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Preface

Much of the present document is cannibalized from the notes
I kept while teaching Elementary Number Theory II at metu

in Ankara, Spring . I edited those notes in the winter of
this year. There were  hours of lectures for that course.

The present document reflects the content of the twelve
hours of lectures constituting Continued Fractions, given at
the Math Village, – a.m., Monday to Sunday (except Thurs-
day), August –, . The order of presentation in class
was often different, and I did not give all of the proofs.

I focussed on the practical problem of finding integer points
of conic sections, especially hyperbolas, using continued frac-
tions. I presented a complete method; in this sense, the course
constituted a whole. I showed how to find all integer points
from one nontrivial point. I did not prove that the point had
to exist (though the proof is here); nor did I prove that such
a point could be obtained from a convergent of a square root
(though the proof is in the notes from ten years ago).

I had expected to work through the proof that, for nonsquare
positive d, √

d = [a0; a1, . . . , an−1, 2a0],

where ak = an−k when 0 < k < n. In the event, there was no
time for the proof, and I doubted whether there was interest.

Since some students had little university experience, I ended
up discussing the Euclidean Algorithm and its usual number-
theoretic consequences, as in Chapter . For fun, I found the
Pythagorean triples, as in Chapter .





The lectures actually started with the question of the mean-
ing of

√
2 at the head of Chapter . One student described

it as a supremum. He also had Euclid from the library, and
this is a reason why I felt free to talk about Euclid’s theories
of proportion, as in Chapter ; other students became curious
here, though perplexed.

On Tuesday I had  students: five from Boğaziçi, four from
odtü, two from Bilkent, and one each from DPÜ (Dumlupı-
nar?), CBÜ (Celal Bayar?), Galatasaray, and İTÜ, and one
not yet at university. I know this because I had them write
down the information; I then assigned each student a different
number d for which to find the continued fraction expansion
of

√
d. Most of them brought the correct solutions the next

day. One of them had checked his work with me, the previous
evening.

Most students were from English-language universities; but
I spoke mainly in Turkish, while writing in English. Students
asked questions in both languages.

On the last day, five students attended. Later in the day, I
saw two who had not attended. One said that, even had he
arisen in time for class, fields and lattices were alien to him;
the other had been seeing off friends, though he was staying
longer, and did I suggest he take my course of the next week
(The Prime Number Theorem)?

The course might be called an introduction to quadratic
fields. I avoided most suggestions of where further generaliza-
tion might lead. I did point out we were finding integer points
of curves of genus zero; the problem of genus one—elliptic
curves—was harder.
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 The Euclidean Algorithm

For notation, we shall use
• N for the set {1, 2, 3, . . .} of counting numbers,

• ω (“omega”) for the set {0, 1, 2, . . .} of natural num-

bers, and
• Z for the set {. . . ,−2,−1, 0, 1, 2, . . .} of integers.

Given two counting numbers a0 and a1, where a0 > a1, we
define natural numbers an+2 and xn recursively by the rule

an = an+1xn + an+2 & an+2 < an+1.

This is the Euclidean Algorithm. Here ax means a, x times,
so that x is the multiplier, and a the multiplicand; sym-
bolically,

ax = a+ · · ·+ a
︸ ︷︷ ︸

x

.

If ax = b, two conclusions are that a measures b, and x
divides b. These are equivalent notions, since ax = xa. How-
ever, we are going to prove this, as Euclid does in the Elements.

Meanwhile, since the sequence of natural numbers an is de-
creasing, it must eventually stop. It stops when it reaches zero.
If an+2 = 0, then xn+1 cannot be defined. Thus we have

a0 = a1x0 + a2,

a1 = a2x1 + a3,

. . . . . . . . . . . . . . . .

an−1 = anxn−1 + an+1,

an = an+1xn.





Here an+1 is the greatest common measure of a0 and a1,
since

• an+1 measures itself, and an, and then an−1, and so on
to a1 and a0, and moreover

• any common measure of a0 and a1 measures also a2, then
a3, and so on to an+1.

For example,

151 = 71 · 2 + 9,

71 = 9 · 7 + 8,

9 = 8 · 1 + 1,

8 = 1 · 8,

and so the greatest common measure of 151 and 71 is 1, or in
other words 151 and 71 are prime to one another. More-
over, working backwards through the computations, we have

1 = 9− 8 · 1 = 9− (71− 9 · 7) · 1
= 9 · 8− 71 · 1 = (151− 71 · 2) · 8− 71 · 1

= 151 · 8− 71 · 17.

In this way, we obtain:

Theorem  (Bézout). Counting numbers a and b are prime

to one another if and only if the equation

ax+ by = 1

is soluble in Z.

The Euclidean Algorithm is an application of what Euclid
calls anthyphaeresis (ἀνθυφαίρεσις) or alternating subtrac-
tion. The Greek word comes from anti + hypo + haire- (ἀντί
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+ ὑπό + αἱρέ-); the last two parts in Latin are sub + tract.

Let the sequence of numbers xn obtained above be called the
anthyphaeretic sequence of the ordered pair (a0, a1).

For Euclid, a number is a “multitude of units,” and units
are implicitly magnitudes, all of the same size. There are
several ways to express the same possible relation among four
magnitudes a, b, c, and d:

• a, b, c, and d are proportional,

• the ratio of a to b is the same as that of c to d, or
• a is to b as c is to d.

For these, in modern symbolism we write

a : b :: c : d. (.)

There is good evidence that, by the original definition, this
means (a, b) and (c, d) have the same anthyphaeretic sequence.
However, there are other possible definitions, and Euclid gives
two of them: one for arbitrary magnitudes, and one for num-
bers alone.

Euclid’s definition of proportion of arbitrary magnitudes is
attributed to Eudoxus of Cnidus by a scholium in a manuscript
of Euclid’s text. By this definition, a ratio is what we now
understand to be a Dedekind cut, because we know the ratio of
A to B, once we know, for each pair (k, ℓ) of counting numbers,
whether Ak > Bℓ, or Ak = Bℓ, or Ak < Bℓ. (See page  for
more on Dedekind cuts.)

Euclid defines four numbers to be in proportion if the first
number is the same multiple, or part, or parts, of the second
that the third is of the fourth. The words may seem ambiguous
to us today, but I think the meaning can only be as follows.

Given the numbers a and b, we can find their greatest com-
mon measure, e, using the Euclidean algorithm. There are





then multipliers x and y such that

a = ex, b = ey.

• If y = 1, then a is a multiple of b;
• if x = 1, then a is a part of b;
• otherwise, a is parts of b.

In any case, x and y are prime to one another; otherwise, e
would not be the greatest of their common measures. Thus
the meaning of (.) for numbers is that, for some multipliers
x and y,

a = ex, b = ey, c = fx, d = fy,

where
• e is the greatest common measure of a and b, and
• and f is the greatest common measure of c and d,

or equivalently
• x and y are prime to one another.

Thus every proportion of numbers can be written in the form

ex : ey :: fx : fy, (.)

where again x and y are prime to one another.
Some modern mathematicians do not seem to think the con-

dition on e and f (or on x and y) is implied by Euclid’s words
[, ]. One reason to think that it is implied is that, with the
definition as I have stated it, we have immediately

a : b :: c : d & c : d :: g : h =⇒ a : b :: g : h.

This is transitivity of sameness of ratio; and Euclid would not
define any relation as a sameness of something, unless the
relation were obviously transitive.
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In Euclid’s definition, as I interpret it, the pair (x, y) is
uniquely determined by (a, b); moreover, again, x and y are
prime to one another.

Even without the condition on e and f above, we immedi-
ately have that sameness of ratio is reflexive and symmetric:

a : b :: a : b,

a : b :: c : d =⇒ c : d :: a : b.

There is also another kind of symmetry:

a : b :: c : d =⇒ b : a :: d : c.

Thus, in (.), we may assume a > b, and also a > c, if this is
convenient.

Lemma . For all counting numbers a, b, c, and d,

a : b :: c : d =⇒ a : b :: a± c : b± d.

Proof. If (a, b) and (c, d) have the same anthyphaeretic se-
quence, it will be the anthyphaeretic sequence of (a+ c, b+ d)
and (a− c, b− d), since, for example,

(a + c)− (b+ d) = (a− b) + (c− d).

However, Euclid’s proof uses Euclid’s official definition of pro-
portion of numbers. By definition, as in the general form (.),
we have

ax : ay :: cx : cy,

ax : ay :: (a± c)x : (a± c)y,

at least if x and y are prime to one another. We can conclude

ax : ay :: ax± cx : ay ± cy,





by distributivity of multiplication over addition. This itself is
a consequence of commutativity of addition:

(a+ c) · 2 = a + c+ a+ c = a + a+ c+ c = a · 2 + c · 2,

and so on.

Lemma . For all counting numbers a and c, for all multipli-

ers x,
a : c :: ax : cx. (.)

Proof. By repeated application of Lemma  to the proportion

a : c :: a : c,

we have
a : c :: a + · · ·+ a

︸ ︷︷ ︸

x

: c+ · · ·+ c
︸ ︷︷ ︸

x

.

Theorem  (Alternation). For all counting numbers a, b, c,
and d,

a : b :: c : d =⇒ a : c :: b : d.

Proof. Again by Euclid’s definition,

a : ax :: c : cx.

We also have (.) in Lemma . This proves the claim in case
a is part of b. For the general case, we use transitivity, which
from (.) yields

ax : cx :: ay : cy,

while again from Euclid’s definition,

ax : ay :: cx : cy, (.)

if x and y are prime to one another. Since (.) then is the
general form of a proportion, the proof is complete.
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Theorem . Multiplication is commutative:

ab = ba.

Proof. From the definition, and by Theorem ,

1 : a :: b : ba,

1 : b :: a : ba.

Therefore, as b is the multiple of 1 by b, so ba must be the
multiple of a by b, namely ab.

If a measures b, or equivalently now if a divides b, we may
write

a | b.
We usually refer to the greatest common measure of c and d
as the greatest common divisor, writing this as

gcd(c, d).

A counting number p is prime, simply, if it is not 1, and

p = ab & p 6= a =⇒ p = b. (.)

Since
a = bc =⇒ b | a,

and in N also
a | b & b | a =⇒ a = b,

we can write (.) also as

p = ab & p ∤ a =⇒ p | b. (.)

Using Bézout’s Theorem, we can prove the following strength-
ening of (.).





Theorem  (Euclid). For all primes p,

p | ab & p ∤ a =⇒ p | b. (.)

Proof. If p ∤ a, then p and a are prime to one another, and
therefore, for some x and y,

px+ ay = 1,

pbx+ aby = b.

If p | ab, then p divides both terms on the left, and hence their
sum; thus p | b.

A subset R of C that is closed under addition, subtraction,
and multiplication is called a ring (as also on page ). Sup-
pose p is a nonzero element with no inverse in R.

• If (.) holds in R, then p is irreducible in R;
• if (.) holds in R, then p is prime in R.

Thus irreducibles are always prime. We shall see (on page )
an example where the converse fails.

Meanwhile, we give Euclid’s proof of Theorem . We shall
need a couple of lemmas.

Lemma . For all counting numbers a, b, c, and d,

ab = cd =⇒ a : c :: d : b.

Proof. Assuming ab = cd, and using transitivity, we have

a : c :: ad : cd [by Lemma ]

:: ad : ab [by assumption]

:: da : ba [by Theorem ]

:: d : b. [by Lemma  again]
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Lemma . If (.) holds, and a and b are prime to one an-

other, then a | c.

Proof. If (.) holds, so that also

a : c :: b : d

by Theorem , then the Euclidean Algorithm has the same
steps, whether applied to (a, c) or (b, d). Applying the Eu-
clidean Algorithm to (.), by Lemma  we have

a : b :: gcd(a, c) : gcd(b, d),

and so by Theorem 

a : gcd(a, c) :: b : gcd(b, d).

This means

a = gcd(a, c)x = x gcd(a, c), b = gcd(b, d)x = x gcd(b, d)

for some x. If a and b are prime to one another, then x = 1,
and gcd(a, c) = a, so a | c.

Euclid’s proof of Theorem . Suppose now pc = ab, but p ∤ a.
Then p and a are prime to one another, and also

p : a :: b : c

by Lemma , and therefore p | b by Lemma .

An important theoretical consequence of Theorem  that
Euclid does not prove is the following.





Theorem  (Fundamental Theorem of Arithmetic). Every

counting number is uniquely a product

p0p1 · · · pn−1

of primes, where

p0 6 p1 6 . . . 6 pn−1. (.)

If n = 0, then the product in (.) is 1. A square number
is any n2, where n is an integer. A nonsquarefree number is
one that is indivisible by the square of any prime.

Theorem . If D is nonsquare, then the equation

x2 −Dy2 = 0

has no solution in N.

Proof. We may write
D = s2d,

where d is squarefree and greater than 1. It is then enough to
show that

x2 − dy2 = 0 (.)

is insoluble. If (a, b) is a solution, then d | a2. However,

d = p0p1 . . . pn−1,

where
p0 < p1 < · · · < pn−1.

Thus in each case
pk | a2,
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so by Theorem 
pk | a.

In particular then, for some xk,

a = p0x0,

p1 | x0,

a = p0p1x1,

. . . . . . . . . . .,

a = p0p1 · · · pn−1xn−1 = dxn−1,

d2xn−1
2 − db2 = 0,

dxn−1
2 − b2 = 0,

so (b, xn−1) is a solution to (.). Also b < a. Continuing, we
contain an infinite decreasing sequence of counting numbers,
which is impossible. So (.) has no solution from N.





 The Circle

We find all integer solutions of

x2 + y2 = z2, (.)

The following are equivalent:
(i) (a, b, c) is a solution;
(ii) (|a|, |b|, |c|) is a solution;
(iii) (na, nb, nc) is a solution for all nonzero n;
(iv) (b, a, c) is a solution.

Also, (.) is equivalent to

x2 = (z + y)(z − y).

Suppose (a, b, c) is a solution of (.) such that a, b, c > 0
and gcd(a, b, c) = 1. Then (a, b, c) may be called a primitive

solution, and all solutions can be obtained from primitive
solutions. Observe that not both a and b are even. Also, if
a, b ≡ 1 (mod 2), then c2 ≡ a2 + b2 ≡ 2 (mod 4), which is
absurd. So exactly one of a and b is even. Say a is even. Then
b and c are odd, and

(a

2

)2

=

(
c+ b

2

)(
c− b

2

)

.

Also (c + b)/2 and (c − b)/2 are co-prime, since their sum is
c and their difference is b. Hence each must be a square, by
Theorem ; say

c+ b

2
= n2,

c− b

2
= m2,





where n,m > 0. Then

c = n2 +m2, b = n2 −m2, a = 2nm.

Moreover, n and m are co-prime, and exactly one of them is
odd (since c is odd).

Conversely, suppose n and m are co-prime, exactly one of
them is odd, and 0 < m < n. Then the triple (2nm, n2 −
m2, n2 + m2) solves (.). Moreover, every common prime
factor of n2 −m2 and n2 +m2 is a factor of the sum 2n2 and
the difference 2m2, and is odd, so it is a common factor of n
and m. Thus there is no common prime factor, and the triple
is a primitive solution.

We conclude that there is a one-to-one correspondence be-
tween:

(i) pairs (m,n) of co-prime integers, where 0 < m < n, and
exactly one of m and n is odd;

(ii) primitive solutions (a, b, c) to (.), where a is even.
The correspondence is (x, y) 7→ (2xy, y2 − x2, y2 + x2).





 Irrational Numbers

We say that the equation (.) has real solutions, such as
(
√
d, 1). For example, we say that the equation

x2 = 2 (.)

has the solution denoted by

√
2.

what do we mean by this?

. Geometry

One approach to solving (.) is to let the solution be the
length of the diagonal of a square whose side has length 1.
In this approach to arithmetic, we assume Euclidean geome-
try, in which there is a notion of congruence of line segments.
Congruence being an equivalence relation, we can define the
length of a segment to be the class of segments congruent to
it. We can add two lengths in the obvious way, by placing
two representative segments end to end. To multiply one seg-
ment by another, we can use what is called Thales’s Theorem.
Descartes did this in the Geometry [], and Hilbert worked out
the details rigorously in The Foundations of Geometry [].

In a paper called “Thales and the Nine-point Conic” [], I
review what is needed, and suggest an alternative approach,
making use of areas, as Apollonius did. The point is that,





b
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Figure .: A consequence of Thales’s Theorem

although Thales’s Theorem is generally accepted today, it is
nontrivial, because the concept of proportion is nontrivial. For
example, in Figure ., AD = AC, AG = AF , and EF ‖ BC.
We can use Thales’s Theorem to prove that EG ‖ BD. This
result has nothing obvious to do with proportion, and yet it is
not clear how to prove the result without using proportions.

. Dedekind Cuts

An alternative approach to arithmetic is Dedekind’s, worked
out in Continuity and Irrational Numbers []. We start with
the rational numbers as an ordered field, namely an ordered
set equipped also with operations of addition and multiplica-
tion that are compatible with the ordering in the usual way.
We obtain each real number as a cut, namely a partition of Q
into two nonempty parts, each member of the first part being
less than each member in the second part. Two such parti-
tions are considered the same if they differ at a single point.

. Dedekind Cuts 



This point will be the greatest member of the first part of one
partition, but the least member of the second part of the other
partition. That point will be a rational number, which we can
identify with the cut just described. In this way, every ratio-
nal number becomes a real number; but some real numbers
are not determined by rational numbers in this way.

Dedekind’s procedure gives R as an ordered set satisfying
the Completeness Axiom, whereby every nonempty set of
real numbers that has an upper bound has a least upper bound,
or supremum. We have to define addition and multiplication
on R so that each of the functions

x 7→ a+ x, x 7→ ax

is continuous. This will give us R as an ordered field. We can
then define √

2 = sup{x ∈ Q : x2 < 2}.
Continuity will ensure that this solves (.).

. Cauchy Sequences

There are other approaches to the real numbers. For exam-
ple, we can define a real number to be an equivalence class
of Cauchy sequences of rational numbers, two sequences being
equivalent if the sequence of differences of their terms has limit
0.
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 The Square Root of Two

Without going into the details of any particular development
of R, we shall now find a sequence of rational numbers whose
limit is

√
2. We note that

√
2 = 1 + (

√
2− 1),

1√
2− 1

=
√
2 + 1,

so that

√
2 = 1 +

1√
2 + 1

= 1 +
1

2 +
1√
2 + 1

= 1 +
1

2 +
1

2 +
1√
2 + 1

(.)
and so on. Replacing each instance of 1/(

√
2 + 1) with 0, we

define

p0
q0

= 1,
p1
q1

= 1 +
1

2
=

3

2
,

p2
q2

= 1 +
1

2 +
1

2

=
7

5
,

and in general

pn+1

qn+1

= 1 +
1

1 +
pn

qn

=
pn + 2qn
pn + qn

.

The equations alone do not define pn and qn separately. We
require also that each of them be positive, and that the two of





n 0 1 2 3 4 5 6 7
pn 1 3 7 17 41 99 239 577
qn 1 2 5 12 29 70 169 408

Table .: Numerators and denominators of convergents of
√
2

them be prime to one another. In this case,

p0 = 1,

q0 = 1,

p1 = 3,

q1 = 2,

pn+2 = pn + 2qn,

qn+2 = pn + qn.
(.)

We compute some values in Table .. Testing them suggests
the following.

Theorem . When pn and qn are as in (.), then

pn
2 − 2qn

2 = (−1)n+1, (.)

so that ∣
∣
∣
∣
∣

(
pn
qn

)2

− 2

∣
∣
∣
∣
∣
=

1

qn2
.

Since also the sequence of qn increases without bound,

p0
q0

<
p2
q2

<
p4
q4

< · · · < √
2 < · · · < p5

q5
<

p3
q3

<
p1
q1
, (.)

and the sequence of pn/qn is Cauchy, with limit
√
2.

Proof. We use induction. The claim (.) holds when n = 0.
If it holds when n = m, then

pm+1
2 − 2qm+1

2 = (pm + 2qm)
2 − 2(pm + qm)

2

= −pm
2 + 2qm

2 = −(−1)m+1 = (−1)m+2,

so (.) holds when n = m+ 1.
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Figure .: Integer points of hyperbolas x2 − 2y2 = ±1

We may now refer to the fractions pn/qn as convergents

of
√
2. According to the theorem, (pn, qn) is a point on the

hyperbola given by
x2 − 2y2 = 1, (.)

when n is odd, and
2y2 − x2 = 1,

when n is even. Each hyperbola has asymptotes

y = ± 1√
2
x,

as in Figure ..





 The Pell Equation

Equation (.) is an example of a Pell equation. The general
form of a Pell equation is

x2 − dy2 = 1, (.)

where d is a positive nonsquare integer. We are interested in
integer solutions, and among these, positive solutions, mean-
ing each entry is positive. There are trivial solutions, namely
(±1, 0). Every other integer solution is (−a,±b) or (a,−b),
where (a, b) is a positive solution.

Theorem . If (a, b) is a solution to (.) and

a+ b
√
d > 1, (.)

then (a, b) is a positive solution to (.).

Proof. We are given

1 = a2 − db2 = (a+ b
√
d)(a− b

√
d),

along with (.), and this implies

0 < a− b
√
d < 1 < a+ b

√
d.

Hence b must be positive, and then a must be positive.

There is more along the same lines:





Theorem . If (a, b) and (s, t) are solutions to (.), then so

is

(as+ dbt, bs + at),

which is obtained from the equation

as + dbt+ (bs + at)
√
d = (a+ b

√
d)(s+ t

√
d).

Proof. Write the proposed solution as (ℓ,m). Then

ℓ±m
√
d = (a± b

√
d)(s± t

√
d),

and so

1 = (a2 − db2)(s2 − dt2)

= (a+ b
√
d)(a− b

√
d)(s+ t

√
d)(s− t

√
d)

= (a+ b
√
d)(s+ t

√
d)(a− b

√
d)(s− t

√
d)

= (ℓ+m
√
d)(ℓ−m

√
d) = ℓ2 − dm2.

Thus (ℓ,m) is a solution of (.).

Theorem . If, for some positive nonsquare d, (.) has a

positive solution, then it has a positive solution (a, b) such that,

for every positive solution (s, t), for some positive n,

s+ t
√
d = (a + b

√
d)n.

Proof. We let (a, b) be the positive solution that minimizes
x + y

√
d. Since a + b

√
d > 1, the sequence of (a + b

√
d)n

increases without bound, and so, for some n,

(a+ b
√
d)n 6 s+ t

√
d < (a + b

√
d)n+1,

1 6 (s+ t
√
d)(a− b

√
d)n < a+ b

√
d.





For some integers ℓ and m,

(s+ t
√
d)(a− b

√
d)n = ℓ+m

√
d.

This makes (ℓ,m) a solution of (.), by Theorem . It cannot
be a positive solution, by minimality of (a, b); therefore, by
Theorem , (ℓ,m) is the trivial solution (1, 0), so (s, t) is as
claimed.

By Theorem  on page , (.) will always have a pos-
itive solution. Meanwhile, we can just hunt for solutions in
particular cases.

Example . We can see by inspection that (3, 2) is the solu-
tion of (.) that minimizes x+ y

√
2. Indeed,

4/3 <
√
2 < 3/2, 3 + 2

√
2 < 6,

so the only possible solutions to check are

1 +
√
2, 2 +

√
2, 4 +

√
2, 1 + 3

√
2,

and none of these is actually a solution. By the theorem,
we now know all positive solutions of (.): they are (an, bn),
where n ∈ N and

an + bn
√
2 = (3 + 2

√
2)n.

Allowing n to be also zero or negative, we obtain all solutions
where x > 0. We have (a+ b

√
d)−1 = a− b

√
d and

(3± 2
√
2)(x+ y

√
2) = 3x± 4y + (±2x+ 3y)

√
2.

Applying the latter repeatedly, we can find all solutions just
mentioned. See Figure .. Alternatively, from (.) we obtain
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b

b

b

bb

3 +
2
√ 2

3−
2
√ 2

Figure .: Integer points of hyperbola x2 − 2y2 = 1

pn+2 = pn+1 + 2qn+1 = pn + 2qn + 2(pn + qn) = 3pn + 4qn,

qn+2 = pn+1 + qn+1 = pn + 2qn + pn + qn = 2pn + 3qn,

and so, by induction,

(an, bn) = (p2n−1, q2n−1).

Thus all positive solutions of (.) correspond to certain con-
vergents of

√
2. We may note

(
an
bn

)

=

(
3 4
2 3

)n(
1
0

)

.

This is meaningful, even if n 6 0, and then it yields the re-
maining solutions of (.) in which x > 0; the solutions in
which x < 0 are (−an,−bn), where n ∈ Z.





 Continued Fractions

The method of Example  will work for arbitrary positive non-
square d in (.). Given any real number x, such as

√
d, we

define sequences of real numbers an and ξn, where each an is
an integer,

0 6 ξn < 1,

and

x = a0 + ξ0 = a0 +
1

a1 + ξ1
= a0 +

1

a1 +
1

a2 + ξ2

and so on, as long as ξn is not zero (which it will never be, if
x is irrational). In general,

x = a0 +
1

a1 +
1

a2 +
. . .

1

an−1 +
1

an + ξn

, (.)

and we may write this also as

a0 +
1

a1+

1

a2+
. . .

1

an−1+

1

an + ξn
.

Thus

a0 = [x], ξ0 = x− a0,





square brackets denoting the greatest-integer function; and by
recursion,

an+1 =

[
1

ξn

]

, ξn+1 =
1

ξn
− an+1,

where ξn must be non-zero for an+1 to be defined. In (.)
on page , we performed the computations when x =

√
2,

obtaining a0 = 1, but an = 2 when n > 0.

Example . When x =
√
6, we compute

√
6 = 2 + (

√
6− 2),

1√
6− 2

=

√
6 + 2

2
= 2 +

√
6− 2

2
,

2√
6− 2

=
√
6 + 2 = 4 + (

√
6− 2),

so that an = 2 when n = 0 or n is odd, and an = 4 when n is
positive and even.

In the right-hand side of (.), if we replace ξn with 0, we
obtain the number that we shall denote by

[a0; a1, . . . , an].

Thus

[a0] = a0, [a0; a1] = a0 +
1

a1
, [a0; a1, a2] = a0 +

1

a1 +
1

a2

,

(.)

and so forth; the general term is given recursively by

[a0; a1, . . . , an+1] =

[

a0; a1, . . . , an−1, an +
1

an+1

]

. (.)





By studying (.), we can see that, as in (.), so generally,

[a0] < [a0; a1, a2] < · · · < x < · · · < [a0; a1, a2, a3] < [a0; a1].

We shall work out a formal proof of this, by finding integers
pn and qn such that

[a0; a1, . . . , an] =
pn
qn

, (.)

as we have already done when considering the example x =√
2. From (.), we want

p0
q0

= a0,
p1
q1

=
a0a1 + 1

a1
,

p2
q2

=
a0a1a2 + a0 + a2

a1a2 + 1
.

Hence we may define

p0 = a0,

q0 = 1,

p1 = p0a1 + 1,

q1 = a1,

p2 = p1a2 + p0,

q2 = q1a2 + q0.

Theorem . For all n in ω, the definitions

pn+2 = pn+1an+2 + pn, qn+2 = qn+1an+2 + qn

satisfy (.).

Proof. We use induction. We have just seen that the claim
holds when n = 0. Supposing, for some m, the claim holds
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when n = m, we have

[a0; a1, . . . , am+3] =

[

a0; a1, . . . , am+1, am+2 +
1

am+3

]

=

pm+1 ·
(

am+2 +
1

am+3

)

+ pm

qm+1 ·
(

am+2 +
1

am+3

)

+ qm

=
pm+1am+2am+3 + pm+1 + pmam+3

qm+1am+2am+3 + qm+1 + qmam+3

=
pm+2am+3 + pm+1

qm+2am+3 + qm+1

=
pm+3

qm+3

.

By induction, the claim holds for all n in ω.

We now confirm the additional property that we wanted.

Theorem . For all n in ω,

pn+1

qn+1

− pn
qn

=
(−1)n

qn+1qn
.

Proof. We prove the equivalent statement

pn+1qn − pnqn+1 = (−1)n. (.)

Again we use induction. We have

p1q0 − p0q1 = p0a1 + 1− a0a1 = 1,

so the claim holds when n = 0. Supposing it holds when
n = m, we have

pm+2qm+1 − pm+1qm+2

= (pm+1am+2 + pm)qm+1 − pm+1(qm+1am+2 + qm)

= pmqm+1 − pm+1qm,





which is −(−1)m, that is, (−1)m+1. Thus the claim holds for
all n in ω.

Corollary. pn and qn are prime to one another.

Proof. Apply Theorem  to (.).

Corollary. The sequence of pn/qn is Cauchy, with limit x.

The latter corollary justifies referring to the pn/qn as the
convergents of x.
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 Solubility of the Pell Equation

As usual, d is a positive nonsquare.

Lemma . For some positive k, the equation

x2 − dy2 = k (.)

has infinitely many solutions.

Proof. Let (pn/qn : n ∈ ω) be the sequence of convergents for√
d. When n is odd, then

0 <
pn
qn

−√
d <

pn
qn

− pn+1

qn+1

=
1

qn+1qn
<

1

qn2
,

0 <
pn
qn

+
√
d <

2pn
qn

.

Multiplying gives

0 <
pn

2

qn2
− d <

2pn
qn3

, 0 < pn
2 − dqn

2 <
2pn
qn

<
2p1
q1

.

Thus there are finitely many possibilities for pn2−dqn
2, so one

of them must be realized infinitely many times.

Theorem . The Pell equation (.) has a positive solution.

Proof. By Lemma , we may let k be a positive integer such
that (.) has infinitely many solutions. There are just finitely
many pairs (a, b) such that 0 6 a < k and 0 6 b < k. Hence





there must be one such pair for which (.) and the congru-
ences

x ≡ a & y ≡ b (mod k)

simultaneously have infinitely many solutions. Let (m,n) and
(s, t) be two solutions. By computations as for Theorem ,

k2 = (m2−dn2)(s2−dt2) = (ms−dnt)2−d(mt−ns)2. (.)

Moreover, m ≡ s and n ≡ t modulo k, so that

ms− dnt ≡ m2 − dn2 ≡ 0, mt− ns ≡ mn− nm ≡ 0.

Therefore, in (.) we can divide by k2, obtaining

1 =

(
ms− dnt

k

)2

− d

(
mt− ns

k

)2

.

Changing signs as needed gives a positive solution to (.).
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 Quadratic Fields

We can write the Pell equation (.) as

(x+ y
√
d)(x− y

√
d) = 1. (.)

We consider the factors here individually. We define

{u+ v
√
d : (u, v) ∈ Q2} = Q(

√
d) = K.

We define on K the operation ξ 7→ ξ′, where

(u+ v
√
d)′ = u− v

√
d.

We may assume d is a squarefree integer; it may be negative.
In any case, K ⊆ C. If d < 0, then ξ′ = ξ (the complex
conjugate of ξ). If d > 0, then K ⊆ R.

Theorem . K is closed under addition, subtraction, multi-

plication, and division. The operation ξ 7→ ξ′ on K distributes

over addition and multiplication, so that

(ξ + η)′ = ξ′ + η′, (ξη)′ = ξ′η′.

The proof is an exercise. In technical algebraic terminology,
the theorem is that K is a subfield of C, and ξ 7→ ξ′ is an
automorphism of K.

We now define two functions from K to Q, called trace and
norm, given respectively by

Tr(ξ) = ξ + ξ′, N (ξ) = ξξ′.





Then

Tr(ξ + η) = Tr(ξ) + Tr(η), N(ξ)N (η) = N (ξη) .

For any two elements α and β of K, we define

{αx+ βy : (x, y) ∈ Z2} = 〈α, β〉 .
Normally α 6= 0 and β/α /∈ Q; this means, in Z,

αx+ βy = 0 =⇒ (x, y) = (0, 0); (.)

in this case, 〈α, β〉 is a lattice of K. A lattice is closed under
addition and subtraction, but not necessarily under multipli-
cation. However, 〈1,√d〉 is closed under multiplication. Now
can give an example promised in Chapter .

Example . In 〈1,√−5〉 we have

2 · 3 = (1 + 5
√−5)(1− 5

√−5),

and therefore

2 | (1 + 5
√−5)(1− 5

√−5),

although
2 ∤ 1± 5

√−5.

Thus 2 is not prime in 〈1,√−5〉, according to the definition
(.) on page . However, 2 is irreducible, according to (.).
For suppose 2 = αβ. We have

4 = N (2) = N (α)N (β) .

Since in general

N(x+ y
√−5) = x2 + 5y2,

norms of nonzero elements of 〈1,√−5〉 are positive integers,
but never 2. Thus we may assume N(α) = 1, and therefore
α = ±1, so β = ±2, and 2 | β.
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We can write (.) as

N (ξ) = 1 & ξ ∈ 〈1,√d〉 . (.)

That is, solutions to (.), or (.), and (.) are in one-to-one
correspondence under the map

(x, y) 7→ x+ y
√
d.

The product of solutions of (.) is a solution, as we have seen
in effect in Theorem  on page . Equation (.) may seem
simpler than (.). However, in case d > 0, so that K ⊆ R, the
solutions to (.), known from Theorems  and , become,
for (.), the solutions ±αn, where n ∈ Z, and α is the least
solution that exceeds 1.

For our purposes, a quadratic form is a polynomial

ax2 + bxy + cy2, (.)

where the coefficients a, b, and c are integers. The Pell equa-
tion (.) is just one example of an equation

f(x, y) = m, (.)

where f is a quadratic form.

Example . We solve the quadratic Diophantine equation

4x2 + 2xy − y2 = 4. (.)

We start by completing the square in x:

4x2 + 2xy = 4
(

x2 +
xy

2

)

= 4

(

x2 +
xy

2
+

y2

16

)

− y2

4
y

= 4
(

x+
y

4

)2

− y2

4
.





Thus our equation becomes

(

2x+
y

2

)2

− 5
(y

2

)2

= 4

and then
(

2x+
1 +

√
5

2
y

)(

2x+
1−√

5

2
y

)

= 4.

We let d = 5, so that K = Q(
√
5). We want then to solve

N (ξ) = 4 & ξ ∈
〈

2,
1 +

√
5

2

〉

, (.)

which resembles (.).

We shall develop a general method encompassing (.) and
(.). Meanwhile, for the sake of solving (.) in particular,
we define

1 +
√
5

2
= φ;

this is the so-called Golden Ratio. It has an intimate connex-
ion with the sequence (Fn : n ∈ ω) of Fibonacci numbers,

given by

F0 = 0, F1 = 1, Fn+2 = Fn + Fn+1.

We can continue the sequence backwards by writing the last
rule as

Fn−2 = Fn − Fn−1.

Some terms of the bi-directional sequence are as in Table ..
It will be useful later (page ) to note the following.
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n 0 1 2 3 4 5 6 7 8 9 10 11
Fn 0 1 1 2 3 5 8 13 21 34 55 89
F−n 0 1 −1 2 −3 5 −8 13 −21 34 −55 89

Table .: Terms of the Fibonacci sequence

Theorem . For all n in Z,

φn = Fn−1 + Fnφ. (.)

Proof. Trivially (.) holds when n = 1. Also, since

φ2 = 1 + φ, (.)

we have

(x+ yφ)φ = xφ+ yφ2 = y + (x+ y)φ. (.)

Hence, if (.) holds when n = k, then

φk+1 = (Fk−1 + Fkφ)φ = Fk + (Fk−1 + Fk)φ = Fk + Fk+1φ,

so (.) holds when n = k+1. Therefore it holds for all positive
n. Moreover, since

φ−1 = φ− 1,

we have

(x+ yφ)φ−1 = (x+ yφ)(φ− 1)

= −x+ yφ2 + (x− y)φ = y − x+ xφ,

so that if (.) holds when n = k, it holds when n = k−1.





One can understand Theorem  in terms of matrices. By
(.), multiplication in 〈1,φ〉 by φ corresponds, under the
map

x+ yφ 7→
(
x
y

)

,

to the multiplication given by
(
0 1
1 1

)(
x
y

)

=

(
y

x+ y

)

.

Inverting the square matrix, we have
(
−1 1
1 0

)(
x
y

)

=

(
y − x
x

)

,

corresponding to multiplication by φ−1.
We generalize Example :

Theorem . If f is the quadratic form in (.), where a 6= 0,
and

b2 − 4ac = D,

where D = s2d, and d is a squarefree integer different from 1,
then the solutions to (.) correspond, under the map

(x, y) 7→ αx+ βy,

where

α = a, β =
b+

√
D

2
,

to the solutions from Q(
√
d) of

N (ξ) = am & ξ ∈ Λ, (.)

where

Λ = 〈α, β〉 . (.)
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Proof. We complete the square:

af(x, y) =
(

(ax)2 + b(ax)y +
b2y2

4

)

−
(b2

4
− ac

)

y2

=
(

ax+
by

2

)2

− Dy2

4

=
(

ax+
b+

√
D

2
· y

)(

ax+
b−√

D

2
· y

)

= (αx+ βy)(αx+ β ′y) = N (αx+ βy) .

In Example , had we strictly followed the method of The-
orem , we should have arrived at the system

N (ξ) = 16 & ξ ∈ 〈4, 1 + 1
√
5〉 .

By replacing ξ here with 2ξ, we obtain (.).
Suppose α is one solution of (.), and some ε in K is a

solution of
N (η) = 1 & ηΛ ⊆ Λ. (.)

Then εnα is a solution of (.) whenever n ∈ ω. We shall see
that the same is true, even when n ∈ Z, and moreover there
is ε such that every solution is of the given form.





 Orders

For some squarefree integer d, we let K is the field Q(
√
d),

and Λ = 〈α, β〉 as in (.) for some α and β in K satisfying
(.). We now define

{η ∈ K : ηΛ ⊆ Λ} = OΛ;

this is the order of Λ. We can rewrite (.) as

N(η) = 1 & η ∈ OΛ. (.)

We need to understand OΛ. We note first that OΛ is closed
under addition, subtraction, and multiplication; this means it
is a ring (as also on page ).

Theorem . OΛ = 〈1, aτ〉, where τ = β/α and

aτ 2 + bτ + c = 0, (.)

where a, b, and c are integers prime to one another.

Proof. We have first

θ ∈ OΛ ⇐⇒ θ 〈α, β〉 ⊆ 〈α, β〉
⇐⇒ θα ∈ 〈α, β〉 & θβ ∈ 〈α, β〉
⇐⇒ θ ∈ 〈1, τ〉 & θτ ∈ 〈1, τ〉 .





Any element θ of 〈1, τ〉 is x + yτ for some x and y in Z, and
then

θτ ∈ 〈1, τ〉 ⇐⇒ xτ + yτ 2 ∈ 〈1, τ〉
⇐⇒ yτ 2 ∈ 〈1, τ〉

⇐⇒ yb

a
τ +

yc

a
∈ 〈1, τ〉

⇐⇒ a | yb & a | yc
⇐⇒ a | y.

In short, θ ∈ OΛ ⇐⇒ θ ∈ 〈1, aτ〉.
Corollary. OΛ is closed under ξ 7→ ξ′, and therefore OΛ con-

tains the inverse of its every element that has norm 1. Also,

the trace of every element of OΛ is an integer.

Proof. We rewrite (.) as

(aτ)2 + b(aτ) + ac = 0. (.)

For any element γ of K, we have

(x− γ)(x− γ′) = x2 − Tr(γ)x+N (γ) . (.)

In particular, aτ is a zero of the polynomial

x2 − Tr(aτ)x+N (aτ) .

Comparison with (.) shows

Tr(aτ) = −b,

which is in OΛ. Since

aτ ′ = Tr(aτ)− aτ,

this is in OΛ.





Theorem . When d > 0, then OΛ has an element whose

integral powers are precisely the positive elements of OΛ having

norm 1.

Proof. For some positive integer c,

〈1, c√d〉 ⊆ OΛ.

If N (a+ bc
√
d) = 1 and a + bc

√
d > 1, this means precisely

that (a, b) is a positive solution of the Pell equation

x2 − dc2y2 = 1.

Such a solution (a, b) exists by Theorem . Let

a + bc
√
d = ε.

Then εε′ = 1, so

ε2 − Tr(ε)ε+ 1 = 0, 0 < ε−1 < 1 < ε.

Suppose n is an integer exceeding ε. Then

1 < Tr(ε) = ε+ ε′ < n+ 1.

Since, finally, Tr(ε) is an integer, only finitely many elements
of OΛ having norm 1 can exceed 1, but not ε. Let εΛ be the
least of them. As in the proof of Theorem , for any positive
element γ of OΛ, for some integer n,

εΛ
n
6 γ < εΛ

n+1,

1 6 γεΛ
−n < εΛ.

If N (γ) = 1, then γ = εΛ
n.
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We can now state a method for solving systems (.) when
d > 0. If γ is a solution, then so are all ±γεΛ

n, when εΛ is as
in the proof of Theorem . Therefore we may assume

1 6 γ < εΛ.

Say γ = αk + βℓ. Then (k, ℓ) satisfies

1 6 αx+ βy < εΛ,

that is, (k, ℓ) lies between the two straight lines given respec-
tively by

1 = αx+ βy, αx+ βy = εΛ. (.)

Moreover, from the proof of Theorem , (k, ℓ) lies on the
hyperbola that can be given by

am = (αx+ βy)(αx+ β ′y);

the asymptotes of this hyperbola are given respectively by

0 = αx+ βy, 0 = αx+ β ′y.

Thus the straight lines given in (.) are parallel to the first
asymptote and cut off a segment of one branch of the hyper-
bola. This segment lies in the parallelogram bounded by the
parallel lines given in (.), by the second asymptote, and by
the line parallel to this given by

am = αx+ β ′y.

We can see how this works in the following.





b

b

b

b

b

b

Figure .: Hyperbola (2x+ φy)(2x+ φ′y) = 4

Example . We continue with Example . In Q(
√
5), we

want to solve
N (ξ) = 4 & ξ ∈ Λ, (.)

where
Λ = 〈2,φ〉 .

Thus we are looking for 2x + φy, where (x, y) lies on the hy-
perbola given by

(2x+ φy)(2x+ φ′y) = 4,

shown in Figure .. Since OΛ is also the order of 〈1,φ/2〉,
and

4
(φ

2

)2

− 2 · φ
2
− 1 = 0,

we have by Theorem 

OΛ = 〈1, 2φ〉 = 〈1,√5〉 .
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We want elements of norm 1, and these come from solutions
of

x2 − 5y2 = 1, (.)

and these solutions come from convergents of
√
5 (though we

have not proved this). We compute
√
5 = 2 + (

√
5− 2),

1√
5− 2

=
√
5 + 2 = 4 + (

√
5− 2),

so √
5 = [2; 4].

The first two convergents are 2 and 9/4. We have

22 − 5 = −1, 92 − 5 · 42 = 1.

Thus (9, 4) is a positive solution of (.), and we can check
that there are no positive solutions with

x+ y
√
5 < 9 + 4

√
5.

It will be useful to note

9 + 4
√
5 = 5 + 8φ.

By Theorem , every element of OΛ of norm 1 is ±(5 + 8φ)n

for some n in Z. This means, if γ is a solution of (.), then
so is ±(5 + 8φ)nγ. We may thus assume

1 < γ < 5 + 8φ.

Let γ = 2k + ℓφ. Then (k, ℓ) lies between the parallel lines
given by

2x+ yφ = 1, 2x+ yφ = 5 + 8φ





and the parallel lines given by

2x+ yφ′ = 0, 2x+ yφ′ = 4,

shown in Figure .. There are finitely many integer points
in that parallelogram; for every such point (x, y), we compute
N(2x+ yφ). In fact, once we have computed the norms indi-
cated in the figure, we can see that the only points for which
the corresponding norm is 4 are (1, 0), (1, 2), and (2, 6). There-
fore the solutions to (.) are those (x, y) such that 2x+yφ =
±(5+8φ)nγ, where n ∈ Z and γ ∈ {2, 2+2φ, 4+6φ}. More-
over, by Theorem ,

{2, 2 + 2φ, 4 + 6φ} = {2φ0, 2φ2, 2φ4}.

Thus the solutions to (.) are ±2φ2k, where k ∈ Z; hence
these solutions are

±(2F2k−1 + 2F2kφ).

Under the correspondence (x, y) 7→ 2x + yφ between solu-
tions to (.) and solutions from 〈2,φ〉 to (.), the solutions
of the former, shown in Figure ., are (±F2k−1,±2F2k). As
suggested in the figure, we can form these into a single bi-
directional sequence. Since

(
0 1
1 1

)2

=

(
1 1
1 2

)

,

the solutions to (.) are

±2

(
1 1
1 2

)n (
1
0

)

.

  Orders



b b

b b

b b

b b

b b

b b

b b

b

4

5

4

1
19

16

11

4

29
2x

+
yφ

′

=
0

2x
+
yφ

′

=
4

2x
+
yφ

=
5
+
8φ

2x
+
yφ

=
0

2x
+
yφ

=
1

Figure .: Small solutions of 4x2 + 2xy − y2 = 4
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b

b

b

b

b

b

b

b

b

b

b

b

Figure .: Solutions of 4x2 + 2xy − y2 = 4
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 Integers

We define yet another subset of K; it will turn out to be an
order that includes all others. Meanwhile, the definition is

{ξ ∈ K : Tr(ξ) ∈ Z & N (ξ) ∈ Z} = OK .

The elements of OK are called the integers of K. The ele-
ments of Z can henceforth be called rational integers.

Example . 〈1,√d〉 ⊆ OK ; but when d = 5, then φ ∈ OK .

Theorem . The integers of K are precisely the solutions in

K of polynomial equations

x2 + bx+ c = 0,

where b and c are rational integers.

Proof. We need only look at (.) in the proof of the corollary
of Theorem .

Lemma . For every lattice Λ of K,

OΛ ⊆ OK .

Proof. This also follows from the proof of the corollary of The-
orem .





In order to characterize OK more precisely than in the def-
inition or Theorem , we define

ω =







√
d, if d ≡ 2 or 3 (mod 4);

1 +
√
d

2
, if d ≡ 1 (mod 4).

(.)

We continue to assume that d is squarefree. In either case of
(.),

〈1,√d〉 ⊆ 〈1, ω〉 . (.)

Theorem . OK = 〈1, ω〉, and this is closed under multipli-

cation.

Proof. Let α be an element a + b
√
d of K, so that α is a zero

of the polynomial

x2 − 2ax+ a2 − b2d. (.)

Suppose first α ∈ OK . Then 2a and a2 − b2d are in Z by
Theorem . There are two cases.

(i) If 2a is even, then a ∈ Z, so b2d ∈ Z, and hence b ∈ Z
since d is square-free; consequently α ∈ Z[

√
d], and so

α ∈ 〈1, ω〉 by (.).
(ii) Suppose 2a is odd. Modulo 4 we have 4a2 ≡ (2a)2 ≡ 1.

But also 4a2−4b2d ≡ 0, so that (2b)2d ≡ 4b2d ≡ 4a2 ≡ 1.
Since 2b ∈ Z, again because d is square-free, we have
(2b)2 congruent to 0 or 1, and therefore (2b)2 ≡ 1. We
conclude both that 2b is odd and that d ≡ 1. Again we
obtain α ∈ 〈1, ω〉.

Suppose conversely α ∈ 〈1, ω〉. Modulo 4, if d is not congruent
to 1, then a and b are rational integers, so the polynomial in
(.) is over Z, and thus α ∈ OK . If d is congruent to 1,

  Integers



then both 2a and 2b must be integers, and moreover 2a ≡ 2b
(mod 2), so that

4(a2 − b2d) ≡ (2a)2 − (2b)2 ≡ 0 (mod 4),

and again the polynomial in (.) is over Z.
Finally, in case d ≡ 1 modulo 4, so that d = 4k+1 for some

integer k, we have

ω2 =
1 + 2

√
d+ d

4
=

2k + 1 +
√
d

2
= k + ω,

which is in OK .

The invertible elements of a ring are called its units. Then
the invertible elements of OK (and therefore also of every OΛ,
by the corollary of Theorem ) are just the elements having
norm ±1.
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