = xy + xz. (.)

These three properties make Z a commutative ring. There are
non-commutative rings, such as the ring of 2×2 matrices with
entries from Z. We shall not be looking at any such rings.
Therefore, for us,

the word ring shall always mean commutative ring.

The ring Z is linearly ordered, because it has a subset,
denoted by

N

for “number,” that
) is closed under addition and multiplication,
) does not contain 0,
) contains the negative of its every nonzero non-element.

The elements of N are the positive integers or counting-

numbers. The linear ordering of Z is given by

x < y ⇐⇒ y − x ∈ N.

As an ordering, or more precisely a strict ordering, the relation
< is irreflexive and transitive, so that the following formulas
are universally true:

x 6< x,

x < y & y < z =⇒ x < z.
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In addition to being transitive, the associated relation 6 is
reflexive and antisymmetric:

x 6 x,

x 6 y & y 6 x =⇒ x = y.

The ordering is linear, because

y 66 x =⇒ x < y.

We shall see other ordered rings. Z is determined among them
by the first of the following three properties of N. To define
these properties, we describe x+1 as the successor of x. Then
the following three statements are true about the set N.

. The only subset that both
(i) contains 1 and
(ii) contains the successor of its every element

is the whole set: this is the inductive property.

. The successor of no element is 1.
. No element is the successor of more than one element.

These three properties can be called the Peano Axioms.

They involve only the element 1 and the singulary operation
x 7→ x+ 1 of succession.

One can prove from the Peano Axioms that, on N,
) there is a commutative, associative binary operation of

addition,
) there is a commutative, associative binary operation of

multiplication that distributes over addition, and
) there is a linear ordering < such that always x < x+ y.

One way to do this, but not the only way, is to start by proving
the following.

 Recursion Theorem. If a set A is given with an element
b and a singulary operation f , then there is a unique function
g from N to A, defined by recursion, so that
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(i) g(1) = b, and
(ii) g(n+ 1) = f(g(n)) for all n in N.

Then for example addition is defined by requiring, for each
k in N, that

(i) k + 1 be the successor of k, and
(ii) k + (n + 1) be the successor of k + n.

The desired properties of addition are proved by induction.
One ultimately proves:

 Well Ordering Theorem. N is well ordered, in the sense
that every nonempty subset of N has a least element.

Proving everything from the Peano Axioms is not easy and
is sometimes not well understood. We shall take the proofs for
granted.

. Fields

If a and b are counting-numbers, we can form from them the
positive fraction denoted by

a

b

or a/b. By formal definition, this is the equivalence class of
the pair (a, b) with respect to the equivalence relation ∼ given
by

(a, b) ∼ (x, y) ⇐⇒ ay = bx.

One has to prove that ∼ is indeed an equivalence relation, in
the sense of being reflexive, symmetric, and transitive. The
positive fractions, along with their negatives and 0 compose
the structure

Q
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(for “quotient”), which is an ordered ring in the natural way
learned in school. Since, moreover, every nonzero fraction a/b
has a reciprocal or multiplicative inverse, namely b/a, the
ordered ring Q is an ordered field. The ring Z is a sub-ring of
Q when we identify every n in Z with the fraction n/1. The
ordering of Z agrees with that of Q. The elements of Q are
the rational numbers.

From the rational numbers, one obtains the ordered field R of
real numbers by an infinitary process. One can understand
real numbers as Dedekind cuts, or as equivalence classes of
Cauchy sequences, or Laurent series (and their negatives) in
10−1 or some other base.

We shall not need real numbers as such, but the example of
obtaining from R the field C of complex numbers will be
useful. C is first of all the real vector space R⊕R i , which has
basis {1, i }. One defines a commutative, associative operation
of multiplication on this space by the rule

i 2 + 1 = 0.

Then every nonzero complex number a+ b i has the reciprocal
(a− b i )/(a2 + b2), so C is a field. From given finite fields, we
shall obtain larger finite fields in a similar way.

. Measurement

The word arithmetic derives from the Greek ἀριθμός, which
denotes a number of things, as opposed to a pure or abstract
number. In ordinary language, a number of things means some
whole number of them, and at least two.

Instead of developing numbers arithmetically, ultimately by
the Peano Axioms as in §., we can work geometrically. The
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b b b b
B O C A

b 0 c a

Figure .: Geometric addition

third proposition of Book i of Euclid’s Elements [] allows us
to add line segments by placing them end to end. By one of
the so-called common notions of Euclid, we can just place one
segment on top of another, in order to decide whether they
are equal. Fixing one point as 0 on an infinite straight line,
we obtain a binary operation of addition, so that, as in Figure
., if AC and OB are equal as directed segments, then

a+ b = c.

commutative, associative operation of addition on the points
of the line, so that these points compose an abelian group. If
in addition we designate one direction along the line, or one
side of 0, as positive, this gives us a linearly ordered abelian
group.

To define a commutative, associative operation of multipli-
cation on the infinite line that distributes over addition, we
need to select a positive point as 1, and we need to pass to
a second dimension and define a notion of proportion, so as
to prove what is known as Thales’s Theorem []. Ultimately
the straight line becomes the field of real numbers. The idea
seems to be due to Descartes [, ].

Without going so far, we can recursively define multiplica-
tion of real numbers by counting-numbers by the rules

a · 1 = a,

a · (m+ 1) = a ·m+ a.
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0 1 2 3 4 5 6 7 8

3 3 2

Figure .: Measurement by 3

By induction,

a · (k +m) = a · k + a ·m, a · (k ·m) = (a · k) ·m.

In a product a · n,
• the real number a is the multiplicand, while
• the counting-number n is the multiplier.

If we write a · n as b, then we say
• n divides b, while
• a measures b and is a submultiple of b, while b is a

multiple of a.
When a is itself a counting-number, then

a · n = n · a,

though again one has to prove this by induction. When we
multiply two counting-numbers then, we may forget the dis-
tinction between dividing and measuring.

Still the distinction may be useful. When we measure 8 by
3, we end up with a remainder of 2, as in Figure .. We can
exactly divide any number—conceived as a line segment—by
3, as AB is divided into the three equal parts AC, CD, and
DB in Figure ..

If again b = a · n, we may conceive a as a number of things,
while n is a pure number, or at least a number of some other
kind of thing, but b is a number of the same kind of thing as a.
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A BC D

Figure .: Division by 3

Here a might be three apples, while n is a number of children,
say four; then b is twelve apples. We can divide twelve apples
among four children, so that each child ends up with three
apples. We can measure twelve apples by three apples, ending
up with four piles, each consisting of three apples.

Using the Euclidean language of measurement, in a letter
to Bernard Frénicle de Bessy (–) written Thursday,
October , , Pierre de Fermat (–) describes [, p.
] what we now know as Fermat’s Theorem (and shall prove
on page ). The emphasis is mine:

Tout nombre premier mesure infailliblement une des puis-
sances −  de quelque progression que se soit, et l’exposant
de la dite puissance est sous-multiple du nombre premier
donné − ; et, après qu’on a trouvé la première puissance
qui satisfait à la question, toutes celles dont les exposants
sont multiples de l’exposant de la première satisfont tout de
mème à la question.

In his Source Book in Mathematics, – [, p. ],
Struik translates Fermat as saying “is a factor of” instead of
measures evenly, “divisor” instead of submultiple.
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Every prime number is always a factor [mesure infaillible-

ment ] of one of the powers of any progression minus 1, and
the exponent of this power is a divisor of the prime number
minus 1. After one has found the first power that satisfies
the proposition, all those powers of which the exponents are
multiples of the exponent of the first power also satisfy the
proposition.

Struik misdates the letter as being of October , ; but
such mistakes may be inevitable in such a compilation as his.
He modernizes Fermat’s language, but this may mean losing
the geometrical sense of numbers that Fermat inherited from
Euclid.

. Division

In Z or any ring, when an equation

ax = b

is soluble, one says that a divides b, or a is a divisor or
factor of b, but also b is a multiple of a. In this case we use
the abbreviation

a | b.

I propose to say also that a measures b or is a submultiple

of b. We may refer to the relation | itself as dividing or
divisibility or measuring. We shall use the following all the
time, especially (.).
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 Theorem. In any ring,

a | 0,
0 | a =⇒ a = 0,

a | a,
a | b & b | c =⇒ a | c,

a | b & a | c =⇒ a | bx+ cy. (.)

The ring Z is special among rings for having the ordering
that makes the following possible.

 Theorem. In N,

a | b =⇒ a 6 b.

In particular, measuring ( | ) is an ordering of N (though not
linear).

The number of factors of an integer is finite. In particular,
of two integers a and b, not both 0, there is a common factor
that is greatest with respect to the usual linear ordering <.
This greatest common divisor (or factor, or submultiple)
is denoted by

gcd(a, b).

We shall show that this is greatest with respect to divisibility
( | ) as well.

The following is also called the Division Algorithm, but it is
rather a lemma that makes possible the Euclidean Algorithm
described afterwards. Given two lengths a and b, the former
being less, we can subtract a from b until what is left is less
than a, again as in Figure .. This is measuring b by a, and
perhaps it is the performance of an algorithm; the following
theorem proves that the algorithm works.
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 Division Theorem. For all integers a and b, where a 6= 0,
either a | b, or else the system

b = ax+ y & 0 < y < |a|
has a unique solution.

Proof. Assuming a ∤ b, let A be the subset

{b− ax : x ∈ Z} ∩ N

of N. Then A is nonempty (why?); so it has a least element,
r, and then for some q,

b = aq + r. (.)

If r > |a|, so that 0 6 r − |a| < r, then, since also

b = a(q ± 1) + (r − |a|),
we have that r − |a| ∈ A, but is less than the least element,
which is absurd. Therefore 0 6 r < |a|. Uniqueness is an
exercise.

In (.), r is the remainder of b after measurement (or
division) by a, and q is the quotient of b by a.

Euclid gives the following as a porism (a corollary of the
proof) of the second proposition of Book vii of the Elements.
It is a consequence of the possibility of applying the Eu-

clidean Algorithm, whereby we can compute the greatest
common measure of 942 and 180 as follows.

942 = 180 · 5 + 42

180 = 42 · 4 + 12

42 = 12 · 3 + 6

12 = 6 · 2,







(.)

and therefore gcd(942, 180) = 6, since
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• 6, measuring 12, measures in turn 42, 180, and 942;
• any common measure of 942 and 180 measures in turn
42, 12, and 6.

 Theorem. The greatest common measure of two counting-
numbers is measured by their every common measure.

Proof. Given two unequal counting-numbers, we continually
replace the larger by its remainder after measurement by the
smaller, if this remainder exists. Thus if the original numbers
are a1 and a2, the former being greater, if possible we let

a1 = a2x1 + a3 & a2 > a3,

and in general, as far as possible,

ak = ak+1xk + ak+2 & ak+1 > ak+2.

Every common measure of a1 and a2 is a common measure
of a3, a4, and so on, by (.). Since the counting-numbers
are well ordered, the strictly decreasing sequence of ak must
terminate in some an, so that

an−2 = an−1xn−2 + an,

an−1 = anxn−1.

Then an measures an−1, and an−2, and so on up to a1. Thus an
is a common measure of a2 and a1, and, since it is measured
by every common measure, it must have been the greatest of
these.

Evidently we can apply the Euclidean Algorithm to arbitary
integers, as long as one of them is not 0. As we have proved
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it, Theorem  has the next result as a porism. Thus from the
computations (.), working backwards we have

6 = 42− 12 · 3 = 42− (180− 42 · 4) · 3
= 42 · 13− 180 · 3 = (942− 180 · 5) · 13− 180 · 3
= 942 · 13− 180 · 68.

 Bézout’s Lemma. In Z, when a and b are not both 0, the
equation

gcd(a, b) = ax+ by.

is soluble.

We can also prove Theorem  as a corollary of Bézout’s
Lemma, since there is a non-constructive proof of Bézout’s
Lemma, not relying on our first proof of Theorem .

Abstract proof of Bézout’s Lemma. The set

{ax+ by : (x, y) ∈ Z× Z} (.)

of integers has positive elements, such as |a| + |b|; therefore
the set has a least positive element. Let this be as + bt or d.
If now r is the remainder of a after measurement by d, and q
the quotient, then

r = a− dq = a · (1− sq)− btq.

Then r belongs to the set in (.), so r = 0 by minimality of
d. Thus d | a, and in the same way, d | b. Then d must be
gcd(a, b).

There is a third way to prove Theorem . It is the method
that Landau uses in his Elementary Number Theory [, p. ],
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and it will be useful to us. Since the product ab of any two
counting-numbers a and b is a common multiple of them, a
and b have a least common multiple, denoted by

lcm(a, b).

 Theorem. The least common multiple of any two counting-
numbers measures every common multiple.

Proof. The remainder of a common multiple of a and b after
measurement by lcm(a, b) is itself a common multiple of a and
b, so it must be 0.

 Corollary. For any counting-numbers a and b, their ev-
ery common measure measures ab/ lcm(a, b), which itself is
gcd(a, b).

Proof. Note first that ab/ lcm(a, b) is a common measure of a
and b, since for example lcm(a, b)/b is an integer and

ab

lcm(a, b)
· lcm(a, b)

b
= a.

For any common measure c of a and b, ab/c is a common
multiple of a and b, so

lcm(a, b)
∣
∣
∣
ab

c
, c

∣
∣
∣

ab

lcm(a, b)
.

Letting c = gcd(a, b), by Theorem  we conclude that the
common measure ab/ lcm(a, b) of a and b is greater than the
greatest common measure, and so the two measures are equal.
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 Analogy

. Congruence

Gauss defined the terminology and notation of modulus and
congruence at the beginning of the Disquisitiones Arithmeticae
[, ]. In Z, with respect to a given element n of N as a
modulus (“little measure” in Latin), we define the relation of
congruence by

a ≡ b ⇐⇒ n | a− b.

If we need to make n explicit, instead of just a ≡ b we write

a ≡ b (mod n).

Gauss does not use the following notation; but, assuming we
have verified that congruence modulo n is indeed an equiva-
lence relation, we may denote the congruence class of any k
by [k], and then we may define

Zn = {[x] : x ∈ Z},

the set of congruence classes modulo n.
We prove now that Zn is a ring with precisely n distinct

elements, namely [0], . . . , [n− 1].





 Theorem. For all n in N,

Zn = {[x] : 0 6 x < n},
|Zn| = n.

Proof. The first equation follows from the Division Theorem.
For the second equation, if 0 6 a < b < n, then 0 < b−a < n,
so n ∤ b− a, and so a 6≡ b (mod n).

 Theorem. For all n in N, for all a, b, c, and d in Z, if,
modulo n,

a ≡ c & b ≡ d,

then
a + b ≡ c+ d & ab ≡ cd.

This means the following definitions are valid on Zn:

[x] + [y] = [x+ y], [x] · [y] = [xy].

Then the identies (.), (.), and (.) that make Z a ring
must be true in Zn as well, so this is a ring.

I said on page  that one can define addition and multipli-
cation on N by means of the Recursion Theorem. However,
the inductive property of N alone suffices for the definition, as
Landau shows implicitly in Foundations of Analysis [, I, §§,
]. If we accept Landau’s proofs, then, since Zn also has the
inductive property (and we shall use it in proving Fermat’s
Theorem on page ), we automatically obtain Theorem .

. Prime numbers

In any ring, the elements with reciprocals are called units.

The units of a ring compose an abelian group with respect to
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multiplication, and if the ring is R, the group of units can be
denoted by

R×,

where the superscript × is a multiplication sign. The ring R
is a field if and only if R× = Rr {0}.

Two integers are called prime to one another (or relatively
prime, or co-prime) if their greatest common divisor is 1.

By (.), modulo n,

x ≡ y =⇒ gcd(x, n) = gcd(y, n).

Thus the following makes sense.

 Theorem. Zn
× = {[x] ∈ Zn : gcd(x, n) = 1}.

Proof. If [a] ∈ Zn
×, so that, modulo n, the congruence

ax ≡ 1 (.)

is soluble, then
gcd(a, n) = 1 (.)

since gcd(a, n),
• measuring a, measures ax;
• measuring n, measures ax− 1.

Conversely, if (.), then by Bézout’s Lemma, the equation

ax+ ny = 1

is soluble, so (.) is soluble.

By definition, the Euler phi-function on N is such that,
for every n greater than 1, ϕ(n) is the number of counting
numbers less than n that are prime to n. Symbolically,

ϕ(n) = |{x ∈ N : x 6 n & gcd(x, n) = 1}| .
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We can replace the requirement x 6 n with x < n unless
n = 1. By Theorems  and ,

ϕ(n) =
∣
∣Zn

×
∣
∣ . (.)

We shall show how to calculate this number in Theorems 
and .

In any ring R, two nonzero elements a and b are associates

if the equation ax = b is soluble by a unit. Being associated
this way is an equivalence relation. A nonzero non-unit is
called irreducible if its only factors are units and associates.
Thus if a nonzero element π of a ring R is irreducible, this
means

π /∈ R×,

π = ab & b /∈ R× =⇒ a ∈ R×.

Euclid refers to each positive irreducible of Z as πρῶτος “first,”
or in Anglicized Latin prime, because the irreducibles in N
are first in measuring ( | ). Here it is worthwhile to recall
from page  that 1 is not an ἀριθμός. By the well-ordering of
N, along with its relation to measuring given by Theorem ,
every element has a prime factorization, meaning it can be
written as a product of primes. Even 1 is the product of the
empty set of primes.

 Theorem. The ring Zn is a field if and only if n is prime.

Proof. There are three possibilities for n.
. Having but a single element, Z1 is not a field, since 1 6= 0

in every field.
. If a > 1 and b > 1, then, modulo ab, a 6≡ 0, but ab ≡ 0,

so a has no inverse in Zab, and this cannot be a field.
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. For all primes p, by Theorem ,

Zp
× = {[x] ∈ Zp : 0 < x < p} = Zp r {0}.

To emphasize that it is a field, we shall write Zp as

Fp.

The following is Proposition  of Book vii of the Elements.

 Euclid’s Lemma. In Z, for all primes p,

p | ab & p ∤ a =⇒ p | b. (.)

Proof from Theorem . We can rewrite (.) in terms of con-
gruence modulo p:

ab ≡ 0 & a 6≡ 0 =⇒ b ≡ 0. (.)

This is true since Fp is a field.

Proof from Bézout’s Lemma. By hypothesis, gcd(p, a) = 1, so
by Bézout’s Lemma we can solve the equations

px+ ay = 1,

pbx+ aby = b.

Since p divides the left member of the latter equation, it must
divide b.

Before continuing, let us note some applications of Euclid’s
Lemma.

 Fundamental Theorem of Arithmetic. Prime factor-
izations of counting-numbers are unique.
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Proof. Suppose p1 · · · pm = q1 · · · qn, where each pi or qj is
prime, and

p1 6 . . . 6 pm, q1 6 . . . 6 qn.

Then p1 | q1 · · · qn, so by Euclid’s Lemma, p1 divides one of the
qj and is therefore equal to it. Likewise, q1 is equal to some
pi. Then

p1 = qj > q1 = pi > p1,

so p1 = q1. Now p2 = q2, and so forth, and m = n.

In some rings, irreducible factorizations exist, but they are
not unique. Thus for example when we define

Z[
√−5] = {x+ y

√−5: (x, y) ∈ Z× Z} (.)

this is a sub-ring of C in which

2 · 3 = 6 = (1 +
√−5)(1−√−5).

The two different factorizations of 6 are irreducible, as one can
prove by means of the multiplicative function z 7→ |z|2 from
Z[
√−5] to N ∪ {0}. However, none of the irreducible factors

2, 3, and 1±√−5 is prime. Apparently the term “ring” comes
from examples like Z[

√−5], where, in squaring
√−5, we circle

back to Z.

 Theorem. If p is prime and n ∈ N, then

ϕ(pn) = pn − pn−1.

Proof. We use that

ϕ(pn) = pn − |{[x] ∈ Zpn : gcd(pn, x) > 1}| .
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By Euclid’s Lemma, the only prime factor of pn is p, so

gcd(pn, x) > 1 ⇐⇒ p | x.

This yields the claim.

By Theorem , numbers are congruent modulo k and m if
and only if they are congruent modulo lcm(k,m). This gives
uniqueness in the following.

 Chinese Remainder Theorem. If gcd(k,m) = 1, then
every system

z ≡ a (mod k), z ≡ b (mod m)

has a solution that is unique modulo km.

Proof. The desired solution is

z ≡ amy + bkx (mod km),

where kx+my = 1.

 Corollary. If gcd(k,m) = 1, then the ring homomorphism

[x] 7→ ([x], [x]) (.)

from Zkm to Zk × Zm is an isomorphism.

 Theorem. If gcd(k,m) = 1, then

ϕ(km) = ϕ(k) ·ϕ(m).

Proof. Restricted to Zk
×, The isomorphism in (.) is surjec-

tive onto Zk
× × Zm

× by Euclid’s Lemma: if gcd(k, x) and
gcd(m, x) are both 1, then gcd(km, x) must be 1.
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The property (.) of Fp that is analogous with (.) can be
written as

xy = 0 & x 6= 0 =⇒ y = 0

for an arbitrary field. A ring where this holds along with 0 6= 1
is called an integral domain. All fields are integral domains,
but Z is an integral domain that is not a field. The example
Z4 is not even an integral domain.

 Theorem. Every finite integral domain is a field.

Proof. Let R be a finite integral domain and a ∈ Rr{0}. The
function x 7→ ax having domain R r {0} has range included
in R r {0}, since if b 6= 0 in R, then ab 6= 0. Similarly, the
function is injective:

ab = ac =⇒ a(b− c) = 0 =⇒ b− c = 0 =⇒ b = c.

By the Pigeonhole Principle, the function must be surjective.
In particular, the equation ax = 1 must have a solution.

By analogy with the rules for an integral domain, and espe-
cially considering Euclid’s Lemma, we say a nonzero element
π of an arbitrary ring R is prime if

π /∈ R×,

π | xy & π ∤ x =⇒ π | y.

In these terms, Euclid’s Lemma is that positive irreducibles of
Z are prime and that, when p is such, then Zp is an integral
domain. There is a partial converse that holds more generally:

 Theorem. In an integral domain, primes are irreducible.
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Proof. In an integral domain, suppose a prime π is equal to
ab. Then π | ab, so we may assume π | a, and so there is x
such that πx = a. Then

πxb = ab = π,

xb = 1

since we are in an integral domain. In particular, b is a unit.

The proof fails for arbitrary rings. Thus in Z6, 2 is prime,
since the multiples of 2 are 0, 2, and 4, and these are products
as follows:

0 = 2 · 3
= 3 · 4
= 0x,

2 = 2 · 4
= 4 · 5,

4 = 2 · 2
= 4 · 4
= 4 · 5,

and 2 measures a factor in each case. However, since 2 = 2 · 4,
it is not irreducible.

. Polynomials

It will now be useful to define

ω = {0, 1, 2, . . . } = {0} ∪ N = {x ∈ Z : x > 0},
the set of natural numbers or non-negative integers.

(Here ω is the minuscule Greek omega.)
For any field K, we can form an infinite-dimensional vector-

space over K having the formal basis {Xn : n ∈ ω}. An arbi-
trary element f of this space can be written as

∑

n∈ω

fnX
n,
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where fn = 0 for all but finitely many n. The least n such
that fn 6= 0 is called the degree of f and can be denoted by

deg(f).

Then fdeg(f) is the leading coefficient of f . For completeness,
we may define

deg(0) = −∞.

We can define a multiplication on the whole space by first
setting

Xk ·Xm = Xk+m,

then extending to ensure commutativity, associativity, and dis-
tributivity. This gives

fg =
∑

n∈ω

∑

i+j=n

figjX
n.

This operation makes the space into the ring

K[X ]

of polynomials in X over K. There is strong analogy be-
tween K[X ] and Z. The ring K[X ] is not ordered, but the
degrees of its elements are.

 Division Theorem (for polynomials). For all fields K,
for all f in K[X ] and g in K[X ]r {0}, there are some q and
r in K[X ] such that

f = gq + r & deg(r) < deg(g).

Moreover, deg(r) is uniquely determined by f and g.
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Proof. Follow the pattern of the proof of Theorem , letting r
be an element of {f −g · ξ : ξ ∈ K[X ]} having minimal degree.
If deg(r) > deg(g), then the set also contains

r − rdeg(r)
gdeg(g)

· g,

whose degree is strictly less than deg(r).

Of two polynomials, at least one of which is not 0, there
is a common divisor of maximal degree. We can find such a
common divisor by performing the Euclidean Algorithm; and
then every common divisor will divide it, as follows.

 Bézout’s Lemma (for polynomials). For all fields K, for
all f and g in K[X ], not both 0, for every element h of the set

{f · ξ + g · η : (ξ, η) ∈ K[X ]×K[X ]}

having minimal degree,

(i) h | f and h | g;
(ii) if k | f and k | g, then k | h.

The polynomial h in the theorem is a greatest common divi-
sor of f and g and is unique up to multiplication by a nonzero
scalar. As we could prove Euclid’s Lemma from Bézout’s
Lemma in the original case of integers, so we can do it for
polynomials:

 Euclid’s Lemma (for polynomials). For every field K,
every irreducible of K[X ] is prime.
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. Quotients

The theory of congruence carries over to an arbitrary ring R.
If a is a nonzero element of this ring, two elements b and c can
be called congruent modulo a if a | b−c. The set of congruence
classes of elements of R is then denoted by

R/(a). (.)

Thus Zn becomes Z/(n).
It is not important for us, but the notation in (.) can be

analyzed, and (a) is the set of elements of R that are congruent
to 0; this set is just {ax : c ∈ R}. Thus, modulo a,

b ≡ c ⇐⇒ b− c ∈ (a).

Then R/(a) is the quotient of R by (a), which itself is called
an ideal of R, because it is closed under addition and under
multiplication by elements of R. More precisely, (a) is a prin-

cipal ideal, because it consists of the multiples of a single
element. In any ring, such as Z or K[X ] where K is a field, in
which Bézout’s Lemma is true, all ideals are principal; but in
the ring Z[

√−5] defined in (.) on page , when we define

(1 +
√−5, 1−√−5)

= {(1 +√−5)x+ (1−√−5)y :

(x, y) ∈ Z[
√−5]× Z[

√−5]},

this is a non-principal ideal, as again one can show by means
of z 7→ |z|.

Corresponding to Theorem , by the same proof, we have
the following.
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 Theorem. For all fields K, for all nonzero f in K[X ],

K[X ]/(f) is a field ⇐⇒ f is irreducible.

We looked at the example of C on page ; now we can write

C = R[X ]/(X2 + 1).

However, over F2,

X2 + 1 = (X2 − 1) = (X + 1)(X − 1) = (X + 1)2,

so it is not irreducible. Nonetheless, X2+X +1 is irreducible
over F2, since it can factorize only as (X − a)(X − b), where a
and b are zeros of the polynomial; and there are no such zeros
in F2. If we denote the congruence class of X in F2[X ] modulo
X2 +X + 1 by α, then

α2 + α + 1 = 0.

Thus α2 = α + 1. We can write

F2(α) = F2[X ]/(X2 +X + 1).

Here X2 + X + 1 is a minimal polynomial of α over F2,
since α is a root of it, but not of any nonzero polynomial of
less degree, since if α is also a root of f , then α is a root of
gcd(X2+X +1, f), so this is not 1, so it must be X2+X +1,
since this is irreducible.

As a vector space over F2, the field is F2 ⊕ F2α. Addition
and multiplication in F2(α) are as in Figure .. Note that
F2[α]

× ∼= Z3. Also

(X − α)(X − α− 1) = X2 +X + 1,
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+ 0 1 α α + 1
0 0 1 α α + 1
1 1 0 α + 1 α
α α α+ 1 0 1

α + 1 α + 1 α 1 0

× 1 α α+ 1
1 1 α α+ 1
α α α + 1 1

α+ 1 α + 1 1 α

Figure .: Arithmetic in F2[α] where α2 = α+ 1

and thus

∏

t∈F2[α]

(X − t) = X(X − 1)(X2 +X + 1)

= X(X3 − 1) = X4 −X.

Still over F2, there are four polynomials of degree 3 that do
not have the factor X, namely

X3 + 1, X3 +X + 1, X3 +X2 + 1, X3 +X2 +X + 1.

The first and last have factor X + 1; the middle two do not,
since 1 is not a zero of them, and therefore they are irreducible.
We can now understand F2/(X

3 +X + 1) as F2(β), where

β3 = β + 1.

As a vector space, the field is F2 ⊕ F2β ⊕ F2[β
2], with eight

elements. To understand multiplication in the field, we may
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observe that the powers of β are thus:

k 0 1 2 3 4 5 6 7
βk 1 β β2 β + 1 β2 + β β2 + β + 1 β2 + 1 1

Hence an abbreviated multiplication table can be written out
as in Figure ..

For one more example, we note that X2+1 is irreducible over
F3, since it has no zero there. Then F3[X ]/(X2 + 1) = F3(γ),
where

γ2 = −1,

and so γ4 = 1. However, γ + 1 has the following powers.

k 0 1 2 3 4
(γ + 1)k 1 γ + 1 −γ 1− γ −1
(γ + 1)4+k −1 −(γ + 1) γ γ − 1 1

Writing γ + 1 as δ, we have γ = δ − 1, so

0 = (δ − 1)2 + 1 = δ2 + δ − 1,

F3(γ) = F3(δ) = F3[X ]/(X2 +X − 1).

In fact

X8 − 1 = (X − 1)(X + 1)(X2 + 1)(X4 + 1)

(X − 1)(X + 1)(X2 + 1)(X2 +X − 1)(X2 −X − 1)

over F3. Any of the three irreducible polynomials X2 + 1 and
X2 ±X − 1 will give us F9.

If f in K[X ] is irreducible of degree n, then, as a vector
space over K, K[X ]/(f) is isomorphic to the space with basis

{Xk : 0 6 k < n}.
In particular, in case K is Fp, the space has finite size pn; see
Theorem . We shall show that such irreducibles f exist for
all positive n, and moreover, finite fields arise in no other way.
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 Characterization

. Characteristic

Every commutative ring R contains all of the sums

1 + · · ·+ 1
︸ ︷︷ ︸

n

,

where n ∈ N. If the sum is 0 for some n, then the least such
n is called the characteristic of R, or

char(R).

If R is an integral domain, then char(R) must be a prime p.
In this case, we may suppose Fp ⊆ R; and then R is a vector
space over Fp.

 Theorem. The size of every finite field is a prime power.

Proof. If K is a finite field, then, by what we have just seen,
K is a vector space over some Fp. As such, K has a basis of
some finite size n; and then, as at the end of the last section,
|K| = pn.

We are going to prove Fermat’s Theorem by induction, as
mentioned on page . By recursive definition,

0! = 1, (n+ 1)! = n! · (n+ 1).





If 0 6 k 6 n, then by non-recursive definition,
(
n

k

)

=
n!

k! · (n− k)!
.

This is the number of k-element subsets of a set of size n. If
one accepts this, then

(
n

k

)
is automatically a counting-number.

Alternatively, one may observe
(
n

0

)

= 1,

(
n

n

)

= 1,

while if 0 6 k < n, then by computation
(
n

k

)

+

(
n

k + 1

)

=

(
n + 1

k + 1

)

,

so by induction, each
(
n

k

)
is a counting-number. One may also

prove by induction the Binomial Theorem,

(x+ y)n =

n∑

k=0

(
n

k

)

xn−kyk,

and note that the coefficients must be counting-numbers.

 Lemma. When 0 < k < p, then

p

∣
∣
∣
∣

(
p

k

)

.

Proof. The “intuitive” proof is that, if A is a proper nonempty
subset of Zp, and σ is the permutation x 7→ x + 1 of this set,
then the sets σn[A] all differ as n itself ranges over Zp; thus the
number of subsets of Zp having the size of A must be divisible
by p.

 Characterization 



The more formal proof is that, first of all, since
(
p

k

)
is a whole

number,
k! · (p− k)! | (p− 1)! · p.

By Euclid’s Lemma, since 0 < k < p and p is prime,

p ∤ k! · (p− k)!.

By the Fundamental Theorem (page ), we must therefore
have

k! · (p− k)! | (p− 1)!.

 Theorem. In any field having characteristic p,

(x+ y)p = xp + yp.

Proof. This is an immediate consequence of the Binomial The-
orem and Lemma .

 Fermat’s Theorem. For all primes p and all a in Z, if
p ∤ a, then

ap−1 ≡ 1 (mod p).

Proof. The claim is that, in Fp,

a 6= 0 =⇒ ap−1 = 1,

or equivalently, for all a in Fp,

ap = a. (.)

We can prove this by induction. Immediately (.) holds when
a = 1. Suppose (.) is true when a = b, so bp = b. By
Theorem ,

(b+ 1)p = bp + 1 = b+ 1

in Fp, so (.) is true when a = b + 1. By induction, (.) is
true for all a in Fp.
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We can also derive Fermat’s Theorem as a special case of
Euler’s Theorem below.

The order of a finite group is just its size. The order of
an element a is the least non-negative exponent n such that
an = 1 in the group; but this is just the order of the subgroup
{an : n ∈ Z}, which is denoted by

〈a〉,
of the original group. So the order of a is |〈a〉|; we just write
this as

|a| .
 Lagrange’s Theorem. In any finite group, the order of
any element divides the order of the group.

Proof. Let G be the group and a the element, and let n = |a|.
We can construct a matrix








1 a a2 · · · an−1

b1 b1a b1a
2 · · · b1a

n−1

...
...

...
...

bk−1 bk−1a bk−1a
2 · · · bk−1a

n−1








with entries from G, line by line, left to right within each line,
so that every element of G appears exactly once. In particular,
|G| = nk.

 Euler’s Theorem. For all n in N, for all a in Z, if

gcd(a, n) = 1,

then
aϕ(n) ≡ 1 (mod n).

Proof. By Theorem  and (.), the claim is a consequence
of Lagrange’s Theorem.
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. Units of finite fields

If K is a field included in a ring R, and a ∈ R, then there is a
homomorphism

f 7→ f(a)

from K[X ] to R that is uniquely determined by the require-
ment that f(a) be a when f is X. If f(a) = 0, then a is called
a root or zero of f . By Fermat’s Theorem, every element of
Fp is a root of the polynomial

Xp −X.

Using Lagrange’s Theorem, we generalized Fermat’s Theorem
to Euler’s Theorem. A similar generalization will be that, if
K is a finite field of size q, then every element of K is a root
of the polynomial

Xq −X.

We shall use this to construct and characterize finite fields.

 Theorem. For any field K, for any f in K[X ]r {0},

|{x ∈ K : f(x) = 0}| 6 deg(f).

Proof. Suppose f(α) = 0. By the Division Theorem for poly-
nomials (Theorem ), for some g in K[X ],

f = (X − α) · g. (.)

If β 6= α and f(β) = 0, then g(β) = 0. Thus f can have at
most one more zero than g has. If deg(g) = 0, then g has no
zeros. By induction, the proof is complete.

 Lemma. Suppose an abelian group (written additively) has
elements g and h of orders a and b respectively.
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. If gcd(a, b) = 1, then g + h has order ab.
. In general, gcd(a, b) · g + h has order lcm(a, b).

Proof. We have ab(g+h) = bag+abh = 0+0 = 0. Conversely,
if n(g + h) = 0, then ng, which is −nh, belongs to both 〈g〉
and 〈h〉. If gcd(a, b) = 1, then by Lagrange’s Theorem, 〈a〉
and 〈b〉 have only the trivial subgroup in common, so n must
be a common multiple of a and b, and here this just means
ab | n. This yields the first claim. For the more general claim,
we note that gcd(a, b)g has order a/ gcd(a, b), which is prime
to b, and the product of the two orders is lcm(a, b).

 Theorem. For every finite field K, for some nonzero ele-
ment α of K,

K× = 〈α〉.

Proof. Suppose |K| = q, and let α be an element of K× of
maximal order. If β ∈ K×, then by Lemma  the group has
an element of order lcm(|α| , |β|). This must be |α| by its own
maximality, and so |β| must divide |α|. If this order is m, then
we now have

K× = {x ∈ K : xm = 1}.
By Theorem , the size q − 1 of this set is at most m. Also
m | q − 1, so m = q − 1, and this yields the claim.

. Splitting fields

We noted on page  that if f in K[X ] is irreducible of degree
n, then the field K[X ]/(f) has dimension n as a vector space
over K. Moreover, the congruence class of X in the field must
be a root of f . If K is included in some field L that contains
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a root α of f , we denote by

K(α)

the smallest subfield of L that includes K and contains a.
Then K(a) and K[X ]/(f) are isomorphic as vector spaces and
indeed as fields, and there is an isomorphism from K(α) to
K[X ]/(f) that is the identity on K and that takes α to the
congruence class of X.

If now K and α are as in Theorem , and char(K) = p,
while q = pn, then

K = Fp(α). (.)

Moreover, α must be a root of an irreducible factor of Xq−1−1
that has degree n.

We shall show that there is always such a factor, for every p
and n.

For an arbitrary field K, for any n in N, for any polynomial
f of degree n over K, a splitting field of f over K is a field
extending K containing elements αk such that

f =
∏

k<n

(X − αk).

 Theorem. Splitting fields always exist.

Proof. In the notation just used, we have seen that f has a
root α in some field K(α). Over this field, as in the proof
of Theorem , there is a polynomial g such that (.) holds.
Here g may not be irreducible, but it has an irreducible factor,
which has a root β in some field K(α, β). Then f = (X −α) ·
(X − β) · h for some h, and so forth.
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If, in its complete factorization in a splitting field, a poly-
nomial has no repeated factor, the polynomial is called sep-

arable. To test for separability, we can take formal deriva-
tives. The derivative f ′ of a polynomial f is just what one
expects from the rules of calculus. By formal definition, the
map ξ 7→ ξ′ from K[X ] to itself is the unique linear transfor-
mation that takes Xn to nXn−1 when n ∈ N, but takes 1 to
0. The multiplication rule

(fg)′ = f ′g + fg′

holds when f and g are powers of X and therefore, by linearity,
for all f and g.

 Theorem. A polynomial is separable if and only if it is
prime to its derivative.

Proof. We can write a separable polynomial as (X − α)2 · g,
and X − α is a common factor of this and its derivative.

However, if α is not a root of f , then it is not a root of the
derivative of (X − α) · f , which is f + (X − α) · f ′. Thus a
separable polynomial can share no roots with its derivative.

Over a field of characteristic p, a polynomial Xp − a is not
separable, since its derivative is 0. If b is a root of the polyno-
mial, then

(X − b)p = Xp − bp = Xp − a

by Theorem , so the polynomial has a unique root. Thus
the function x 7→ xp from the field to itself is injective. If the
field is finite, then the function must also be surjective, by the
Pigeonhole Principle as on page . In this case, Xp − a is
never irreducible.
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 Theorem. For each prime p and counting-number n, there
is a field having size pn.

Proof. Let q = pn. By Theorem , the polynomial Xq − X
is separable, since its derivative, −1, is a unit. Let L be a
splitting field of the polynomial, and let

K = {x ∈ L : xq = x}.

Then |K| = q. Moreover, K is a field by Theorem , since if
K contains α and β, then

(α± β)q = αq ± βq = α± β,

(αβ)q = αqβq = αβ,

and also, if α 6= 0,
αq−2α = 1,

so K is closed under addition, subtraction, multiplication, and
inversion.

. Isomorphism

By what we saw at the beginning of the last section, if α and
β are both roots of the same irreducible polynomial f over K,
then the map from K(α) to K(β) that is identical on K and
takes α to β must be an isomorphism.

We also saw that any finite field can be written as in (.), as
Fp(α). The field having size q, let f be the irreducible factor of
Xq−X of which α is a root. Any other field of size q contains
a root β of f , and then the field itself must be Fp(β), and this
is isomorphic to Fp(α).

Thus we have:
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 Theorem. For every prime power, all fields of that size
are isomorphic.

“The” field of size q can be called

Fq.

 Theorem. The finite fields of characteristic p are ordered
by inclusion as the exponents of their sizes are ordered by di-
visibility. Thus for all m and t in N,

Fpm ⊆ Fpt ⇐⇒ m | t.
Proof. By the same proof as when K = Fp, if K and L are
two finite fields such that K ⊆ L, then for some n in N,

|L| = |K|n .
In particular, if |K| = pm, then |L| = pt for some t, where
m | t.

Suppose conversely m | t. Then t = mk for some k, and so

pt − 1 = (pm)k − 1 = (pm − 1) · n,
where

n = (pm)k−1 + · · ·+ 1.

Now

Xpt −X = X · (Xpt−1 − 1)

= X ·
(
(Xpm−1)n − 1

)

= X · (Xpm−1 − 1) ·
(
(Xpm−1)n−1 + · · ·+ 1

)

= X · (Xpm−1 − 1) ·
(
(Xpm−1)n−1 + · · ·+ 1

)

= (Xpm −X) ·
(
(Xpm−1)n−1 + · · ·+ 1

)
,

so by the proof of Theorem , Fpm ⊆ Fpt.

 Characterization 



 Galois Theory

On a field of characteristic p the function x 7→ xp discussed
on page  is an endomorphism (an injective homomorphism
from the field into itself) by Theorem . If the field is finite, as
discussed before, the function is therefore an automorphism

(an isomorphism of the field with itself, or a surjective endo-
morphism), called the Frobenius Automorphism. Let us
denote it by σ. By Fermat’s Theorem, σ is the identity on Fp.
Indeed, this field can have no nontrivial automorphism, since
the elements of the field are just finite sums of the element 1.
In any case, σ belongs to the group

Aut(Fpn)

of automorphisms of Fpn.

 Theorem. For all primes p, for all n in N,

Aut(Fpn) = {σi : 0 6 i < n} ∼= Zn.

Proof. We know

Fpn
× = 〈α〉 (.)

for some α in Fpn
×. In this case we have

Fpn = Fp(α).





The minimal polynomial f of α over Fpn is

n∑

k=0

bkX
k

for some bk in Fpn. Since f(α) = 0, we have also

0 = f(α)p =
n∑

k=0

bk
p(Xk)p =

n∑

k=0

bk(X
p)k = f(αp)

by Fermat’s Theorem. In the same way, all elements of the set
{αpi : 0 6 i < n} are roots of f . Then the set has n distinct
elements; for if 0 6 i 6 j < n and

αpi = αpj ,

then
αpn+i−j

= αpn = α,

and so α belongs to Fpn+i−j , which it does not, by (.), unless
i = j. If τ ∈ Aut(Fp), then as with the Frobenius automor-
phism, writing xτ for τ(x) we have

0 = f(α)τ = f(ατ ),

so ατ = αpi = ασ
i

for some i. Since every nonzero element of
Fpn is a power of α, we can conclude τ = σ

i.

We define
Fp

alg =
⋃

n∈N

Fpn,

where Fpm ⊆ Fpt when m | t as in Theorem . Then Fp
alg is a

field, the algebraic closure of F , since it is the smallest field

 Galois Theory 



including Fp in which every polynomial splits. We have now a
map

ζ 7→ (zn : n ∈ N)

from Aut(Fp
alg) to the product

∏

n∈N

Zn

of groups given by

ζ ↾ Fpn = σ
zn .

Thus the zn meet the condition

m | t =⇒ zm ≡ zt (mod m).

We can build up such zn step by step, by the Chinese Remain-
der Theorem. Indeed, suppose

zk ≡ zm (mod d), (.)

where

d = gcd(k,m).

We can let

z ≡ zk ·
m

d
· y + zm · k

d
· x (mod lcm(k,m)), (.)

where

kx+my = d. (.)

Then

z ≡ zk mod
k

d
, z ≡ zm mod

m

d
. (.)

 Finite fields 



Moreover, since d | lcm(k,m), by (.) and (.) we have

z ≡ zk ·
m

d
· y + zk ·

k

d
· x ≡ zk (mod d), (.)

and in the same way z ≡ zm (mod d). This and (.) give

z ≡ zk (mod k), z ≡ zm (mod m).

Thus we can let
zlcm(k,m) = z.

Now we know that Aut(Fp
alg) is isomorphic to the product

∏

ℓ prime

Z(ℓ),

where Z(ℓ) is the subgroup of

∏

n∈N

Zℓn

consisting of
(an : n ∈ N)

such that
i 6 j =⇒ ai ≡ aj (mod ℓi).

Under this condition, we can recursively define

b0 = a1, bn =
an+1 − an

ℓn
.

In this case

an =
n−1∑

k=0

bkℓ
k.
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We can now write the group element as

∞∑

k=0

bkℓ
k,

because this reflects the group structure:

∞∑

k=0

bkℓ
k +

∞∑

k=0

ckℓ
k =

∞∑

k=0

dkℓ
k

if and only if, for all n in N,

n−1∑

k=0

bkℓ
k +

n−1∑

k=0

ckℓ
k ≡

n−1∑

k=0

dkℓ
k (mod ℓn).
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