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Preface

Here are notes of my course, called Rudiments of Nonstandard Anal-
ysis, given at the Nesin Mathematical Village, in Şirince, July –,
. I started lecturing in Turkish, switching to English when it tran-
spired that everybody understood this. After every lecture, I wrote
out a record what had happened. The present document is a highly
edited version of the daily records. I have added some references, and
cross-references, and I have made some corrections and amplifications,
though without changing the content of particular days.

The experience of the students ranged from one year of university to
some years of graduate school. Prerequisites of the course had been
given as

Calculus and algebra (the theorem that maximal ideals are prime),

though in the event, most of the students did not know much algebra.
The “abstract” of the course was
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The axiom of choice, ultrafilters, ultraproducts. Connections with
algebra. The rudiments of nonstandard analysis.

What actually happened can be seen in the main text. A few ex-
ercises are made explicit in the text; also, formally stated theorems
without proofs can be considered as exercises. In the actual course,
some of these were proved by students at the board.
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Summaries of the days

. . Calculus with infinitesimals (the limit of the sum is the sum
of the limits). Non-Archimedean ordered fields.

. More calculus with infinitesimals (the limit of the product
is the product of the limits). Rings and their ideals. Power
sets as Boolean rings.

. Why R had to be rigorously defined. Equivalence of stan-
dard and non-standard definitions of limits. Dedekind’s con-
struction of R. The Cauchy-sequence construction of R.
Valuation rings.

. Ideals of power sets. The Maximal Ideal Theorem and its
proof by Zorn’s Lemma. Maximal ideals m of P(ω) that
contain all finite subsets of ω. The Sorites Paradox. The
ordering of the ultrapower Rω/M , where M is the maximal
ideal {x ∈ Rω : supp(x) ∈ m}.

. Ultraproducts
∏

i∈ω
Kk

/
M of fields, as for example finite

fields. Logical formulas. The Prime Ideal Theorem. Łoś’s
Theorem for fields, and the Transfer Principle.

. Łoś’s Theorem (and the Compactness Theorem) in an arbi-
trary signature. ∗R as the [ultrapower] Rω/M . ∗N. Non-
standard analysis of sequences. Filters and ultrafilters.
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. . Ultrafilters on ω. More non-standard analysis of sequences.
Standard parts of finite non-standard real numbers. Why
the Transfer Principle does not apply to second-order prop-
erties.

. Non-standard analysis of bounded sets and limit points. The
Bolzano–Weierstrass Theorem.

. Closed sets and open sets. Monads. Logical and topological
compactness. The Heine–Borel Theorem.

. Topological spaces. The compactness of the spectrum of a
ring. Non-standard characterization of topological compact-
ness. The logical Compactness Theorem implies the Prime
Ideal Theorem. Boolean algebras and the Stone Represen-
tation Theorem.

. Logical truth and Lindenbaum algebras. Stone spaces and
the proof of the Stone Representation Theorem. Bases of
topological spaces. Proof of the logical Compactness Theo-
rem from the Prime Ideal Theorem.

. The Axiom of Choice is equivalent to Łoś’s Theorem and
the Prime Ideal Theorem together.

 First week

. Monday

Suppose a function f is defined by

f(x) =

{

x sin(1/x), if x 6= 0,

0, if x = 0.



Non-standard analysis 

Is f continuous at 0? Why or why not?

By the standard definition, for an arbitrary function f from R to R,
the expression

lim
x→a

f(x) = L

means∗

∀ε
(

ε > 0 =⇒ ∃δ
(
δ > 0 & ∀x

(0 < |x− a| < δ =⇒ |f(x)− L| < ε)
))

. ()

Then f is continuous at a if and only limx→a f(x) = f(a).

Theorem . If limx→a f(x) = L and limx→a g(x) = M , then

lim
x→a

(f + g)(x) = L+M

(“the limit of the sum is the sum of the limits”).

Standard proof. By the triangle inequality,

|(f + g)(x)− (L+M)| 6 |f(x)− L|+ |g(x)−M |.

Suppose ε > 0. For some positive δ1 and δ2,

0 < |x− a| < δ1 =⇒ |f(x)− L| < ε

2
,

0 < |x− a| < δ2 =⇒ |g(x)−M | < ε

2
.

Let δ = min(δ1, δ2). Then

0 < |x− a| < δ =⇒ |f(x)− L|+ |g(x)−M | < ε,

∗Commonly the defining sentence is written as (∀ε > 0)(∃δ > 0)∀x(0 < |x−a| <
δ ⇒ |f(x)− L| < ε).
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and therefore

0 < |x− a| < δ =⇒ |(f + g)(x)− (L+M)| < ε.

Thus limx→a(f + g)(x) = L+M .

By the standard, “ε-δ” definition, limx→a f(x) = L means that f(x)
is relatively close to L, or as close as we like to L, provided x is
sufficiently close (but not equal) to a. Here the variable x ranges
over the ordered field R of real numbers.

We are going to develop a notion of being “absolutely” close, denoted
by ≃. Then limx→a f(x) = L will mean that f(x) is absolutely close
to L, provided x is absolutely close (but not equal) to a: in symbols,

∀x (x ≃ a & x 6= a =⇒ f(x) ≃ L). ()

However, the variable x here will range over an ordered field larger
than R.

If x ≃ a, then x − a ≃ 0, and x − a will be called infinitesimal (or
infinitely small). The sum of two infinitesimals will be infinitesimal.
Then for the theorem above, we shall have:

Non-standard proof. If x ≃ a, but x 6= a, then f(x) ≃ L and g(x) ≃ M ,
so f(x) − L and g(x) − M are infinitesimal, and therefore so is their
sum, which is equal to (f + g)(x)− (L+M); thus

(f + g)(x) ≃ (L+M).

The simplest example of an ordered field that includes R and contains
infinitesimals is the field R(X) of rational functions in the variable X
over R; an arbitrary nonzero element of this field can be written as

anX
n + an−1X

n−1 + · · ·+ a0X
0

bmXm + bm−1Xm−1 + · · ·+ b0X0
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for some nonnegative integers n and m, for some ai and bj in R, where
anbm 6= 0. We define the element of R(X) to be positive if anbm > 0.
Hence for all positive integers n,

X − n =
1 ·X1 − nX0

1 ·X0
> 0,

so X > n, and therefore 0 < 1/X < 1/n. Thus X is infinite, while
1/X is infinitesimal.

To be precise, there are two equivalent ways to define an ordering of
a field K. If P ⊂ K and is closed under addition and multiplication,
while

P ⊔ {0} ⊔ {−x : x ∈ P} = K,

then P is the set of positive elements of K with respect to an ordering
of K, given by

x < y ⇐⇒ y − x ∈ P.

Alternatively, < is linear ordering of K such that

x < y =⇒ x+ z < y + z,

x < y & z > 0 =⇒ xz < yz.

Because it has infinite elements, the ordered field R(X) is non-Archi-

medean. It is not rich enough for doing analysis. We are going to do
analysis in a non-Archimedean ordered field denoted by

∗R,

which will be the quotient Rω/M , where

• ω = {0, 1, 2, . . . }, the set of nonnegative integers, and

• M is a nonprincipal maximal ideal of the ring Rω of functions
from ω to R.
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. Tuesday

Theorem . If limx→a f(x) = L and limx→a g(x) = M , then

lim
x→a

(fg)(x) = LM

(“the limit of the product is the product of the limits”).

Standard proof. Since

|(fg)(x)− LM | = |f(x) · g(x)− LM |
= |f(x) · g(x)− f(x) ·M + f(x) ·M − LM |
6 |f(x)| · |g(x)−M |+ |f(x)− L| · |M |,

it is enough to let δ1 be such that

0 < |x− a| < δ1 =⇒ |f(x)− L| < ε

2|M |
=⇒ |f(x)| < |L|+ ε

2|M | ,

then let δ2 be such that

0 < |x− a| < δ2 =⇒ |g(x)−M | < ε

2

(

|L|+ ε

2|M |

) ,

then let δ = max(δ1, δ2).

For the non-standard proof, taking place in the non-Archimedean or-
dered field ∗R mentioned above, we have noted that the sum of in-
finitesimals is infinitesimal; we also need that the product of a finite

(that is, non-infinite) number and an infinitesimal is infinitesimal.
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Nonstandard proof. If x ≃ a, then f(x) ≃ L and g(x) ≃ M , so f(x)−
L ≃ 0 and g(x)−M ≃ 0, and therefore

(fg)(x)− LM = f(x) · g(x)− LM

= f(x) · g(x)− f(x) ·M + f(x) ·M − LM

= f(x) ·
(
g(x)−M

)
+

(
f(x)− L

)
·M

≃ 0.

What we now call simply calculus was once called infinitesimal calculus
because it was conceived in terms of infinitesimals. When calculus
was made rigorous, infinitesimals were not involved, but today’s ε-δ
definitions were developed.

Why make calculus rigorous? Well, why do we believe that there is a
number called

√
2? For centuries or even millenia, we have been able to

compute approximations to this number. An algorithm for computing
decimal approximations used to be learned in school (by my father,
for example). However, Dedekind asserts (and I agree) that, before he
gave a rigorous definition of the field R of real numbers, the equation

√
2 · √3 =

√
6

was not a theorem, because there can be no algorithm for multiplying
infinite decimal expansions.

Let us review precisely the axioms for fields. First, an abelian group

is a structure (G, 0,−,+), where

• addition (+) is a commutative, associative binary operation on
the set G,

• 0 is an identity with respect to addition, and

• − is inversion with respect to addition and 0.

A field is a structure (K, 0, 1,−,+,×), where
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• (K, 0,−,+) and (K r {0}, 1,−1,×) are abelian groups (for some
singulary operation −1 on K r {0}), and

• multiplication (×) distributes over addition.

If we do not require the existence of a multiplicative inverse −1 on Kr

{0} (but we still require that × be commutative and associative, with
identity 1), then what we have is a ring.∗ In a ring, by distributivity,

x · 0 = x · (0 + 0) = x · 0 + x · 0.

Fields, like Q and R, are rings, but Z is a ring that is not a field. Let

N = {1, 2, 3, . . . };

this is not even a ring. But if n ∈ N, then there is a ring denoted by

Z/nZ,

consisting of the elements x+ nZ, where

nZ = {ny : y ∈ Z},

so x+ nZ = {x+ ny : y ∈ Z}. The ring Z/nZ is a field if and only if n
is a prime p; and then this field is denoted by

Fp.

Can this be made into an ordered field? No, because in an ordered
field, always 1 + · · · + 1 > 0. Such a field has characteristic 0; but
char(Fp) = p, since in Fp,

1 + · · ·+ 1
︸ ︷︷ ︸

p

= 0.

∗In some books, what we have defined as a ring would be called more precisely
a nontrivial commutative ring with (multiplicative) identity; but we shall consider
no other rings than these.
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In general then, if K is an ordered field, we may assume Q ⊆ K. Let

R = {finite elements of K},
I = {infinitesimal elements of K}.

Then R is a ring, and I is an ideal of R, because it is an additive
subgroup of R that is closed under multiplication by elements of R.

If R is an arbitrary ring, and I ⊆ R, then I is an ideal of R if and only
if

x, y ∈ I =⇒ x+ y ∈ I,

r ∈ R & x ∈ I =⇒ rx ∈ I,

0 ∈ I.







()

A ring is the improper ideal of itself; every other ideal of the ring
is a proper ideal. A maximal ideal of R is a proper ideal I that is
maximal as such, that is, for all ideals J of R,

I ⊂ J =⇒ J = R.

Then nZ is an ideal of Z; it is a proper ideal, if n > 1; it is a maximal
ideal, if n is prime.

An ideal is proper if and only if it does not contain 1. The ideal
I of infinitesimal elements of the ring R of finite elements of a non-
Archimedean field is a maximal ideal, because if x ∈ R r I, then
x−1 ∈ R, so any ideal of R containing x contains also 1.

The quotient ring R/I is defined like Z/nZ; and when I is a maximal
ideal of R, then R/I is a field.

The ordered field R is complete: every nonempty subset with an upper
bound has a least upper bound, that is, a supremum. If again R is
the ring of finite elements of a non-Archimedean ordered field, and
I is the ideal of infinitesimal elements, then R/I is an Archimedean
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ordered field, and therefore it embeds in R. Indeed, since we may
assume Q ⊆ R, there is a map

x+ I 7→ sup{u ∈ Q : u < x} ()

from R/I to R, and this is an embedding.

An arbitrary element a of the power Rω can be written out as one of

(a0, a1, a2, . . . ), (ak : k ∈ ω),

where the ak are in R. Then the ring operations on Rω are given by

a+ b = (ak + bk : k ∈ ω),

ab = (akbk : k ∈ ω).

What are the ideals of Rω? On R, let us define

x∗ =

{

x−1, if x 6= 0,

0, if x = 0;

and then on Rω,

x∗ = (x0
∗, x1

∗, . . . ) = (xk
∗ : k ∈ ω).

There is a bijection I 7→ Ī from {ideals of Rω} to {ideals of F2
ω},

where
Ī = {x∗x : x ∈ I}.

Given a in Rω or F2
ω, we define

supp(a) = {i ∈ ω : ai 6= 0},

the support of a. Then x 7→ supp(x) is a bijection from F2
ω to P(ω),

and for x and y in F2
ω we have

supp(xy) = supp(x) ∩ supp(y),

supp(x+ y) = supp(x)△ supp(y),
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where △ denotes symmetric difference:

X△Y = (X r Y ) ∪ (Y rX) = (X ∪ Y )r (X ∩ Y ).

So P(ω) is a ring, with △ as addition and ∩ as multiplication. Then
the maximal ideal M of Rω corresponds to a maximal ideal m of P(ω),
namely {supp(x) : x ∈ M}.

The ring P(ω) is a Boolean ring, that is,

x2 = x.

From this we have

2x = (2x)2 = 4x2 = 4x,

0 = 2x.

Thus the characteristic of a Boolean ring is 2. Hence also

x · (1 + x) = 0,

so the only Boolean field is F2. Hence P(ω)/m ∼= F2, and

X ∈ m ⇐⇒ ωrX /∈ m.

. Wednesday

Why was it not a theorem before Dedekind that
√
2·√3 =

√
6? We can

approximate roots with decimals, but have no algorithm for multiplying
(or adding) infinite decimal expansions. For example, what is

(2.333 . . . )× (2.142857)?
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We have

2.3× 2.1 = 4.83,

2.33× 2.14 = 4.9862,

2.333× 2.142 = 4.997286,

2.3333× 2.1428 = 4.99979524,

but

2.3334× 2.1429 = 5.00024286.

So we cannot know the first digit of the product, just by computing
with finitely many digits.

Dedekind gives us R as an ordered field. Using this, we shall construct
an ordered field ∗R (namely Rω/M as before) where R ⊂ ∗R. If f : R →
R, then f will extend to a function ∗f from ∗R to ∗R (so ∗f ↾ R = f).
The equivalence between the standard and non-standard definitions of
limits (in () and (), pages  and , respectively) will be established
as follows.

Theorem . In R, () holds, namely

∀ε
(

ε > 0 =⇒ ∃δ
(
δ > 0 & ∀x

(0 < |x− a| < δ =⇒ |f(x)− L| < ε)
))

,

if and only if in ∗R,

∀x (x ≃ a & x 6= a =⇒ ∗f(x) ≃ L).

Proof. (⇒). Suppose b ≃ a and b 6= a. Then for all positive δ in R,
0 < |b− a| < δ. Let ε ∈ R and ε > 0. By (), for some positive δ in R,

R � ∀x (0 < |x− a| < δ =⇒ |f(x)− L| < ε)
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(here � is the truth relation), and so (as we shall show)

∗R � ∀x (0 < |x− a| < δ =⇒ |∗f(x)− L| < ε),

and therefore |∗f(b) − L| < ε. This being true for all positive ε in R,
we have ∗f(b) ≃ L.

(⇐). Suppose () fails, so that, for some positive ε in R,

R � ∀δ
(
δ > 0 =⇒ ∃x (0 < |x− a| < δ & |f(x)− L| < ε)

)
.

Then ∗R � [same thing, with ∗f for f ]:

∗R � ∀δ
(
δ > 0 =⇒ ∃x (0 < |x− a| < δ & |∗f(x)− L| < ε)

)
.

In particular, for all positive infinitesimal δ, there is b in ∗R such that
0 < |b − a| < δ (so b ≃ a, but b 6= a), and |∗f(b) − L| > ε, so
∗f(b) 6≃ L.

We could do non-standard analysis (as in the non-standard proofs of
Theorems  and ), without proving Theorem ; this theorem just
assures us that we would not be doing anything new.

How do we get the property of ∗R used in the last proof? First it
will be useful to review how we obtain R. Recall from page  that
(K, 0, 1,−,+,×) is a field if

• (K, 0,−,+) and (K r {0}, 1,−1,×) (for some −1) are abelian
groups,

• + distributes over ×.

If (Kr{0}, 1,×) is only a monoid (× is commutative and associative,
1 is an identity), then (K, 0, 1,−,+,×) is a ring.

If K is a field, then (K,<) is an ordered field if {x ∈ K : x > 0} is
closed under + and ×, and

K = {x ∈ K : x < 0} ⊔ {0} ⊔ {x ∈ K : x > 0}.
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Adapting Dedekind’s definition, let us say that a cut of Q is a nonempty
proper subset A of Q such that∗

y ∈ A & x < y =⇒ x ∈ A,

x ∈ A =⇒ ∃y (y ∈ A & x < y).

Let

R = {cuts of Q}.

Then x 7→ {y ∈ Q : y < x} is an embedding of (Q, <) in (R,⊂), and
addition and multiplication on Q extend to continuous operations on
R, and then (by continuity) R becomes an ordered field.

Note that Dedekind’s construction relies only on the ordering of Q.
Another construction of R may be more useful for us. For this, we
let

R = {Cauchy sequences of Q},
I = {sequences of Q converging to 0}.

Recall that a ∈ R means

∀ε
(
ε > 0 =⇒ ∃k ∀m ∀n
(m ∈ N & k 6 m & n ∈ N & k 6 n =⇒ |am − an| < ε)

)
.

Then I ⊂ R.

Theorem . I is a maximal ideal of R.

Proof. This is an exercise; but assuming I is an ideal, let us show it is
maximal. Say a ∈ Rr I. We must show that every ideal J containing

∗For Dedekind, the cut is (A,Q r A), and if A has a supremum in Q, it does
not matter whether this supremum belongs to A or not.
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a and including I is R. Say b ∈ R and c ∈ I. Then ab + c ∈ J . We
want to show 1 ∈ J . So we want to find b in R and c in I such that

ab+ c = 1.

Given that a = (a0, a1, . . . ), we could let b = (a0
−1, a1

−1, . . . ), so
ab = (1, 1, 1, . . . ) = 1. But possibly ak = 0. Recall from page  the
definition on R,

x∗ =

{

x−1, if x 6= 0,

0, if x = 0.

So let

b = a∗ = (a0
∗, a1

∗, . . . ).

Then ab and 1 − ab are in ∈ {0, 1}ω. We want to show 1 − ab ∈ I.
That is, we want to show that, for some k, if n ∈ N and k 6 n, then
an 6= 0.

The desired conclusion holds because a is Cauchy, but does not con-
verge to 0. To be precise, for some positive ε, for all k, for some n in
N, we have k 6 n, but |an| > ε; but also, for some k, for all m and
n in N, if k 6 m and k 6 n, then |an − am| < ε/2. We may assume
|an| > ε, and so

ε

2
6 |an| −

ε

2
< |am|;

in particular, am 6= 0.

Theorem . [In the notation above,] the function x + I 7→ lim(x) is
a well-defined bijection from R/I to R, and it preserves addition and
multiplication: it is an isomorphism of fields.

Proof. Exercise.
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Now let K be a non-Archimedean ordered field, so it has infinite ele-
ments. Let

R = {finite elements of K},
I = {infinitesimal elements of K}
= {x−1 : x ∈ K rR} ∪ {0}.

Then R is a valuation ring of K, because

∀x (x ∈ K rR =⇒ x−1 ∈ R).

Let
R× = {x ∈ Rr {0} : x−1 ∈ R},

the group of units of R. Then

I = RrR×.

We asserted on page  that I is an ideal; but this follows, simply
because R is a valuation ring of K. Indeed, suppose x, y ∈ I. Either
x/y or y/x is a well-defined element of R; assume y/x ∈ R. Then
1 + y/x ∈ R, that is,

x+ y

x
∈ R.

Since x−1 /∈ R, also 1/(x+ y) /∈ R, so x+ y ∈ I. Similarly, if x ∈ I and
y ∈ R, then xy ∈ I (exercise).

So I is an ideal; automatically it is a maximal ideal, as we showed
on page : if a ∈ R r I, then a−1 ∈ R, so every ideal containing a
contains 1.

For another example, let K = Q(X) and

R = {f ∈ K : f(0) is defined},
I = {f ∈ K : f(0) = 0}.
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Then R is a valuation ring of K with maximal ideal I.

We want to let K = Rω/M , where M is a maximal ideal of Rω. We
know that M is determined by a maximal ideal of the Boolean ring
(P(ω), 0,ω,△,∩).

Theorem . A subset I of P(ω) is an ideal if and only if

X,Y ∈ I =⇒ X ∪ Y ∈ I,

Y ∈ I & X ⊆ Y =⇒ X ∈ I,

∅ ∈ I.

Proof. Exercise: an adaptation of the definition () of ideals on page
.

For example, P(ω) has (at least) two kinds of ideals:

• {finite subsets of ω}, and

• P(A), if A ⊆ ω.

. Friday

We want to understand the ideals of P(ω), and more generally of
P(Ω) for arbitrary sets Ω. We have the characterization of ideals
of P(ω) in Theorem ; it still holds when ω is replaced by Ω. If
A ⊆ P(Ω), then the ideal P(A) of P(Ω) is called a principal ideal.

If Ω is infinite, then the set of finite subsets of P(Ω), which we can
denote by

Pω(Ω),

is a nonprincipal ideal, because there is no subset A of Ω such that
Pω(Ω) = P(A).
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{0, 1, 2}

{0, 1}

✉✉✉✉✉✉✉✉✉

{0, 2} {1, 2}

■■■■■■■■■

{0}

✉✉✉✉✉✉✉✉✉

{1}

■■■■■■■■■

✉✉✉✉✉✉✉✉✉

{2}

■■■■■■■■■

∅

❏❏❏❏❏❏❏❏❏❏

tttttttttt

Figure . The elements of P(3)

However, if Ω is finite, then all ideals of P(Ω) are principal. Consider
for example the case where Ω is 3, where 3 = {0, 1, 2}, as in Figure
: every ideal consists of an element and the elements below it in the
diagram.

Theorem . Suppose I is an ideal of P(Ω) and A ⊆ Ω. The smallest
ideal of P(Ω) that includes I and contains A is

{X ∪ Y : X ∈ I & Y ⊆ A}. ()

Proof. If X0, X1 ∈ I and Y0, Y1 ⊆ A, then

(X0 ∪ Y0) ∪ (X1 ∪ Y1) = (X0 ∪X1) ∪ (Y0 ∪ Y1),

X0 ∪X1 ∈ I, Y0 ∪ Y1 ⊆ A.

Thus the set indicated in () is closed under ∪.

If X ∈ I and Y ⊆ A and Z ⊆ X ∪ Y , then

Z = Z ∩ (X ∪ Y ) = (Z ∩X) ∪ (Z ∩ Y ),

Z ∩X ∈ I, Z ∩ Y ⊆ A.
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Thus the indicated set is closed under taking subsets.

Obviously the indicated set is included in every ideal of P(Ω) that
includes I and contains A.

Denote the new ideal in the theorem by

I + (A).

If this is P(Ω), then it contains Ω, so for some X in I and Y in
P(A),

Ω = X ∪ Y,

X ⊇ Ωr Y ⊇ ΩrA,

ΩrA ∈ I.

From this we obtain:

Theorem . Let I be a proper ideal of P(Ω). Then I is a maximal
ideal if and only if, for all X in P(Ω),

X /∈ I =⇒ ΩrX ∈ I. ()

Proof. If I is maximal, then for all A in P(Ω)r I, we have I + (A) =
P(Ω), so ΩrA ∈ I, as above.

Suppose conversely () holds. If A ∈ P(Ω) r I, then Ω r A ∈ I, so
I + (A) contains both A and ΩrA and therefore Ω.

Principal maximal ideals of P(ω) exist, namely P(ω r {k}). Do
nonprincipal maximal ideals exist? They will, by the Maximal Ideal
Theorem (Theorem ) below.

A subset C of P(Ω) is a chain if it is linearly ordered by ⊂, that is,
for all X and Y in C ,

X ⊆ Y or Y ⊆ X.
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In the following, note well that

⋃

C =
⋃

Y ∈C

Y = {x : ∃Y (Y ∈ C & x ∈ Y )}.

Theorem  (Zorn’s Lemma). Let A ⊆ P(Ω). Suppose that, for every
subset C of A that is a chain,

⋃
C ∈ A . Then A has a maximal

element X (so that, for all Y in A, if X ⊆ Y , then X = Y ).

Actually we shall treat Zorn’s Lemma as an axiom. It is equivalent to
the Axiom of Choice (see page ).

Theorem . The union of a nonempty chain C of proper ideals of a
ring R is a proper ideal.

Proof. If x, y ∈
⋃

C , then for some I and J in C , x ∈ I and y ∈ J . We
may assume I ⊆ J . Then x ∈ J , so x+ y ∈ J , and hence x+ y ∈ ⋃

C .

Similarly if x ∈ ⋃
C and y ∈ R, then xy ∈ ⋃

C . So
⋃

C is an ideal.

If
⋃

C is the improper ideal, then 1 ∈
⋃

C , so for some I in C , 1 ∈ I;
but I is proper, so 1 /∈ I.

Theorem  (Maximal Ideal Theorem). Every proper ideal I of a ring
R is included in a maximal ideal of R.

Proof. This maximal ideal is a maximal element of the set of proper
ideals of R that include I; it exists, by Zorn’s Lemma and the last
theorem.

In particular, there is a maximal ideal m of P(ω) that includes the
ideal Pω(ω). Let

M = {x ∈ Rω : supp(x) ∈ m},
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where
supp(x) = {k ∈ ω : xk 6= 0}.

As noted on page , M is an ideal, indeed a maximal ideal, of Rω.
Then Rω/M consists of the elements a+M , where a ∈ Rω; and

a+M = b+M ⇐⇒ a− b ∈ M

⇐⇒ supp(a− b) ∈ m

⇐⇒ {k ∈ ω : ak 6= bk} ∈ m.

Let us refer to elements of m as small, and to elements of P(ω)rm

as large. Then:

• the union of two small sets is small;

• a subset of a small set is small;

• the complement of a small set is large.

Note that, by this definition, all finite sets are small, although some
infinite sets will be small as well. The definition is a kind of resolution of
the Sorites Paradox, or Paradox of the Heap, attributed to Eubulides
of Miletus, th century bce. If from a heap of sand, one grain is
removed, still a heap of sand remains; but all of the grains in the heap
can be removed one by one, so that, paradoxically, even one grain can
constitute a heap.

A heap is a large pile of sand, and one grain is a small pile; but these
are only relative terms, rather in the sense of page . Elements of m
are absolutely small; of P(ω)rm, absolutely large.

That Rω/M is a field follows from basic ring theory: the quotient of
a ring by a maximal ideal is a field. We want Rω/M to be an ordered
field in which R embeds. The embedding will be x 7→ (x, x, x, . . . )+M ;
this map is indeed injective, since (x, x, x, . . . ) is just (x : k ∈ ω), and

(x : k ∈ ω) +M = (y : k ∈ ω) +M ⇐⇒ {k ∈ ω : x 6= y} ∈ m

⇐⇒ x = y.
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We define the ordering by

a+M < b+M ⇐⇒ {k ∈ ω : ak > bk} ∈ m.

This is a valid definition, because if a+M = a′+M and b+M = b′+M ,
then

{k ∈ ω : a′k > b′k}
⊆ {k ∈ ω : ak > bk} ∪ {k ∈ ω : a′k 6= ak} ∪ {k ∈ ω : b′k 6= bk},

so if {k ∈ ω : ak > bk} is small, then so is {k ∈ ω : a′k > b′k}, and
conversely by symmetry.

Similarly all of the axioms of ordered fields hold in Rω/M , as we shall
show generally tomorrow. Meanwhile, note that (1, 2, 3, . . . )+M is an
infinite element of Rω/M , and so (1, 1/2, 1/3, . . . ) +M is an infinites-
imal element. Of the elements

(0, 1, 0, 1, 0, 1, . . . ) +M, (1, 0, 1, 0, 1, 0, . . . ) +M.

Which one is greater? We don’t know. Either the set of odd numbers
or the set of even numbers is in m. If {odd numbers} ∈ m, then

(0, 1, 0, 1, . . . ) +M = (0, 0, 0, 0, . . . ) +M

< (1, 1, 1, 1, . . . ) +M

= (1, 0, 1, 0, . . . ) +M.

. Saturday

We want to understand Rω/M , where M is a maximal ideal of the ring
Rω. This is a special case of

∏

i∈Ω

Ki

/

M,
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where Ω is an arbitrary set, and each Ki is a field, so
∏

i∈Ω Ki is the
ring consisting of (ai : i ∈ Ω), where ai ∈ Ki; and M is a maximal ideal
of this ring.

For example, Ω could be the set of primes, and if p ∈ Ω, Kp could be
Fp, that is, Z/pZ. If ℓ ∈ Ω, let ℓ = 0 be the equation

1 + · · ·+ 1
︸ ︷︷ ︸

ℓ

= 0.

This is true in Fp if and only if p = ℓ. Then

{p ∈ Ω: ℓ = 0 in Fp} = {ℓ}.

Let
m = {supp(x) : x ∈ M}.

Assume Pω(Ω) ⊆ m; then {ℓ} ∈ m, so ℓ = 0 is not true in
∏

p∈Ω Fp. In
particular, this field has characteristic 0. But it is a kind of “average”
of the fields Fp, each of which has characteristic p. It is an example of
a pseudofinite field.

In general, let

K = (Ki : i ∈ Ω),
∏

K =
∏

i∈Ω

Ki.

There are homomorphisms

• x 7→ x+M from
∏

K to
∏

K /M ,

• x 7→ xi from
∏

K to Ki for each i in Ω.

If a ∈ ∏
K , we let the interpretation of a in

∏
K /M be a + M ;

in Ki, ai. Then a polynomial equation f = g with parameters from
∏

K has a meaning in
∏

K /M and in each Ki. For example, f = g
could be

ab2 + 5c = a3c− 6d4
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for some a, b, c, and d in
∏

K . Truth is denoted by �. Then

∏

K /M � f = g ⇐⇒ {i ∈ Ω: Ki � f 6= g} ∈ m,

where again m = {supp(x) : x ∈ M}. We can understand the equation
f = g as ϕ(a0, . . . , an−1) for some polynomial equation ϕ(x0, . . . , xn−1)
in no parameters, in the signature {0, 1,−,+,×} of rings. (The super-
scripts are not exponents, but indices.) In the example above, ϕ is

x0(x1)2 + 5x2 = (x0)3x2 − 6(x3)4.

In general, ϕ is an atomic formula. Other formulas are obtained
from these by use of ∧ (and), ¬ (not), and ∃x (there exists x). A
sentence is a formula with no free variables. In the formula

∀x (0 < |x− a| < δ ⇒ |f(x)− L| < ε),

• x is a bound variable (not free),

• a and L are parameters,

• δ and ε are free variables,

• <, | · |, and f are from a larger signature than that of plain rings.

A formula σ ⇒ τ is an abbreviation for ¬σ ∨ τ ; and σ ∨ τ , for ¬(¬σ ∧
¬τ).
For any ring R and sentences σ and τ ,

R � ¬σ ⇐⇒ R 2 σ,

R � σ ∧ τ ⇐⇒ R � σ & R � τ,

R � ∃x ϕ(x) ⇐⇒ for some a in R, R � ϕ(a).

Here ⇐⇒ and & are abbreviations for the English expressions “if
and only if” and “and” respectively; and R 2 σ means σ is not true in
R.
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Given a sentence σ with parameters from
∏

K , let

‖σ‖ = {i ∈ Ω: Ki � σ}.

Following Wilfrid Hodges in his Model Theory [], we may call ‖σ‖ the
Boolean value of σ. Then

‖σ ∧ τ‖ = ‖σ‖ ∩ ‖τ‖,
‖¬σ‖ = Ωr ‖σ‖,

‖σ ∨ τ‖ = ‖σ‖ ∪ ‖τ‖.

Because m is an ideal,

‖σ ∨ τ‖ ∈ m ⇐⇒ ‖σ‖ ∈ m & ‖τ‖ ∈ m. ()

Because m is a maximal ideal,

‖σ‖ /∈ m ⇐⇒ ‖¬σ‖ ∈ m, ()

‖σ ∧ τ‖ ∈ m ⇐⇒ ‖σ‖ ∈ m or ‖τ‖ ∈ m. ()

Why? Recall that

m ⊆ P(Ω), ()

X,Y ∈ m ⇐⇒ X ∪ Y ∈ m, ()

Y ∈ m & X ⊆ Y =⇒ X ∈ m, ()

X /∈ m ⇐⇒ ΩrX ∈ m. ()

But () follows from the other three conditions. We have that ()
follows from (), and () from (). Finally, () follows from () and
(), because

‖σ ∧ τ‖ ∈ m ⇐⇒ ‖¬σ ∨ ¬τ‖ /∈ m [by ()]

⇐⇒ ‖¬σ‖ /∈ m or ‖¬σ‖ /∈ m [by ()]

⇐⇒ ‖σ‖ ∈ m or ‖τ‖ ∈ m. [by ()]
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Note that () means m is a prime ideal. In general, a proper ideal I of
a ring R is a prime ideal if

xy ∈ I ⇐⇒ x ∈ I or y ∈ I.

The improper ideal is not counted as prime, just as 1 is not counted as
a prime number. In Z, the prime ideals are (p) and (0); the ideals (p)
are also maximal ideals, but (0) is not, since

(0) ⊂ (p) ⊂ Z.

In every ring, all maximal ideals are prime. Indeed, if I is a maxi-
mal ideal of R, then R/I is a field, hence an integral domain: this
means

xy = 0 =⇒ x = 0 or y = 0,

which in the present context means

xy + I = I =⇒ x+ I = I or y + I = I,

that is, xy ∈ I =⇒ x ∈ I or y ∈ I. The following then is a corollary
of the Maximal Ideal Theorem:

Theorem  (Prime Ideal Theorem). Every proper ideal of a ring is
included in a prime ideal of the ring.

A reason for stating this result separately is that it is strictly weaker
than the Maximal Ideal Theorem: see page . However, the two
theorems are equivalent for Boolean rings, where all prime ideals are
maximal (Exercise).

The following is a special case of Łoś’s Theorem:

Theorem . If K is an indexed family (Ki : i ∈ Ω) of fields, and M
is a maximal ideal of

∏
K , then for all sentences σ with parameters

from
∏

K ,
∏

K /M � σ ⇐⇒ ‖σ‖ /∈ m. ()
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Proof. We know this is true when σ is atomic. Suppose it is true when
σ is ρ or τ . Then

∏

K /M � ¬ρ ⇐⇒
∏

K /M 2 ρ

⇐⇒ ‖ρ‖ ∈ m

⇐⇒ ‖¬ρ‖ /∈ m,

and similarly

∏

K /M � ρ ∧ τ ⇐⇒
∏

K /M � ρ &
∏

K /M � τ

⇐⇒ ‖ρ‖ /∈ m & ‖τ‖ /∈ m

⇐⇒ ‖ρ ∧ τ‖ /∈ m.

Finally, suppose for some formula ϕ(x), for all a in
∏

K , () holds
when σ is ϕ(a). Let a be (ai : i ∈ Ω) in

∏
K such that, for all i in Ω,

if Ki � ∃x ϕ(x), then Ki � ai. Then

‖∃x ϕ(x)‖ = {i ∈ Ω: Ki � ∃x ϕ(x)}
= {i ∈ Ω: Ki � ϕ(ai)}
= {i ∈ Ω: Ki � ϕ(a)}
= ‖ϕ(a)‖.

Moreover, for all b in
∏

K ,

‖ϕ(b)‖ ⊆ ‖ϕ(a)‖.

Hence
∏

K /M � ∃x ϕ(x) ⇐⇒ for some b in
∏

K ,
∏

K /M � ϕ(b)

⇐⇒ for some b in
∏

K , ‖ϕ(b)‖ /∈ m

⇐⇒ ‖ϕ(a)‖ /∈ m

⇐⇒ ‖∃x ϕ(x)‖ /∈ m.
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In the proof, we use the Axiom of Choice to find a; see the final lecture
(page ). The whole proof uses pure logic: nothing of ring theory
(except for the algebra of P(Ω)). The fields Ki could be replaced by
groups, linear orders, ordered fields, or something else. Then we get
Łoś’s Theorem, namely Theorem ..

In case each Ki is R, and the parameters of σ are from R only, not Rω,
we get ‖σ‖ ∈ {∅,Ω}, so

RΩ/M � σ ⇐⇒ R � σ.

We used this to prove Theorem  (page ).

. Sunday

We have proved:

Łoś’s Theorem. For every indexed family (Ai : i ∈ Ω) of structures
having a common signature S , for every maximal ideal m of P(Ω),
there is a structure B of S such that, for all sentences σ of S , if

‖σ‖ = {i ∈ Ω: A � σ},

then
B � σ ⇐⇒ ‖σ‖ /∈ m.

(This much is the Compactness Theorem; again, see the final lec-
ture, page .) The universe of B can be taken as

∏

i∈Ω Ai/∼, where

a ∼ b ⇐⇒ {i ∈ Ω: ai 6= bi} ∈ m.

Here a structure A is a set A, called the universe of A, together
with some operations and relations on A, that is, functions from An

to A and subsets of An for various n in ω. The signature of the
structure consists of a symbol for each of the operations and relations.
For example,
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• G = (G, 0,−,+), an abelian group;

• R = (R, 0, 1,−,+,×), a ring;

• L = (L,<), a linear order.

Note that A0 = {∅} = {0} = 1. Hence a nullary operation on A, that
is, a function from A0 to A, is determined by an element of a. In Łoś’s
Theorem, let

A =
∏

i∈Ω

Ai.

Then each Ai can be considered as a structure of S (A), the elements
of A being treated as constants, a being interpreted in Ai as ai.

We are interested in Łoś’s Theorem when

• Ω is ω,

• m is a nonprincipal maximal ideal of P(ω), that is, Pω(ω) ⊆ m,
and

• each Ai is R with its full structure, that is, there is a symbol for
every operation and relation on R.

Let
∗R = Rω/M,

where M = {x ∈ Rω : supp(x) ∈ m}. We treat the embedding x 7→
(x, x, x, . . . ) + M of R in ∗R as an inclusion. If f : R → R, then, as
a symbol, f is interpreted in ∗R as a function ∗f from ∗R to ∗R given
by

∗f(a+M) = (f(ak) : k ∈ ω) +M,

as in Figure . Then ∗f can be called the extension of f . One must
show that ∗f is well defined (or take this as a consequence of Łoś’s
Theorem). Likewise,

∗N = {x+M : x ∈ Nω}.
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a+M = (a0, a1, a2, . . . ) +M
↓

∗f(a+M) = (f(a0), f(a1), f(a2), . . . ) +M

Figure . Extension of a function

Theorem . N consists of the finite elements of ∗N.

Proof. By definition, the elements of N are finite. Suppose n is a finite
element of ∗N. Then the set {x ∈ N : n < x+1} is nonempty, so it has
a least element, m. Then

m 6 n < m+ 1,

unless n < 1; but this cannot happen since

R � ∀x (x ∈ N =⇒ 1 6 x),

so
∗R � ∀x (x ∈ ∗N =⇒ 1 6 x).

Likewise, since

R � ∀x (x ∈ N & m 6 x < m+ 1 =⇒ m = x),

we have also

∗R � ∀x (x ∈ ∗N & m 6 x < m+ 1 =⇒ m = x),

and therefore m = n, so n ∈ N.

See Figure . In proving the theorem, we use that N is well ordered,

that is, every nonempty subset has a least element. Is ∗N well ordered?
No: ∗Nr N has no least element, since if n is infinite, so is n− 1.
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b b b b b b b bbc

1 2 3 · · · (1, 2, 3, . . . ) +M

Figure . Non-standard natural numbers

By Łoś’s Theorem, we have (and have used)

R 4 ∗R; ()

this means all first-order sentences that are true in R are true in ∗R.
first-order sentences are the kinds of sentences defined on page . In
a first-order sentence, variables refer to individuals, not subsets.

If a : N → R, that is, a ∈ RN, or

a = (ak : k ∈ N),

then we obtain ∗a from ∗N to ∗R, that is,

∗a = (ak : k ∈ ∗N).

This is the extension of a, as ∗f is the extension of f , and ∗N of N. If
k = (k(i) : i ∈ ω) +M , then

ak = (ak(i) : i ∈ ω) +M.

The sequence a is bounded if

∃R ∀n (n ∈ N =⇒ |an| 6 R); ()

this applies to ∗a if we replace N with ∗N. Then what condition on ∗a
is equivalent to boundedness of a?

Theorem . A sequence a in RN is bounded if and only if every
element of ∗a is finite.
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Proof. If a is bounded, then for some S in R,

R � ∀n (n ∈ N =⇒ |an| 6 S),
∗R � ∀n (n ∈ ∗N =⇒ |an| 6 S),

so ∗a has no infinite elements (since S is finite).

If a is not bounded, then

R � ∀S ∃n (n ∈ N & |an| > S),
∗R � ∀S ∃n (n ∈ ∗N & |an| > S).

Letting S be positive and infinite, we obtain that an is infinite for some
n in ∗N.

Note how we had to manipulate the quantifiers. The standard defi-
nition of boundedness of a sequence is first order; it is the condition
in (). The theorem shows that this condition is equivalent to a
non-standard definition that, as such, is not expressed in a first-order
way.

The same is true of Theorem  (page ). By analogy with limits of
functions, we have the following; the proof is an exercise.

Theorem . limn→∞ an = L if and only if, for all infinite n, an ≃ L.

A filter of a Boolean ring P(Ω) is “dual” to an ideal of the ring. By
“dualizing” the conditions in Theorem  (page ), we say that a subset
F of P(Ω) is a filter of P(Ω), or a filter on Ω, if

X,Y ∈ F =⇒ X ∩ Y ∈ F,

X ∈ F & X ⊆ Y ⊆ Ω =⇒ Y ∈ F,

Ω ∈ F.
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Then {ΩrX : X ∈ F} is an ideal, namely the dual ideal of the filter.
A maximal proper filter is called an ultrafilter; its dual ideal is also
its complement and is a maximal ideal.

In Łoś’s Theorem, if U = P(Ω)rm, then the structure B is denoted
by

∏

i∈Ω

Ai

/

U

(or
∏

U
Ai or some such) and is called the ultraproduct of the struc-

tures Ai.

 Second week

. Monday

Recall that infinite means greater than all n in N, where

N = {1, 2, 3, . . . };

infinitesimal means less in absolute value than 1/n for all n in N;
an ≃ L means an − L is infinitesimal. U is an ultrafilter on ω

(which is {0, 1, 2, . . . }); this means U ⊆ P(ω) and, for all X and Y
in P(ω),

X,Y ∈ U ⇐⇒ X ∩ Y ∈ U ,

X ∈ U ⇐⇒ ωrX /∈ U .

Indeed, these conditions imply

X ∈ U & X ⊆ Y ⊆ ω =⇒ Y ∈ U ,
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since if X ⊆ Y , then X ∩ Y = X. We define an equivalence relation
on Rω so that, if a/U is the equivalence class of an element a, that is,
(ak : k ∈ ω), of Rω, then

a/U = b/U ⇐⇒ {k ∈ ω : ak = bk} ∈ U .

The elements of U are large. Similarly we obtain ∗N. If a ∈ RN, we
obtain ∗a, namely (an : n ∈ ∗N), where

an =

{

an, if n ∈ N,

(ank
: k ∈ ω)/U , if n = (nk : k ∈ ω)/U .

If n ∈ N, we identify n with (n, n, n, . . . )/U ; thus, in the definition of
an for n in ∗N, it suffices to give only the second case.

Theorem  is that limn→∞ an = L if and only if, for all infinite n,
an ≃ L. Suppose we try to prove the foreward direction as follows.
Assuming limn→∞ an = L, we have that for some positive ε in R,

R � ∃M ∀n (n ∈ N & n > M =⇒ |an − L| < ε),
∗R � ∃M ∀n (n ∈ ∗N & n > M =⇒ |an − L| < ε).

This is true, but is not what we want. Rather, we want to observe
that, for some positive ε in R, for some M in R,

R � ∀n (n ∈ N & n > M =⇒ |an − L| < ε),
∗R � ∀n (n ∈ ∗N & n > M =⇒ |an − L| < ε).

Thus, if n is infinite, then |an−L| < ε. This being true for all positive
real ε, an ≃ L.

Suppose conversely limn→∞ an 6= L. Then for some positive ε in R,

R � ∀M ∃n (n ∈ N & n > M & |an − L| > ε),
∗R � ∀M ∃n (n ∈ ∗N & n > M & |an − L| > ε).
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Letting M be positive and infinite, we find infinite n so that |an−L| > ε
and therefore an 6≃ L.

If you grew up using δ-ε proofs, but now want to do infinitesimal cal-
culus, then you have to prove things like the foregoing. Alternatively,
you can just define limn→∞ an = L to mean an ≃ L for all infinite n.
Then other proofs become easier.

Lemma . Suppose a in RN is convergent. Then every term of ∗a is
finite.

Theorem . Suppose a, b ∈ RN and lim(a) = L, lim(b) = M , and
r ∈ R. Then

lim(a+ b) = L+M,

lim(ra) = rL,

lim(ab) = LM,

and if L 6= 0, then
lim a−1 = L−1. ()

Proof. Follow the method of the non-standard proofs of Theorems 
and , using that the infinitesimals of ∗R compose an ideal of the
ring of finite elements. For (), we need the foregoing lemma—an
exercise—that an is finite for all n. If L 6= 0, possibly some an are 0,
but we prove that an 6= 0 if n is infinite.

Theorem . A sequence a is convergent if and only if, for all infinite
m and n, am ≃ an.

The proof, an exercise, will want standard parts. If a is a finite
element of ∗R, its standard part is an element st(a) of R such that
st(a) ≃ a. We achieve this by defining

st(a) = sup{x ∈ R : x < a}.
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(compare () on page ). To prove that this works, consider the
alternative whereby 0 < δ < |a− st(a)| for some δ in R.

We showed yesterday that, since ∗N is not well ordered, the property
of being well ordered is not first order. Similarly being complete is not
first order, since the set of finite elements of ∗R has no supremum.

However, in the two-sorted structure N ⊔ P(N), the first-order sen-
tence

∀Y
(
1 ∈ Y & ∀x (x ∈ Y =⇒ x+ 1 ∈ Y ) =⇒ ∀x x ∈ Y

)
,

so it is true in ∗(N ⊔ P(N)), which can be understood as ∗N ⊔ ∗P(N),
where ∗P(N) consists of the subsets

{

x/U : x ∈
∏

k∈ω

Yk

}

of ∗N, where (Yk : k ∈ ω) ∈ P(N)ω. Thus ∗P(N) ⊆ P(∗N), but the
inclusion is proper, since for example

N ∈ P(∗N)r ∗
P(N).

. Tuesday

If a ≃ b, and b is finite, why must a be finite? If a ≃ b, and b is finite,
then

|a| − |b| 6 |a− b| 6 1,

|a| 6 1 + |b|,

so a is finite.

Since all terms of convergent sequences are finite, convergent sequences
are bounded.
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What is the standard proof of this? If lim(a) = L, then for some
N , if n > N , then |an − L| < 1, so |an| < |L| + 1. Now let M =
min{|a1|, . . . , |aN |, |L|+ 1}. Then |an| 6 M for all n in N.

An arbitrary subset A of R is bounded if

∃x ∀y (y ∈ A =⇒ |y| 6 x).

Theorem . A subset A of R is bounded if and only if every element
of ∗A is finite.

A limit point of a subset E of R is an element p of R such that, for
all positive ε,

(p− ε, p+ ε) ∩ (E r {p}) 6= ∅,

that is,
∃x (x ∈ E & 0 < |x− p| < ε). ()

What is the non-standard formulation of this definition?

Theorem . p is a limit point of E if and only if, for some q in ∗E,

q ≃ p & q 6= p. ()

Proof. For the forward direction, let q be x in () when ε is a positive
infinitesimal. More precisely, we have

R � ∀ε (ε > 0 =⇒ ∃q (q ∈ E & 0 < |q − p| < ε)),
∗R � ∀ε (ε > 0 =⇒ ∃q (q ∈ ∗E & 0 < |q − p| < ε)),

so if we let ε be a positive infinitesimal, we have q as desired.

Conversely, suppose () holds. Then for all positive ε in R, () holds
in ∗R, so it holds in R: that is, we have 0 < |q − p| < ε, and so,

∗R � ∃x (x ∈ ∗E & 0 < |x− p| < ε),

R � ∃x (x ∈ E & 0 < |x− p| < ε).

This being true for all positive ε in R, p is a limit point of E.
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An alternative proof of the reverse direction uses the construction of
∗R as follows. We can write out q as (qk : k ∈ ω)/U , while p is just
(p, p, p, . . . )/U . Then for all n in N, since |q − p| < 1/n, we have

{k ∈ ω : |qk − p| < 1/n} ∈ U .

Also, since q 6= p,
{k ∈ ω : qk 6= p} ∈ U .

Since U is closed under ∩, we conclude

{k ∈ ω : |qk − p| < 1/n & qk 6= p} ∈ U .

Finally, since q ∈ ∗E, we have

{k ∈ ω : qk ∈ E} ∈ U .

Indeed, we can consider ∗E as Eω/U , but more precisely

∗E = {x/U ∈ ∗R : x ∈ Eω};

this allows for the possibility that x/U = y/U , but y /∈ Eω. Summing
up,

{k ∈ ω : |qk − p| < 1/n & qk 6= p & qk ∈ E} ∈ U .

Thus for all n in N, there is q in E such that q 6= p, but |q − p| < 1/n.
Therefore p is a limit point of E.

In this alternative argument, it does not follow that limn→∞ qn = p.
For example, possibly {odds} ∈ U , and q2k = 2k, so (qn : n ∈ ω)
diverges. But there is still a subsequence that converges to p.

The definitions of bounded sets and limit points, as well as the following
theorem, can be adapted to apply to Rn for any n in N. We stick with
R for simplicity.

Theorem  (Bolzano–Weierstrass). A bounded infinite subset of R

has a limit point.
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The standard proof is to “divide and conquer”: If the infinite subset E
of R is bounded, it is included in a closed bounded interval. If we divide
the interval in half, then at least one of the halves contains infinitely
many points of E. Then we divide that interval in two, and continue.
The sequence of left endpoints of the intervals that we find has a limit,
which is a limit point of E.

Non-standard proof. Since E is infinite, there is a nonrepeating se-
quence (an : n ∈ ω) such that each term is in E. Let n be infinite.
Since an is finite, it has a standard part b. Since an ≃ b, if an 6= b we
are done. Suppose an = b. Then for some finite k, ak = b, so ak = an.
Thus (an : n ∈ ω) repeats.

A neater non-standard proof uses the following.

Theorem . A subset E of R is finite if and only if ∗E = E.

The proof is an exercise; or see page . Meanwhile, if E is infinite
and bounded, we can find a in ∗ErE and then let b = st(a); then b is
a limit point of E.

. Wednesday

Recall that p is a limit point of A if there is q in ∗A such that q 6= p,
but q ≃ p. (This makes sense in Rn for all n in N, not just in R; but
again, we shall officially stay with R.) A set is closed if it contains
all of its limit points. The complement of a closed set is open. Then
a subset U of R is open if and only if, for all p in U , if q ∈ ∗R and
p ≃ q, then q ∈ ∗U . Thus uses that ∗R is the disjoint union of ∗U and
∗(Rr U):

∗Rr ∗(Rr U) = ∗U.
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If p ∈ R, let
µ(p) = {q ∈ ∗R : q ≃ p},

the monad of p. This is Robinson’s term [, pp. , ], but whether
Robinson is alluding to Leibniz’s philosophical use of the term is not
clear. In passing from R to ∗R, each point is replaced by a “cloud”—its
monad, monads of distinct points being disjoint.

In any case, we now have that U is open if and only if, for all p in U ,

µ(p) ⊆ U.

Theorem . The open subsets of R are just the unions of sets of
open intervals.

Proof. Suppose U is open. Then for every p in U , µ(p) ⊆ U , and so
(p− δ, p+ δ) for infinitesimal positive δ. Thus

∗R � ∃x ∗(p− x, p+ x) ⊆ ∗U,

R � ∃x (p− x, p+ x) ⊆ U,

so for some positive δp in R, (p− δp, p+ δp) ⊆ U . Thus

U =
⋃

{(p− δp, p+ δp) : p ∈ U}.

The converse is easy.

Porism . The intersection of every set of closed sets is a closed set.
Every closed interval is a closed set.

Not every closed set is a union of closed intervals. Examples are sin-
gleton sets and {1/n : n ∈ N} ∪ {0}. An uncountable example is the
Cantor set, which results from starting with the closed interval [0, 1],
removing the open interval (1/3, 2/3), then removing the middle thirds
of the remaining intervals, and so on.
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Theorem . A subset A of R is closed and bounded if and only if
for all q in ∗A there is p in A such that p ≃ q.

Proof. Suppose A is closed and bounded, and q ∈ ∗A. Since A is
bounded, q is finite, by Theorem . Now let p be the standard part of
q. Either p = q, or p is a limit point of A. In either case, p ∈ A, since
this is closed.

Suppose conversely for all q in ∗A there is p in A such that p ≃ q. Since
p is finite, q must be finite. Thus A is bounded. Suppose p is a limit
point of A. For some q in ∗A, p ≃ q, but p 6= q. But for some p′ in A,
p′ ≃ q. Therefore p ≃ p′, so p = p′, and p ∈ A.

We are going to talk about compactness, both in the present context
and in logic. The Compactness Theorem of first-order logic is that
if Γ is set of first-order sentences, and every finite subset of Γ has a
model, then Γ has a model. (See page ).

A collection O of open subsets of R is a cover (or open cover) of A
if

A ⊆
⋃

O.

Then A is compact if for all open covers O of A, there is a finite subset
of O that covers A.

Theorem  (Heine–Borel). A subset A of R (or Rn) is compact if
and only if closed and bounded (that is, for all q in ∗A there is p in A
such that q ∈ µ(p)).

Proof. (⇒) (Standard) A ⊆ ⋃{(−n, n) : n ∈ N}. If p /∈ A, then

A ⊆
⋃

{Rr [p− δ, p+ δ] : δ > 0}.
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(⇒) (Non-standard) Suppose for some q in ∗A, for all p in A, q /∈ µ(p).
But (exercise)

µ(p) =
⋂

{∗U : U open and p ∈ U}.

So for some open set Up containing p, q /∈ ∗Up. Then {Up : p ∈ A} cov-
ers A, but {∗Up : p ∈ A} does not cover ∗A. However, if {p(0), . . . , p(n)}
is a finite subset of A, then

∗(Up(0) ∪ · · · ∪ Up(n)) =
∗Up(0) ∪ · · · ∪ ∗Up(n),

so Up(0) ∪ · · · ∪ Up(n) cannot include A. That is, if

R � ∀x (x ∈ A ⇒ x ∈ Up(0) ∨ · · · ∨ x ∈ Up(n)),

then
∗R � ∀x (x ∈ ∗A ⇒ x ∈ ∗Up(0) ∨ · · · ∨ x ∈ ∗Up(n)),

which cannot be.

(⇐) (Non-standard) Suppose O is an open cover of A with no finite
subcover. We may assume O is countable by the Lindelöf Covering

Theorem: For every p in A, there is U in O such that p ∈ U ; but
then for some ap and bp in Q,

p ∈ (ap, bp) & (ap, bp) ⊆ U.

Thus we can replace O with {(ap, bp) : p ∈ A}, which is countable. If
this has a finite subcover of A, so does O.

Say then O = {Uk : k ∈ ω}. Let

qk ∈ Ar
⋃

i<k

Ui = Ar (U0 ∪ · · · ∪ Uk−1),

q = (qk : k ∈ ω)/U .
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If p ∈ A, then p ∈ Uk for some k; but then

{ℓ ∈ ω : qℓ ∈ Uk} ⊆ {0, 1, . . . , k}

since
k < ℓ =⇒ qℓ /∈ U0 ∪ · · · ∪ Uk ∪ · · · ∪ Uℓ−1.

Since finite sets are small, q /∈ Uk, so q /∈ µ(p).

In the non-standard proof of the sufficiency of the “q ∈ µ(p)” condition,
we have used more than the Transfer Principle, which is what we
have written as R 4 ∗R in () on page . Likewise we need more
than the Transfer Principle for:

Proof of Theorem . Suppose E = {a1, . . . , an}, but q is an element
(q1, q2, . . . )/U of ∗E r E. If

Ai = {k ∈ ω : qk = ai},

then Ai is small; but
ω = A1 ∪ · · · ∪An,

which is therefore small, which is absurd.

Conversely (or inversely), suppose {qn : n ∈ ω} ⊆ A, all qn different
from one another. Let q = (qn : n ∈ ω)/U . If a ∈ A, then q 6= a, since
the set

{n ∈ ω : qn = a}
has at most one element.

Alternatively, for the first part, by the Transfer Principle we have

R � ∀x (x ∈ A =⇒ x = a1 ∨ · · · ∨ x = an),
∗R � ∀x (x ∈ ∗A =⇒ x = a1 ∨ · · · ∨ x = an).
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For an example of the logical Compactness Theorem, given a structure
A, let

Th(A) = {σ : A � σ}, ()

the theory of A. Here σ is a first-order sentence. Let

σn = ∃x0, . . . xn−1

∧

i<j<n

xi 6= xj .

By Compactness,
⋂
{Th(Fp) : p prime} ∪ {σn : n ∈ N} has a model. In

fact
∏

p prime Fp/U is a model, U being a nonprincipal ultrafilter on
{primes}.

By contrast, {Peano axioms}∪{c 6=
n

︷ ︸︸ ︷

1 + · · ·+ 1: n ∈ N} has no model;
so the Peano axioms for N have no first-order formulation.

. Friday

Again, the open subsets of R are just the unions of sets of open inter-
vals. Let O be the set of open subsets of R. Then

. X ⊆ O =⇒
⋃

X ∈ O.

. In particular, ∅ ∈ O (since
⋃
∅ = ∅).

. If X,Y ∈ O, then X ∩ Y ∈ O, since

⋃

X ∩
⋃

Y =
⋃

{Z ∩W : Z ∈ X & W ∈ Y }.

. R ∈ O.

If A is an arbitrary set, and O is a subset of P(A) with the four
properties above (with A ∈ O as the fourth property), then O is the set
of open subsets of A in a topology on A, and (A,O) is a topological

space.
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We are going to be interested in the case where A is the set of prime
ideals of some ring R; this set is called

Spec(R),

the spectrum of R. Recall then that P ∈ Spec(R) if and only if

x ∈ P & y ∈ P =⇒ x+ y ∈ P,

x ∈ P or y ∈ P ⇐⇒ xy ∈ P,

0 ∈ P & 1 /∈ P.

For example:

• Writing (n) = nZ = {nx : x ∈ Z}, we have

Spec(Z) = {(p) : p prime} ∪ {(0)}.

• If K is an algebraically closed field like C, then

Spec(K[X]) = {(X − a) : a ∈ K} ∪ {(0)},

while Spec(K[X,Y ]) consists of the ideals

– (X − a, Y − b), where a, b ∈ K;

– (f), where f is an irreducible element of K[X,Y ];

– (0).

If R is a ring, and a ∈ R, let

[a] = {P ∈ Spec(R) : a /∈ P}.

If also b ∈ R, then
[a] ∩ [b] = [ab].

Therefore unions of sets of sets [a] are the open sets in a topology on
Spec(R). The sets [a] themselves are like open intervals.
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As with closed bounded subsets of R, a topological space (A,O) is
compact if for all subsets X of O, if

⋃
X = A, then for some finite

subset X0 of X ,
⋃

X0 = A.

The open subsets of Spec(Z) are just the complements of finite sets
of ideals (p). In particular, (0) belongs to every nonempty open set.
Then easily Spec(Z) is compact.

Theorem . For all rings R, Spec(R) is compact.

Standard proof. Suppose A ⊆ R and
⋃
{[x] : x ∈ A} = Spec(R). Then

⋂

{[x]c : x ∈ A} = ∅;

but in general

⋂

{[x]c : x ∈ A} = {P ∈ Spec(R) : A ⊆ P}.

By the Prime Ideal Theorem (page ), A is included in no proper
ideal. In general, the smallest ideal including A is

{a0x0 + · · ·+ an−1xn−1 : n ∈ ω & a ∈ An & x ∈ Rn};

this is denoted by
(A).

In the present case, 1 ∈ (A), so

1 = a0x0 + . . . an−1xn−1

for some ai in A. Then

[a0]
c ∩ · · · ∩ [an−1]

c = ∅,

[a0] ∪ · · · ∪ [an−1] = Spec(R).
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For a non-standard proof, if (A,O) is a topological space, and Ω is
some infinite set, and U is a nonprincipal ultrafilter on Ω, we define

∗A = AΩ/U

as before. If P ∈ A, we now define

µ(P ) =
⋂

{∗U ∈ O : P ∈ U}.

Then the non-standard proof of the Heine–Borel Theorem (page )
gives us:

Theorem . A topological space A is compact if and only if, for all
choices of Ω and U , for all Q in ∗A there is P in A such that

Q ∈ µ(P ).

We must adjust the proof of sufficiency given for the Heine–Borel The-
orem, since now we cannot assume O countable. We let Ω be the set of
finite subsets of O, and we let U be an ultrafilter on Ω that contains,
for each E in O, the set

{X ∈ Ω: E ∈ X}.

(Such sets do generate a proper filter on Ω, since O is closed under
taking intersections.) If X ∈ Ω, we can let

qX ∈ Ar
⋃

X

The resulting point (qX : X ∈ Ω)/U of ∗A is not in µ(p). Now we can
proceed with:

Non-standard proof of Theorem . Given Q in ∗Spec(R), we are going
to find P in Spec(R) such that

Q ∈ µ(P ).
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Here
µ(P ) =

⋂

{∗[x] : P ∈ [x]} =
⋂

{∗[x] : a /∈ P},

and for some (Qi : i ∈ Ω) in (Spec(R))Ω,

Q = (Qi : i ∈ Ω)/U ,

Q ∈ ∗[x] ⇐⇒ {i ∈ Ω: x /∈ Qi} ∈ U .

Now define
P =

{
x ∈ R : {i ∈ Ω: x ∈ Qi} ∈ U

}
.

Then P ∈ Spec(R) and Q ∈ µ(P ). Indeed, if x, y ∈ P , then

{i ∈ Ω: x ∈ Qi}, {i ∈ Ω: y ∈ Qi} ∈ U ,

{i ∈ Ω: x, y ∈ Qi} ∈ U ,

{i ∈ Ω: x+ y ∈ Qi} ∈ U

(using that U is closed under intersections and taking supersets), so
x+ y ∈ P . Likewise

x ∈ P or y ∈ P ⇐⇒ xy ∈ P.

Finally, 0 ∈ P & 1 /∈ P .

The non-standard proof seems to work by magic. One need not rec-
ognize that if 1 ∈ (A), then 1 ∈ (A0) for some finite subset A0 of
A.

In the remainder of the course, we want to establish the following:

• The Prime Ideal Theorem (page ) is equivalent to the Com-
pactness Theorem of first-order logic (pages , , and ).

• The Maximal Ideal Theorem (page ) is equivalent to:

– the Prime Ideal Theorem with Łoś’s Theorem (page );
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– the Axiom of Choice;

– Zorn’s Lemma (page ).

In the background is Zermelo–Fraenkel set theory.

Theorem . The Compactness Theorem implies the Prime Ideal
Theorem.

Proof. Supposing R is a ring, let diag(R) be the set of quantifier-free
sentences in {0, 1,−,+,×}, with parameters from R, that are true in
R. Let P be a new singulary relation symbol, and let

Γ = diag(R) ∪ {Pa ∧ Pb ⇒ P (a+ b) : a, b ∈ R}
∪ {Pa ∨ Pb ⇔ P (ab) : a, b ∈ R} ∪ {P0,¬P1}.

Then Γ has a model, because every finite subset Γ0 of Γ has a model.
Indeed, Γ0 involves only finitely many parameters, so they generate a
countable sub-ring R0 of R.

The Prime Ideal Theorem holds for nontrivial countable rings. For,
say R0 = {bn : n ∈ ω}. Let B0 = ∅ and

Bn+1 =

{

Bn, if (Bn ∪ (bn)) = R0,

Bn ∪ {bn}, otherwise.

Then
⋃

n∈ω
Bn is a maximal ideal of R0, hence a prime ideal of R0.

Now the symbol P can be interpreted as this prime ideal of R0, so that
R0 is a model of Γ0.

By Compactness, Γ has a model (S,Q). We may assume R ⊆ S, and
then R ∩Q is a prime ideal of R.

So far, we have shown only that R has a prime ideal. In particular, if
I is a proper ideal of R, then R/I has a prime ideal; but this will be
of the form P/I for some prime ideal P of R that includes I.
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If one knows any Galois Theory, then what we are doing can be seen
in this context. A relation from a set (or class) A to a set B is a
subset of A × B. Suppose G is such a relation. If Y ⊆ B, then the
set ⋂

y∈Y

{x ∈ A : x G y}

is a closed subset of A with respect to G. The closed subsets of B are
defined similarly. It is not too hard to establish that there is a one-
to-one, inclusion-reversing correspondence between the closed subsets
of A and the closed subsets of B. It may be more difficult to give an
interesting characterization of the closed subsets. In some cases, the
closed subsets of A are closed with respect to a topology on A; but this
is not always true.

In the original case, B is a field K, and A is its group Aut(K) of
automorphisms, and

G = {(σ, x) ∈ Aut(K)×K : xσ = x}.

We are interested in three other cases:

• B is a ring R, and A is its spectrum Spec(R), and

G = {(p, x) ∈ Spec(R)×R : x /∈ p}.

• B is a Boolean algebra (defined below), A is the set S(B) of its
ultrafilters, and

G = {(U , x) ∈ S(B)×B : x ∈ U }.

• For some logical signature S , B is the set Sn(S ) of sentences
of S , and A is the class Mod(S ) of structures having signature
S , and G is the relation of truth:

G = {(A, σ) ∈ Mod(S )× Sn(S ) : A � σ}.

(See tomorrow’s lecture.)
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For any set Ω, the structure

(P(Ω),∅,Ω,△,∩}

is a Boolean ring; but the structure

(P(Ω),∅,Ω, c,∪,∩}

is a Boolean algebra. If (R, 0, 1,+,×) is an arbitrary Boolean ring,
then (R, 0, 1,¬,∨,∧) is a Boolean algebra, where

¬x = 1 + x,

x ∨ y = x+ y + xy,

x ∧ y = xy,

and also

x+ y = (x ∧ ¬y) ∨ (y ∧ ¬x), xy = x ∧ y.

We are going to prove (on page ):

Theorem  (Stone Representation Theorem). Every Boolean algebra
A embeds in an algebra P(Ω). Here Ω can be taken as the set S(A) of
ultrafilters of A.

This is analogous to the simpler:

Theorem  (Cayley’s Theorem). Every group G embeds in a sym-
metry group

(Sym(Ω), idΩ,
−1, ◦),

where Sym(Ω) is the set of bijections from Ω to Ω. Here Ω can be taken
as G itself, and the embedding of G in Sym(G) is

g 7→ λg,

where λg(x) = gx.
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The original groups are a symmetry groups. Such groups are seen to
satisfy certain axioms, and it turns out, as in Cayley’s Theorem, that
all structures that satisfy these axioms are isomorphic to symmetry
groups. The same will be seen to be true for Boolean algebras.

. Saturday

Given a first-order signature S , we let

Mod(S ) = {structures of S },
Sn(S ) = {sentences of S }.

The relation � of truth is from Mod(S ) to Sn(S ). If σ, τ ∈ Sn(S ),
and for all A in Mod(S ),

A � σ ⇐⇒ A � τ,

then we say σ and τ are logically equivalent, and we write

σ ∼ τ.

Theorem . Sn(S )/∼ is a Boolean algebra.

The Boolean algebra of the theorem is called a Lindenbaum algebra

after a student of Tarski murdered by the Nazis; it can be denoted by

Lin0(S ).

The subscript 0 indicates that there are no free variables in the formulas
whose logical equivalence classes compose the algebra. (Later, on page
, we shall have reason to consider the Lindenbaum algebra of formulas
in one free variable.)

If A,B ∈ Mod(S ), and for all σ in Sn(S ),

A � σ ⇐⇒ B � σ,
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then we say A and B are elementarily equivalent, and we write

A ≡ B.

By defining
Th(A) = {σ ∈ Sn(S ) : A � σ}

as in () on page , we have

A ≡ B ⇐⇒ Th(A) = Th(B).

Theorem . For all A in Mod(S ), the quotient

Th(A)/∼

is an ultrafilter of Lin0(S ).

Strictly, Th(A)/∼ here should be understood as

{σ/∼ ∈ Lin0(S ) : A � σ}.

If now A is an arbitrary Boolean algebra, we let

S(A) = {ultrafilters of A};

this will be the Stone space of A. In case A = Lin0(S ), the situation
is as in Figure . In general, if U ∈ S(A), this means

x ∈ U & y ∈ U ⇐⇒ x ∧ y ∈ U,

¬x ∈ U ⇐⇒ x /∈ U.

Hence

x ∈ U or y ∈ U ⇐⇒ x ∨ y ∈ U,

1 ∈ U, 0 /∈ U.
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Mod(S )

A7→A/≡
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Figure . Stone space of Lindenbaum algebra
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Figure . Ordering of a Boolean algebra
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The Boolean algebra A is (partially) ordered by

x 6 y ⇐⇒ x ∧ y = x

⇐⇒ x ∨ y = y;

see Figure . If a ∈ A, let

[a] = {U ∈ S(A) : a ∈ U}.

Proof of the Stone Representation Theorem. In the Boolean algebra A,
we now have

[x] ∩ [y] = [x ∧ y],

[¬x] = [x]c,

[x] ∪ [y] = [x ∨ y],

[1] = S(A), [0] = ∅.

Thus the map x 7→ [x] from A to P(S(A)) is a homomorphism of
Boolean algebras. Moreover, it is an embedding, since if a 6= b, then
we may assume a ∧ b 6= a, so

a ∧ ¬b = a ∧ (1 + b) = a+ (a ∧ b) 6= 0,

since a+ a = 0. Therefore a ∧ ¬b generates a proper filter, namely

{x ∨ (a ∧ ¬b) : x ∈ A},

which by the Prime Ideal Theorem (page ) is included in an element
U of S(A). Then

U ∈ [a]r [b],

so [a] 6= [b].

Suppose (A,O) is a topological space as on page . If B ⊆ O, and
every element of O is

⋃
X for some subset X of B, then B is a base

or basis of O. For example,
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• {(a, b) : a, b ∈ R} is a base for the topology of R.

• {[a] : a ∈ R} is a base for the topology of Spec(R) for any ring
R. Hence:

• {[a] : a ∈ A} is a base for the topology of S(A) for any Boolean
algebra A, since S(A) = {P c : P ∈ Spec(A)}. The subsets [a] of
S(A) are both open and closed: they are clopen.

A topological space (A,O) with base B is compact if and only if, for
all subsets X of B such that

⋃
X = A, there is a finite subset X0

of X such that
⋃

X0 = A. Taking the contrapositive and taking
complements, we have:

Theorem . A topological space (A,O) with base B is compact if
and only if, for all subsets X of B such that, for all finite subsets X0

of X ,
⋂

{Xc : X ∈ X0} 6= ∅,

it follows that
⋂

{Xc : X ∈ X } 6= ∅.

The hypothesis of this condition is that {Xc : X ∈ X } has the finite

intersection property or FIP.

For a Boolean algebra A, the theorem is that S(A) is compact if and
only if, for all subsets X of A such that every finite subset of A is
included in an ultrafilter, X itself is included in an ultrafilter. This
condition is immediately satisfied.

Let C be the subspace

{Th(A)/∼ : A ∈ Mod(S )}

of S(Lin0(S )). Then C is compact if and only if, for every subset Γ
of Sn(S ), if every finite subset of Γ has a model, then Γ itself has a
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model. Thus the compactness of C is equivalent to the Compactness
Theorem (page ).

The subspace C is dense in S(Lin0(S )), because if [σ/∼] 6= ∅, then

σ 6∼ ∃x x 6= x,

so σ has a model A, and then Th(A)/∼ ∈ [σ/∼].

Thus every element of S(Lin0(S ))rC is a limit point of C. Therefore
C is closed if and only if C = S(Lin0(S )). In particular, if C is closed,
then it is compact. Conversely, since S(Lin0(S )) is a Hausdorff space,
its every compact subset is closed.

We shall not pursue this further, but a topological space is a Hausdorff

space if for any two distinct points of the space, there are disjoint open
sets containing the points respectively. Easily a Stone space S(A) is
Hausforff: if U0 and U1 are distinct elements, then we may assume
there is a in U0 r U1, and so U0 ∈ [a] and U1 ∈ [¬a].

Now we prove the theorem stated originally on page ; we implicitly
proved a version of it in proving Łoś’s Theorem (page ).

Theorem  (Compactness). If Γ is a subset of Sn(S ) whose every
finite subset has a model, then Γ itself has a model.

Proof. We can assume S has been expanded so that, for every singu-
lary formula ϕ(x), there is a new constant symbol

cϕ.

Now let

Γ∗ = Γ ∪ {∃x ϕ(x) ⇒ ϕ(cϕ) : ϕ/∼ ∈ Lin1(S )}.
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Then every finite subset of Γ∗ has a model. By the Prime Ideal Theo-
rem (page ), there is a subset T of Sn(S ) such that Γ ⊆ T and T/∼
is an ultrafilter of Lin0(S ). Then T has a model A such that

A = {cϕ : ϕ}/≈,

where
cϕ ≈ cψ ⇐⇒ (cϕ = cψ) ∈ T.

For example, if F is a singulary operation symbol in S , then

FA(cϕ) = cψ ⇐⇒ (Fcϕ = cψ) ∈ T.

There are many details to check, but this is the idea.

We obtained ∗R as an ultrapower Rω/U ; but Robinson [, p. ] can
be understood to obtain it by the Compactness Theorem as a model
of

Th(R) ∪ {c > n : n ∈ N}.
(Here the signature of R has everything we might want.) However,
Robinson [, p. ] proves the Compactness Theorem by means of
ultraproducts and Łoś’s Theorem (page ).

. Sunday

We have shown the equivalence in Zermelo–Fraenkel set theory of:

• the Compactness Theorem (page ),

• The Prime Ideal Theorem (page ), and

• The Boolean

{
Prime

Maximal

}

Ideal Theorem.

We are going to show the equivalence of:
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• The Prime Ideal Theorem, together with Łoś’s Theorem, and

• The Axiom of Choice.∗

As we noted (page ), Compactness can be understood as a weak form
of Łoś’s Theorem (with the Prime Ideal Theorem). Indeed, suppose
Γ ⊆ Sn(S ), and every ∆ in Pω(Γ) has a model A∆. If σ ∈ Γ, let

[σ] = {∆ ∈ Pω(Γ) : σ ∈ ∆}.

Then for all ∆ in Pω(Γ),

∆ ∈
⋂

σ∈∆

[σ].

Thus {[σ] : σ ∈ Γ} generates a proper filter on Pω(Γ). By the Prime
Ideal Theorem, this filter is included in an ultrafilter U . Let

A =
∏

∆∈Pω(Γ)

A∆,

and if a is an element (a∆ : ∆ ∈ Pω(Γ)) of A, let a be interpreted in
A∆ as a∆. For all σ in S (A), let

‖σ‖ = {∆ ∈ Pω(Γ) : A∆ � σ}.

Finally, let
T = {σ ∈ Sn(S (A)) : ‖σ‖ ∈ U }.

Then Γ ⊆ T , since if σ ∈ Γ, then [σ] ⊆ ‖σ‖, and [σ] ∈ U , so ‖σ‖ ∈ U .
Also, if {σk : k < n} ⊆ T , then

∥
∥
∥
∥
∥

∧

k<n

σk

∥
∥
∥
∥
∥
=

⋂

k<n

‖σk‖,

∗We could add to the list examples like the Tychonoff Theorem: the product of
compact spaces is compact. Restricted to Hausdorff spaces, the theorem is equiva-
lent to the Prime Ideal Theorem. See Rubin and Rubin [] and their references.
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which is in U , so in particular it is nonempty, which means the set
{σk : k < n} has a model. By the Compactness Theorem, T has a
model C, and then T = Th(C).

We may assume A/U ⊆ C. Then C has a substructure B whose
universe B is precisely A/U ; for if F is an n-ary operation symbol in
S for some n in N, then

FC(a0/U , . . . , an−1/U ) = (FA∆(a0∆, . . . , a
n−1
∆ ) : ∆ ∈ Pω(Γ))/U ,

so B is closed under the operations of C. Thus

B ⊆ C.

Łoś’s Theorem is then
B 4 C,

that is, for all σ in Sn(S (B)) or Sn(S (A)),

B � σ ⇐⇒ C � σ.

To prove this, by the Tarski–Vaught Test, it is enough to show that,
for all formulas ϕ(x) of S (A), if

C � ∃x ϕ(x),

then for some b in B, C � ϕ(b). So we show this. If A∆ � ∃x ϕ(x),
then for some b∆ in A∆, A∆ � ϕ(b∆). Otherwise let b∆ be arbitrary.
Now let

b = (b∆ : ∆ ∈ Pω(Γ))/U .

So Łoś’s Theorem holds. Note however that we used the Axiom of
Choice to obtain b.

Conversely, the following is shown by Howard []:

Theorem . The Axiom of Choice follows from Łoś’s Theorem and
the Prime Ideal Theorem.
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Proof. Suppose A is a set of nonempty sets with no choice function,

that is, no function f from A to
⋃

A such that, for all X in A ,
f(X) ∈ X. Let

Ω =
⋃

A ∪ A ,

R =
{

(x, Y ) ∈
⋃

A × A : x ∈ Y
}

∪
{

(y, y) : y ∈
⋃

A

}

.

Then
(Ω, R) � ∀y ∃x x R y.

Now, the subset

{X ⊆ A : X has no choice function}

of P(A ) is a proper ideal on A , so by the Prime Ideal Theorem,
its complement includes an ultrafilter U on A . This embeds in an
ultrafilter U ∗ on Ω. by Łoś’s Theorem,

(Ω, R)Ω/U ∗ � ∀y ∃x x R y.

Replacing y with (i : i ∈ Ω)/U ∗, we get (ai : i ∈ Ω)/U ∗ such that U

contains {i ∈ Ω: ai R i}. Let

C = {X ∈ A : aX R X}
= {X ∈ A : aX ∈ X}.

Then X 7→ aX is a choice function on C. But C ∈ U , so by definition
of U , C cannot have a choice function. This contradiction implies that
A must have had a choice function.
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