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 DAVID PIERCE

Introduction

Mathematical analysis is the theoretical side of calculus. Calculus consists of meth-
ods of solving certain sorts of problems; analysis studies those methods. The standard
way of doing this is founded on the ‘epsilon-delta’ definition of limit. The non-standard
approach uses infinitesimals, with rigorous logical justification. Abraham Robinson first
gave this justification; it can be found in his book, Non-standard Analysis [].

An infinitesimal is a number whose absolute value is less than than every positive
rational number. If two numbers a and b differ by an infinitesimal, we write

a ≃ b.

Zero is an infinitesimal, but there are no other infinitesimals among the so-called real
numbers.

In standard analysis, a function f is said to be continuous at an element a of its
domain if

lim
x→a

f(x) = f(a);

this means that, for all positive numbers ε, there is a positive number δ such that, for
all x in the domain of f , if |x − a| < δ, then |f(x) − f(a)| < ε.

In non-standard analysis, there is an alternative formulation of continuity: f is con-
tinuous at a just in case, for all x in the domain of f , if x ≃ a, then f(x) ≃ f(a).

The alternative formulation of continuity and many other things will be worked out
in the last section, § , of these notes. The other sections are meant to provide logical
justication and motivation for this work. Section  looks at Archimedes’s solution of a
calculus problem, and also mentions the Archimedean axiom, which will come up later
in various contexts. Today we think of calculus as involving the complete ordered field R

of real numbers; this field is constructed in §§  and . Non-standard analysis requires a
certain larger ordered field, ∗R, which is an example of a non-Archimedean ordered field.
Non-Archimedean ordered fields in general, and simple examples of these and related
fields, are discussed in § . The field ∗R can be obtained as an ultrapower of R; this
construction is treated in § . One can jump ahead to §  at any time, provided one
understands the meaning of Theorem  in § ..
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. Archimedes’s quadrature of the parabola

In the last chapter of Non-standard Analysis [], Robinson treats the history of cal-
culus in the light of non-standard analysis. Robinson begins with Leibniz; but I think it
worthwhile to go back much further—about two thousand years further. In the work of
Archimedes, both standard and non-standard approaches to calculus (in our terms) can
be discerned. For example, Archimedes takes up the following

Problem . Find a square equal to a given segment of a parabola.

Parabolas will be defined below; meanwhile, a segment of a parabola can be seen in
Figure , with an inscribed triangle. A solution to Problem  is called a quadrature of
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the parabola. Archimedes’s solution is given by the following

Theorem  (Archimedes). A parabolic segment is a third again as large as the inscribed
triangle with the same altitude.

In Figure , triangle ABC has the same altitude as the parabolic segment, because the
tangent to the parabola at A is parallel to the chord BC. Archimedes proves Theorem 
in two ways in his Quadrature of the parabola: in Proposition  (and the propositions
leading up to it), and in Proposition . Heath [] provides an English version of this
work, though rather than translating, he rewrites Archimedes in a way intended to be
more comprehensible to his readers. Selections from the Greek text of Archimedes, with
more literal English translations, are provided by Thomas []. The first volume of a
faithful translation of all of Archimedes’s works by Netz [] has appeared; but this does
not contain the works that we are particularly interested in here.

Insight into the discovery of Theorem  is given in Archimedes’s Method. This work
was lost until . Then, in İstanbul, the Danish scholar J.L. Heiberg discovered the
Archimedes Palimpsest: a parchment codex of the works of Archimedes that had been
washed and reused for writing Christian prayers.

Archimedes does not use the word parabola [, p. clxvii], but refers to a section of an
orthogonal cone. Let me review what this means, sometimes following also the account
of Apollonius []. A cone is determined by a circle, called its base, and a point, called the

�πίτριτος, one and a third times as much. See Appendix A for the Greek letters.
Ñρθογωνίου κώνου τοµή.
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apex of the cone, that is not in the plane of the base. The cone is traced out by a straight
line, one endpoint of which is at the apex, the other being moved about the circumference
of the base. The straight line drawn from the apex to the center of the base is the axis
of the cone. A plane containing the axis intersects the cone in an axial triangle. If the
axis is perpendicular to the base, then the cone is right. If an axial triangle of a right
cone has a right angle at the apex, then the cone is an orthogonal cone. In such a
cone, if a plane is perpendicular to one of the sides of the axial triangle that are about
the apex, then the plane cuts the cone in a curve that—following Apollonius—we call a
parabola. The intersection of the cutting plane and the axial triangle is the axis of the
parabola (which is different from the axis of the cone itself); the intersection of the axis
of the parabola and the parabola itself is the vertex of the parabola.

A straight line dropped from the parabola perpendicularly to the axis may be called
an ordinate; the part of the axis between the foot of the ordinate and the vertex is the
corresponding abscissa. The word abscissa means cut off in Latin, while the word ordi-
nate is related to order, which is used for, among other things, any of the several classical
styles of architecture. These orders feature columns standing parallel, like ordinates of a
parabola. Consider for example the columns of the Ionic order erected at Priene, Söke,
Aydın (which is accessible on a day trip from Şirince): see Figure .
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Figure . The ordinate BC cuts off from the axis the abscissa AC. On
the left, Priene

Apollonius’s reason for using the term parabola is shown in Proposition  of his
Conics [, ]. Apollonius also shows that parabolas can be obtained from all cones, not
necessarily orthogonal, not necessarily right. What is important for us are the following
properties of a parabola, whose proofs can be found in Apollonius.

Or ‘right-angled’; but I want to avoid confusion with right cones in general.



NON-STANDARD ANALYSIS 

. The squares on two ordinates are in the ratio of the corresponding abscissas [,
I.]. (Below we shall talk more about what this means.)

. Suppose a parabola has the vertex A, and another point B is chosen on the parabola,
and the ordinate BC is drawn. Extend the axis CA beyond A to a point D. The straight
line BD is tangent to the parabola at B if and only if AD = CA [, I., ] (see Figure ).
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Figure . DB is tangent at B if and only if CA = AD

. Every straight line parallel to the axis is a diameter in the following sense. Where
this diameter meets the parabola, a tangent can be drawn. If a chord of the parabola is
drawn parallel to this tangent, then the diameter bisects the chord [, I.]. Half of such
a chord is an ordinate with respect to the corresponding diameter, and the squares on
two such ordinates are in the ratio of the corresponding abscissas, as in  [, I.] (see
Figure ).
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Figure . A new diameter

In the Method, Archimedes solves Problem  as follows. We add some straight lines to
Figure , getting Figure . Here D is the midpoint of BC, so that (since BC is parallel
to the tangent at A) the straight line AD must be a diameter of the parabola. The
tangent to the parabola at C meets DA extended at E. Then A is the midpoint of DE,
by  above. A straight line from B parallel to DA meets CE extended at F . Extend
CA to meet BF at G, then extend further to H so that GH = CG. The idea now is
to consider CH as a lever with fulcrum at G. If we conceive of our figures as having
weights proportional to their sizes, then we shall show that, if we place the weight of the
parabolic segment ABC at H, then it will just balance triangle BCF where it is.

Since A is the midpoint of DE, also G is the midpoint of BF . Let DF be drawn,
intersecting CG at K. Since D is the midpoint of BC, we can conclude that K is the
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center of gravity (or centroid) of triangle BCF . Then GK is a third of CG, hence a third
of GH. Therefore triangle BCF is balanced by a third of its weight at H. If we can
show that the parabolic segment balances the triangle, then the segment must be a third
of the triangle. But triangle BCF is four times triangle ABC (why?). Then Theorem 
will follow.

Now, pick a point L at random on the parabola between B and C. Let the straight
line drawn through L parallel to BF meet BC at M and CG at N and CF at P . It
remains to show that

LM : MP :: GN : GH. ()

This is the key point. If () holds, then LM , if its midpoint is placed at H, will just
balance MP . Since L was chosen arbitrarily, we conclude that, if all of the parabolic
segment were placed at H, then it would balance BCF . Now, Archimedes does not find
this sort of argument to be sufficiently rigorous. Indeed, in the preface to the Method,
he writes

For some things first became clear to me by mechanics, though they had
later to be proved geometrically owing to the fact that investigation by
this method does not amount to actual proof; but it is, of course, easier
to provide the proof when some knowledge of the things sought has been
acquired by this method rather than to seek it with no prior knowledge.
[, p.]
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I want to look at the ‘actual proof’ of Archimedes presently. Meanwhile, let us estab-
lish (). You probably think of it as an equation of fractions: LM/MP = GN/GH. That
is fine; but () simply expresses a relation of proportionality among four magnitudes. Here
are Definitions – from Book V of Euclid’s Elements [, ].

. A ratio is a sort of relation in respect of size between two magnitudes
of the same kind.
. Magnitudes are said to have a ratio to one another which are capable,
when multiplied, of exceeding one another.
. Magnitudes are said to be in the same ratio, the first to the second
and the third to the fourth, when, if any equimultiples whatever be taken
of the first and third, and any equimultiples whatever of the second and
fourth, the former equimultiples alike exceed, are alike equal to, or alike
fall short of, the latter equimultiples respectively taken in corresponding
order.
. Let magnitudes which have the same ratio be called proportional.

Briefly,  means you can’t have a ratio between a line and a square: this may be one source
of the concern expressed by Archimedes in the quote above. If a and b are magnitudes
with a ratio, and so are c and d, then by , we may say variously

() a is to b in the same ratio that c is to d,
() a is to b as c is to d,
() a : b :: c : d,

provided that, whenever we take a multiple na of a, and the same multiple nc of c, and
a multiple mb of b, and the same multiple md of d, then

na > mb if and only if nc > nd,

na = mb if and only if nc = nd,

na < mb if and only if nc < nd.

In Books V and VI of the Elements, Euclid goes on to prove the properties of propor-
tionality that we shall need.

To return to our problem. From L draw a straight line parallel to BC, meeting AD
at Q and AC at R. Then by property  of the parabola given above,

LQ2 : CD2 :: AQ : AD.

Since LQ = MD, and triangle ACD is similar to NCM , while ARQ is similar to ACD,
we can rewrite the proportion as

NA2 : AC2 :: AR : AC.

Therefore NA is a mean proportional of AC and AR (see Euclid’s VI., , and ), so

NA : AC :: AR : NA

:: NA + AR : NA + AC

:: NR : NC

:: NL : NM.
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Since AC = AG, and MN = NP , we obtain

NA : AG :: NL : NM,

AG − NA : AG :: NM − NL : NM,

NG : AG :: LM : NM,

NG : 2AG :: LM : 2NM,

NG : GC :: LM : MP,

NG : GH :: LM : MP,

which is (), as desired.
Archimedes works out a rigorous formulation of this argument in the Quadrature of

the parabola, but I prefer now to look at the alternative proof, given for Proposition 
of that work.

Start over from Figure , getting Figure . Here D is the midpoint of BC as before,

b

b

b

b

b

b

b

b

b

b

C

A

B

D

E

F

G H

K L

Figure 

and E is the midpoint of AB. From E a straight line is drawn parallel to DA, meeting
the parabola at F . Draw straight lines AF and FC. Then triangle ACF has the same
altitude as the parabolic segment in which it is inscribed. Similarly we can find G on the
parabola between A and B so that the inscribed triangle ABG has the same height as
its parabolic segment. We show that triangles ACF and ABG are together one fourth
of triangle ABC.

To this end, from E and F we draw parallels to BC, meeting AD at H and K
respectively. Then

FK2 : CD2 :: AK : AD.

But FK = EH, and
EH : CD :: EA : CA :: 1 : 2.

Therefore AK is one fourth of AD. Consequently K is the midpoint of AH, and so L
is the midpoint of AE. Hence triangle AKL is equal to triangle EFL. But EFL is one
fourth of ACF , and AKL is one thirty-second of ABC. Therefore ACF is one eighth of
ABC. Similarly, ABG is one eighth of ABC; so ABG and ACF together are one fourth
of ABC.

We have started with the parabolic segment cut off by the chord BC, and we have
removed from it the triangle ABC. Then we have removed triangles equal to a fourth
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of ABC. We can continue, removing triangles equal to a sixteenth of ABC, and so on.
Moreover, at each step, we remove more than one half the remainder of the original
parabolic segment (why?).

Therefore, if we continue long enough, we can make the remainder of the parabolic
segment less than any pre-assigned area M . This is the conclusion of Euclid’s Proposition
X.; let us note the proof. The pre-assigned area M is assumed to have a ratio with the
parabolic segment, so that, by Definition V. above, some multiple nM of M exceeds
the segment. Indeed, Archimedes himself makes the assumption explicit in the preface to
the Quadrature of the parabola; it is what we may refer to as the Archimedean axiom:

given [two] unequal areas, the exess by which the greater exceeds the less
can, by being added to itself, be made to exceed any given finite area.
[, p.]

If we take away at least half of the parabolic segment, and take M from nM , then in the
latter case we are taking not more than half; so the former remainder is still less than
the latter remainder. If we repeat this process n − 1 times, then the remainder of the
parabolic segment will be less than M .

Suppose we have an area that is a third again as large as triangle ABC. If we remove
triangle ABC, what is left is one third. If we then remove one fourth of triangle ABC,
then what is left is one twelfth of that triangle, which is one fourth of the previous
remainder. Continuing, if we remove one fourth of what we last removed, then what
remains is one fourth of the previous remainder. Therefore, continuing as far as necessary,
we can make the remainder as small as we like. But this is the same process as we
described in the original parabolic segment.

Suppose the original parabolic segment is not a third again as large as ABC, but is
greater. Let the difference be M . We can inscribe in the parabolic segment a rectilinear
figure which differs from the segment by less than M ; so it is more than a third greater
than ABC, which is absurd. There is a similar contradiction if the parabolic segment is
less than a third again as large as ABC. Theorem  now follows.
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. Construction of the rational numbers

You know something about the chain

N ⊂ Z ⊂ Q ⊂ R ()

of number systems. Here N is the set {0, 1, 2, . . . } of natural numbers; Z comprises
the integers; Q, the rationals; R, the real numbers. What comes after R in ()?
It depends on how we think of R. If we think of it as a field, then we might think of
R as included in C, the field of complex numbers. But what if we think of R as an
ordered field? I postpone an answer until Section . Meanwhile I want to look at how
we obtain () in the first place.

.. The natural numbers. We can understand N axiomatically. First of all,

() it has a distinguished initial element called 0 (zero);
() it has a distinguished singulary operation of succession, denoted by n 7→ n + 1:

here n + 1 is the successor of n.

I propose to refer to the ordered triple (N, 0, n 7→ n + 1) as an iterative structure. In
general, by an iterative structure, I mean any set that has a distinuished element and a
distinguished singulary operation (that is, a function from the set to itself). For example,
modular arithmetic involves the iterative structures (Z/n, 0, k 7→ k + 1). The iterative
structure (N, 0, n 7→ n + 1) is distinguished among iterative structures for satisfying the
following axioms.

() 0 is not a successor: 0 6= n + 1.
() Succession is injective: if m + 1 = n + 1, then m = n.
() the structure admits proof by induction, in the sense that the only subset A

with the following two closure properties is the whole set:
(a) 0 ∈ A;
(b) for all n, if n ∈ A, then n + 1 ∈ A.

These axioms seem to have been discovered originally by Dedekind [, II, VI (),
p. ], although they were also written down by Peano [] and are often known as the
Peano axioms. From these axioms, Landau develops the rational, real, and complex
numbers rigorously, over the course of a book []. I want to do the same here, though
more quickly and in a different style. Landau’s natural numbers start with 1, not 0.
Also, Landau does not use the following theorem. The proof is difficult, but the result is
very useful.

Theorem  (Recursion). For every iterative structure (A, b, f), there is a unique homo-

morphism to this structure from (N, 0, n 7→ n + 1): that is, there is a unique function h
from N to A such that

() h(0) = b,
() h(n + 1) = f(h(n)) for all n in N.

Proof. I use the set-theoretic conception whereby a function g is just the set of ordered
pairs (x, y) such that g(x) = y; so if (x, y) and (x, z) belong to g, then y = z. We now
seek h as a particular subset of N × A.

Some people might write these structures as (Z/n, 0̄, k̄ 7→ k + 1), to make sure that the reader
distinguishes a natural number k from its congruence class modulo n.
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Let B be the set whose elements are the subsets C of N × A such that, if (x, y) ∈ C,
then either

() (x, y) = (0, b) or else
() C has an element (u, v) such that (x, y) = (u + 1, f(v)).

Let R =
⋃

B; so R is a subset of N × A. We may say R is a relation from N to A. If
(x, y) ∈ R, we may write also

x R y.

Since (0, b) ∈ B, we have 0 R b. If n R y, then (n, y) ∈ C for some C in B, but then
C ∪ {(n + 1, f(y))} ∈ B by definition of B, so (n + 1) R f(y). Therefore R is the desired
function h, provided it is a function from N to A. Proving this has two stages.

. For all n in N, there is y in A such that n R y. Indeed, let D be the set of such n.
Then we have just seen that 0 ∈ D, and if n ∈ D, then n+1 ∈ D. By induction, D = N.

. For all n in N, if n R y and n R z, then y = z. Indeed, let E be the set of such
n. Suppose 0 R y. Then (0, y) ∈ C for some C in B. Since 0 is not a successor, we
must have y = b, by definition of B. Therefore 0 ∈ E. Suppose n ∈ E, and (n + 1) R y.
Then (n + 1, y) ∈ C for some C in B. Again since 0 is not a successor, we must have
(n+1, y) = (m+1, f(v)) for some (m, v) in C. Since succession is injective, we must have
m = n. Since n ∈ E, we know v is unique such that n R v. Since y = f(v), therefore y
is unique such that (n + 1) R y. Thus n + 1 ∈ E. By induction, E = N.

So R is the desired function h. Finally, h is unique by induction. ¤

Corollary. For every set A with a distinguished element b, and for every function F
from N × B to B, there is a unique function H from N to A such that

() H(0) = b,
() H(n + 1) = F (n, H(n)) for all n in N.

Proof. Let h be the unique homomorphism from (N, 0, n 7→ n + 1) to (N × A, (0, b), f),
where f is the operation (n, x) 7→ (n + 1, F (n, x))). In particular, h(n) is always an
ordered pair. By induction, the first entry of h(n) is always n; so there is a function
H from N to A such that h(n) = (n, H(n)). Then H is as desired. By induction, H is
unique. ¤

The proof of the Recursion Theorem used each of the three Peano axioms; induction
alone would not enough. Indeed, if some iterative structure A has the property that
is guaranteed to (N, 0, n 7→ n + 1) by the Recursion Theorem, then A is isomorphic
to N (why?), and consequently A satisfies the Peano axioms. But these axioms are
independent. For example, (Z/n, 0, k 7→ k + 1) satisfies axioms  and , but not ; and
there are examples satisfying  and , but not ; and satisfying  and , but not  (can
you find them?).

Moreover, it is possible to assume the Recursion Theorem and prove the Peano axioms
from it.

Here A is the Fraktur version of A. The idea is that A is just a set, but A is that set together with
some other things—here a distinguished element and singulary operation. Then A is the universe of A.
I shall not later distinguish notationally between structures and their universes. If I did want to make
a distinction, I would use the letters depicted in Appendix B.
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We can now use recursion to define the binary operation (x, y) 7→ x + y of addition,
along with the binary operation (x, y) 7→ x · y or (x, y) 7→ xy of multiplication, on N.
The definitions are:

n + 0 = n, n + (m + 1) = (n + m) + 1, n · 0 = 0, n · (m + 1) = n · m + n.

Lemma. For all n and m in N,

0 + n = n, (m + 1) + n = (m + n) + 1.

Proof. Induction. ¤

Theorem . Addition on N is

() commutative: n + m = m + n; and
() associative: n + (m + k) = (n + m) + k.

Proof. Induction and the lemma. ¤

Theorem . Addition on N allows cancellation: if n + x = n + y, then x = y.

Proof. Induction, and injectivity of succession. ¤

Lemma. For all n and m in N,

0 · n = 0, (m + 1) · n = m · n + n.

Proof. Induction. ¤

Theorem . Multiplication on N is

() commutative: nm = mn;
() distributive over addition: n(m + k) = nm + nk; and
() associative: n(mk) = (nm)k.

Proof. Induction and the lemma. ¤

Landau proves using induction alone that + and · exist as given by the recursive
definitions above. Note however that Theorem  needs more than induction (why?).
Also, the existence of exponentiation, as an operation (x, y) 7→ xy such that

n0 = 1, nm+1 = nm · n,

requires more than induction.
The usual ordering < of N is defined recursively as follows. First note that m 6 n

means simply m < n or m = n. Then the definition of < is:

() m 6< 0;
() m < n + 1 if and only if m 6 n.

In particular, n < n + 1. Really, it is the sets {x ∈ N : x < n} that are defined by
recursion:

() {x ∈ N : x < 0} = ∅;
() {x ∈ N : x < n + 1} = {x ∈ N : x < n} ∪ {n}.

We now have < as a binary relation on N; we must prove that it is an ordering.

Theorem . The relation < is transitive on N, that is, if k < m and m < n, then
k < n.
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Proof. Induction on n. ¤

Lemma. m 6= m + 1.

Proof. The claim is true when m = 0, since 0 is not a successor. Suppose the claim is
true when m = k, that is, k 6= k+1. Then k+1 6= (k+1)+1, by injectivity of succession,
so the claim is true when m = k + 1. By induction, the claim is true for all m. ¤

Theorem . The relation < is irreflexive on N: m 6< m.

Proof. The claim is true when m = 0, since m 6< 0 by definition. Suppose the claim fails
when m = k + 1. This means k + 1 < k + 1. Therefore k + 1 6 k by definition. By the
previous lemma, k + 1 < k. But k 6 k, so k < k + 1 by definition. So k < k + 1 and
k +1 < k; hence k < k by Theorem , that is, the claim fails when m = k. By induction,
the claim holds for all m. ¤

Lemma. () 0 6 m.
() If k < m, then k + 1 6 m.

Proof. () Induction.
() The claim is vacuously true when m = 0. Suppose it is true when m = n. Say

k < n + 1. Then k 6 n. If k = n, then k + 1 = n + 1 < (n + 1) + 1. If k < n, then
k + 1 < n + 1 by inductive hypothesis, so k + 1 < (n + 1) + 1 by transitivity. Thus the
claim holds when m = n + 1. By induction, the claim holds for all m. ¤

Theorem . The relation 6 is total on N: either k 6 m or m 6 k.

Proof. Induction and the lemma. ¤

Because of Theorems , , and , the set N is (strictly) ordered by <.

Theorem . For all m and n in N, we have m 6 n if and only if the equation

m + x = n ()

is soluble in N.

Proof. By induction on k, if m + k = n, then m 6 n.
Conversely, if m 6 0, then m = 0 (why?), so m+0 = 0. Suppose the equation m+x = r

is soluble whenever m 6 r, but now m 6 r + 1. If m = r + 1, then m + 0 = r + 1.
If m < r + 1, then m 6 r, so the equation m + x = r has a solution k, and therefore
m + (k + 1) = r + 1. Thus the equation m + x = r + 1 is soluble whenever m 6 r + 1.
By induction, for all n in N, if m 6 n, then () is soluble in N. ¤

Theorem . () If k < ℓ, then k + m < ℓ + m.
() If k < ℓ and m 6= 0, then km < ℓm.

Here part  is a refinement of Theorem , and part  yields the following analogue of
Theorem  for multiplication.

Corollary. If km = ℓm and m 6= 0, then k = ℓ.

Theorem . N is well ordered by <: every nonempty set of natural numbers has a
least element.
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Proof. Suppose A is a set of natural numbers with no least element. Let B be the set of
natural numbers n such that, if m 6 n, then m /∈ A. Then 0 ∈ B, by the last lemma,
since otherwise 0 would be the least element of A. Suppose m ∈ B. Then m+1 ∈ B, since
otherwise m + 1 would be the least element of A. By induction, B = N, so A = ∅. ¤

.. The positive rationals. The integers can be constructed from the natural num-
bers; and the rationals, from the integers. Since the latter construction is probably more
familiar than the former, I begin with it; rather, I construct the positive rational numbers
from the positive integers, which we already have: the are just the non-zero natural
numbers.

Let us denote the set of positive integers by N+, so

N+ = N r {0}.
We want to define a set

Q+

of positive rationals. These are certain fractions, namely numbers of the form
a

b

or a/b. In particular, a/b ∈ Q+ if and only if a and b are in N+. But what does this
mean?

One is taught in school that arithmetic of fractions obeys the following rules:

a

b
+

c

d
=

ad + bc

bd
,

a

b
· c

d
=

ac

bd
. ()

However, in Q+, one must prove that these rules are valid, because the positive rational
number a/b does not uniquely determine the ordered pair (a, b) of positive integers. For
example, 1/2 = 2/4, although (1, 2) 6= (2, 4).

One might try defining a new operation ⊕ on Q+ by writing down a formula like

a

b
⊕ c

d
=

a + c

b + d
. ()

But this implies 1/2 ⊕ 1/3 = 2/5, while 2/4 ⊕ 1/3 = 3/7. Since 1/2 = 2/4, while
2/5 6= 3/7, we conclude that ⊕ is not well defined. This is a common loose way of
speaking. The point is that there is no operation ⊕ on Q+ with the property required
by ().

On the set N+ × N+ or (N+)2, let ∼ be the relation given by

(a, b) ∼ (c, d) ⇐⇒ ad = bc. ()

One checks easily that ∼ is reflexive (x ∼ x), symmetric (x ∼ y if and only if y ∼ x)
and transitive (if x ∼ y and y ∼ z, then x ∼ z). By definition therefore, ∼ is an
equivalence relation. If a and b are in N+, we can now define a/b precisely: it is the
set of elements of (N+)2 that are equivalent to (a, b) with respect to ∼. Thus

a

b
= {(x, y) ∈ (N+)2 : ay = bx}.

This example, and the difficulty it illustrates, are discussed on [Timothy] Gowers’s Weblog at http:
//gowers.wordpress.com/2009/06/08/why-arent-all-functions-well-defined/.
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Traditionally, a/b is therefore called the equivalence class of (a, b) with respect to ∼.
Then Q+ is the set of such equivalence classes; we might write

Q+ = (N+)2/∼.

Now we can check that the rules in () are valid. Supposing a/b = a′/b′ and c/d = c′/d′,
we have ab′ = ba′ and cd′ = dc′, so for example

acb′d′ = ab′cd′ = ba′dc′ = bda′c′,

and therefore ac/bd = a′c′/b′d′.
Considering () again, note that there is indeed a function f from (N+)2 × (N+)2 to

Q+ given by

f
(
(x, y), (z, w)

)
=

x + z

y + w
.

There are just no functions g from (N+)2 × (N+)2 to Q+ × Q+ and h from Q+ × Q+ to
Q+ such that f = h ◦ g.

By our construction, a positive integer is not literally a positive rational, because a
positive rational is a class of pairs of positive integers. However, the positive integers
embed in the positive rationals under the map

x 7→ x

1
.

This embedding respects arithmetic: a/1 + b/1 = (a + b)/1 and (a/1)(b/1) = (ab)/1. It
also respects the ordering, where we define

a

b
<

c

d
⇐⇒ ad < bc.

On Q+ there is a binary operation (x, y) 7→ x ÷ y of division, given by

a

b
÷ c

d
=

ad

bc
;

one checks that division is indeed well defined. In particular, we have

a

1
÷ b

1
=

a

b
.

We usually confuse a positive integer a with the positive rational a/1, and for x ÷ y we
write x/y. For 1/a, we write a−1.

.. The integers. If a and b are in N+, then the equation

a = bx ()

may or may not have a solution in N+. Suppose it does have a solution; this solution is
unique by the corollary to Theorem . If c and d are also in N+, and the equation

c = dx ()

has a solution in N+, then it is the same solution that () has if and only if

ad = bc ()

(why?). Then Q+ is defined to ensure two things:

() the equation () always has a solution in Q+;
() equations () and () have the same solution in Q+ if and only if () holds.
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The integers can be understood to arise from the natural numbers in the same way, with
addition taking the place of multiplication. If m and n are in N and m 6 n, then ()
has a solution by Theorem ; moreover, this solution is unique (why?). In this case, the
equation k + x = ℓ has the same solution if and only if m + ℓ = n + k. We use this idea
to define an equivalence relation ≈ on N × N or N2 by

(m, n) ≈ (k, ℓ) ⇐⇒ m + ℓ = n + k.

The equivalence class of (m, n) with respect to ≈ can be denoted by

m
.
− n.

We denote the set of all such classes by Z; this is the set of integers. So we have

Z = N2/≈.

One checks that arithmetic can be defined on Z by

(m
.
− n) + (k

.
− ℓ) = (m + k)

.
− (n + ℓ), (m

.
− n) · (k

.
− ℓ) = (mk + nℓ)

.
− (mℓ + nk);

and a strict ordering, by

m
.
− n < k

.
− ℓ ⇐⇒ m + ℓ < n + k.

We can embed N in Z by the map

x 7→ x
.
− 0.

For the class 0
.
− n, we introduce the name

−n.

We identify N with its image in Z. The function (x, y) 7→ x
.
− y from N2 to Z extends to

the binary operation of subtraction on Z, given by

(m
.
− n) − (k

.
− ℓ) = (m + ℓ)

.
− (n + k).

Theorem . Z is an integral domain, that is,

() it contains the additive identity 0 and the multiplicative identity 1,
() addition is commutative and associative,
() equations () are always soluble;
() multiplication is commutative and associative;
() multiplication distributes over addition,
() if x · y = 0, but x 6= 0, then y = 0.

.. The rationals. The construction of the rationals in general proceeds just as for
the positive rationals in ., only now the relation ∼ defined in () must be understood
as a relation on Z × (Z r {0}). The set of classes m/n, where m ∈ Z and n ∈ Z r {0},
is denoted by Q; so

Q = (Z × (Z r {0}))/∼.

Lemma. Q is a field, that is,

() it is an integral domain,
() equations () are always soluble when b 6= 0.

Theorem . Q is an ordered field, that is,

() it is both a field and an ordered set,
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() for all nonzero elements x, exactly one of x and −x is positive,
() the the sum and product of two positive elements is always positive.

On any ordered field, there is an operation x 7→ |x|, where

|a| =

{
a, if a > 0;

−a, if a < 0.

Here |a| is the absolute value of a. An absolute value is always positive or 0.

Theorem . Q embeds uniquely in every ordered field.

Proof. Suppose K is an ordered field. Then K contains elements 0 and 1, and so there
is a unique homomorphism h from (N, 0, n 7→ n + 1) to (K, 0, x 7→ x + 1). By induction
on n, if m < n in N, then h(m) < h(n). Therefore h is injective. Hence we can treat N

as a subset of K, and then we can construct Q inside K. ¤

We can now replace Z with its image in Q.

Theorem . The ordering of every ordered field is dense, that is, if x and y are
elements of the field, and x < y, then there is z in the field such that x < z < y.

Proof. Let z = (x + y)/2. ¤

An ordered set is complete if every nonempty subset with an upper bound has a least
upper bound. If a subset does have a least upper bound, then it is unique and is called
the supremum of the subset. A greatest lower bound is called an infimum.

Theorem . In a complete ordered set, every nonempty subset with a lower bound has
an infimum.

Proof. Suppose A has an element b and a lower bound. Let C be the set of lower bounds
of A. Then C is nonempty and has the upper bound b. A supremum of C is an infimum
of A. Indeed, suppose d is a supremum of C. If x < d, then there is y in C such that
x < y 6 d, so in particular x /∈ A. Thus d is a lower bound of A. In particular, d ∈ C;
so d is the greatest of the lower bounds of A. ¤

Even though Q is dense as an ordered set, we shall show that it is not complete.

Theorem . The equation

x2 = 2 ()

has no solution in Q.

Proof. We can use the method of infinite descent. Suppose there were a solution, n/m.
We may assume m and n are positive integers. Then n2 = 2m2, so n must be even: say
n = 2k. So 4k2 = 2m2, hence 2k2 = m2. Thus m/k is also a solution to (). But
0 < m < n. Thus there is no least n in N such that, for some m in N, n/m solves ().
Therefore () has no solution, by Theorem . ¤

Theorem . The set {x ∈ Q : x2 < 2} has an upper bound in Q, but no supremum.

Proof. Call the set A. It has 2 as an upper bound. Suppose b is an upper bound. We
show:
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() 2 < b2;
() A has upper bounds less than b.

For , suppose c ∈ Q and c2 6 2. We show c is not an upper bound of A by finding some
positive h in Q such that (c + h)2 < 2. For all h, we have

(c + h)2 = c2 + 2ch + h2 = c2 + (2c + h)h.

We have c2 < 2 by Theorem , and moreover c < 2. If also 0 < h < 1, then 2c + h < 5,
so

(c + h)2 < c2 + 5h.

Thus, if we require also h < (2− c2)/5, then (c + h)2 < 2. We can certainly find such h;
just let h be the lesser of 1/2 and (2 − c2)/6. Therefore c is not an upper bound of A.
This proves .

For , since 2 is an upper bound for A, we may assume b 6 2. If k > 0, then

(b − k)2 = b2 − 2bk + k2 > b2 − 2bk > b2 − 4k.

Let also k < (b2 − 2)/4; then (b − k)2 > 2, so b − k is an upper bound of A that is less
than b. ¤
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. Construction of the real numbers

As a consequence of Theorem , we can write Q as the union of two nonempty disjoint
sets A and B, where

() each element of A is less than each element of B;
() A has no greatest element;
() B has no least element.

Indeed, just let A = {x ∈ Q : x < 0 ∨ x2 < 2}, and B = {x ∈ Q : x > 0 N x2 > 2}. See
Figure . Here the pair (A, B) is an example of a cut in the sense of Dedekind [, I, IV.,

A B

Figure 

pp.  f.]. Since B can be obtained from A as QrA, we may just refer to A as a cut. To
be precise then, we define a cut of Q to be a nonempty proper subset A of Q such that

() every element of A is less than every element of Q r A,
() Q r A has no least element, that is, if A has a supremum in Q, then it belongs

to A.

(Note that, in place of , one could require A to have no least element.) We denote the
set of cuts of Q by

R.

That is, a cut of Q is precisely a real number.
Dedekind [, I] observes that this construction of R results in the complete ordered

field that we want. Details are worked out in Landau [], and also in Spivak’s Calculus
[, ch. ]. Spivak writes,

The mass of drudgery which this chapter necessarily contains is relieved
by one truly first-rate idea

—namely, the idea of what Dedekind calls a cut. My own view is that, in mathematics,
if you think something is drudgery, then perhaps you are not looking at it the right way.

.. Cuts. In the interest of finding some insight in the construction of R, I note that
the notion of a cut makes sense in any ordered set. Suppose A is an ordered set. A cut
of A is a proper nonempty subset X of A such that

() every element of X is less than every element of A r X, that is, X is an initial
segment of A, and

() if X has a supremum in A, then it belongs to X.

If b ∈ A, let
(b) = {x ∈ A : x 6 b};

this is an example of a cut of A. Let us denote by

A

the set of all cuts of A. Then A is an ordered set when we define

X < Y ⇐⇒ X ⊂ Y.
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Also, A embeds in A under x 7→ (x); in particular, we have

x < y ⇐⇒ (x) < (y).

Theorem . Suppose A is an ordered set. Then A is a complete ordered set, and for
all X in A,

X = sup({(y) : y ∈ A N (y) 6 X}). ()

Hence A is a completion of A with respect to x 7→ (x), in that, if some B is also a
complete ordered set, and some f embeds A in B, then A embeds in B under some g
such that g((x)) = f(x), that is, the following diagram commutes:

A
x 7→(x)

//

f

²²

A

g
ÄÄÄ
Ä
Ä
Ä
Ä
Ä
Ä

B

If, further, B is a completion of A with respect to f , then g is an isomorphism from A
to B.

Proof. Suppose C is a subset of A with an upper bound. Then
⋃

C is a cut of A, so⋃
C ∈ A. If X ∈ C, then X ⊆ ⋃

C; thus
⋃

C is an upper bound of C. If Y is an upper
bound of C, then for all X in C, we have X ⊆ Y : therefore

⋃
C ⊆ Y . Consequently,

⋃
C = sup(C).

So A is complete.
To show (), let X ′ = sup({(x) : x ∈ A N (x) 6 X}). If Y < X ′, then Y < (x) 6 X

for some x in A. Thus X ′ 6 X. Suppose now X ′ < Y . Then Y r X ′ contains some
x in A, so that X ′ < (x) 6 Y . But then X < (x), so X < Y . Thus X 6 X ′, and
consequently X = X ′.

Suppose B is a complete ordered set, and A embeds in B under f . Then A embeds in
B under g, where for all X in A,

g(X) = sup{f(x) : x ∈ A N (x) 6 X}.

Then g((x)) = f(x). Thus A is a completion of A.
Suppose further that B is also a completion of A, with respect to f . Then B embeds

in A under some map h such that h(f(x)) = (x). If x ∈ A, we have

h ◦ g((x)) = h(f(x)) = (x);

thus h ◦ g is identical on {(x) : x ∈ A}. Let X ∈ A. If (x) 6 X, then, since h ◦ g is
order-preserving, we have

(x) = h ◦ g((x)) 6 h ◦ g(X).

By () then, we must have X 6 h ◦ g(X). Conversely, if X < Y , then X 6 (x) < Y ,
where x ∈ Y r X; hence h ◦ g(X) 6 (x) < Y . Thus h ◦ g(X) 6 X. Consequently, h ◦ g
is identical on A. ¤
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An ordered Abelian group is an Abelian group that is ordered so that

x < y =⇒ x + z < y + z;

equivalently,

x > 0 ⇐⇒ −x < 0, x > 0 N y > 0 =⇒ x + y > 0.

Here those x such that x > 0 are positive. As usual, we define

|x| =

{
x, if x > 0;

−x, if x < 0.

An ordered Abelian group is complete if it is complete as an ordered set. For example,
Q is an ordered Abelian group, but is not complete, by Theorem . We shall observe
below that Z is a complete ordered Abelian group. However, Z is discrete, because it
has a least positive element (namely 1); but Q is not discrete.

Theorem . Every ordered Abelian group that is not discrete is dense.

Proof. Suppose G is an ordered Abelian group that is not discrete, and a < b in G. Then
0 < c < b − a for some c, and then a < a + c < b. ¤

An ordered Abelian group is Archimedean if for every nonzero element a and element
b there is an integer n such that b < n |a|. Then Z and Q are Archimedean. However,
we can order the free Abelian group Z ⊕ Z by defining

(a, b) < (c, d) ⇐⇒ (a < c ∨ (a = c N b < d)),

so that

· · · < (−1, 0) < (−1, 1) < · · · < (0,−1) < (0, 0) < (0, 1) < · · · < (1,−1) < (1, 0) < · · ·
The ordering is discrete, but non-Archimedean.

Theorem . Every complete ordered Abelian group is Archimedean.

Proof. In a non-Archimedean ordered Abelian group, there are two elements a and b such
that a is positive, and b is an upper bound of {na : n ∈ Z}. Then b − a is also an upper
bound of this set. Therefore this set has no supremum. Hence the ordered group is not
complete. ¤

Theorem . Every discrete complete ordered Abelian group is uniquely isomorphic to Z.

Proof. Z is complete by Theorem . Suppose A is a discrete Archimedean ordered
Abelian group, and let a be its least positive element. If b ∈ A, then |b| 6 na for some
minimal n in N+, and then

(n − 1)a < |b| 6 na, 0 < |b| − (n − 1)a 6 a,

so |b| = na by minimality of a. Thus a generates A. Then there is an isomorphism from
A to Z taking a to 1, and this is the only isomorphism. ¤

Theorem . If A and A1 are dense complete ordered Abelian groups, and a and a1 are
positive elements of A and A1 respectively, then there is a unique isomorphism from A
to A1 that takes a to a1.
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Proof. Suppose n ∈ N+, and b in A is positive or 0. The set {x ∈ A : nx 6 b} contains 0
and has b as an upper bound; so it has a supremum, which we may denote by b/n. We
justify this notation by showing

n · b

n
= b. ()

Suppose nu < b. By density, there are xk in A such that

nu = x0 < x1 < · · · < xn−1 < xn = b.

Let c be the least of the xk − xk−1. Then n(u + c) = nu + nc 6 b. Thus u is not an
upper bound of {x ∈ A : nx 6 b}. Similarly, if b < nu, then u is not the supremum of
{x ∈ A : nx 6 b}. So () follows.

If b < 0, we define b/n = − |b| /n. Note that the equation nx = b has at most one
solution in A, since of x < y, then nx < ny. Then b/n is that unique solution. Moreover,
if m/n = m′/n′ in Q, so that mn′ = m′n, then

ma

n
=

m′a

n′
,

since if ma = nx, while m′a = n′y, then m′nx = mn′y, so x = y as before. Thus we
have a well-defined function x 7→ xa, or

m

n
7→ ma

n
,

from Q to A. This function is an embedding of ordered groups. We can denote the image
of Q in A by Qa.

If b is an arbitrary element of A, let

b′ = sup({xa : x ∈ Q N xa 6 b}).
If c < b, then a < n(b − c) for some n in N+, and then there is m in Z such that

c <
m

n
a 6 b.

This shows c 6= b′. If b < c, then again c 6= b′. Therefore b′ = b. Now the isomorphism
from Qa to Qa1 that takes a to a1 extends to an isomorphism

b 7→ sup({xa1 : x ∈ Q N xa 6 b})
from A to A1; and this is the only way it can extend. ¤

Theorem . Every Archimedean ordered Abelian group A has a completion; one such
completion is A.

Proof. On A we define

X + Y = A r {x + y : x ∈ A r X N y ∈ A r Y }).

In particular, (x)+(y) = (x+y). To check that X +Y ∈ A generally, suppose x ∈ ArX
and y ∈ ArY . Since ArX has no least element, there is z in ArX such that z < x and
hence z + y < x + y. Thus A r (X + Y ) has no least element. The remaining conditions
are easily met, and X + Y ∈ A.
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Since + is commutative on A, it is commutative on A by its definition. Almost as
easily, + is associative on A, since

X + (Y + Z) = A r {x + u : x ∈ A r X N u ∈ A r (Y + Z)}
= A r {x + (y + z) : x ∈ A r X N y ∈ A r Y N z ∈ A r Z}
= A r {(x + y) + z : x ∈ A r X N y ∈ A r Y N z ∈ A r Z}
= A r {v + z : v ∈ A r (X + Y ) N z ∈ A r Z}
= (X + Y ) + Z.

Also,
X + (0) = A r {x + y : x ∈ A r X N y > 0} = A r (A r X) = A

since if x ∈ A r X and y > 0, then x + y ∈ A r X. Now we know that A is an ordered
monoid in which A embeds.

To continue, we define

−X =

{
(−a), if X = (a) for some a in A;

{−x : x ∈ A r X}, if X 6= (a) for any a in A.

We have (a) + (−a) = (0). Now suppose X 6= (a) for any a in A. Say x ∈ A r X and
y ∈ A r (−X). Then −y ∈ X, so −y < x, and hence 0 < x + y. Thus (0) 6 X + (−X).

So far we have not used that A is Archimedean. But now suppose (0) < x. We
still assume X is not any (a). There is some least integer n such that nx /∈ X. Then
(n− 1)x ∈ X, so (1− n)x /∈ −X, and hence x /∈ X + (−X). Thus X + (−X) 6 (0), and
therefore X + (−X) = (0). So A is indeed a group. ¤

Recall that R = Q. Let
R+ = {X ∈ R : X > (0)}.

Then there is an obvious isomorphism from R+ to Q+, namely X 7→ X ∩ Q+.

Theorem . R is a complete ordered field, and every complete ordered field is isomor-
phic to it.

Proof. By Theorem , R has the structure of an ordered Abelian group. So does R+,
when we write the group operation multiplicatively. This multiplication extends in the
standard way to R r {(0)}, which is then an Abelian group, although not an ordered
group. Finally, we define X ·(0) = (0). Then R is an ordered field, provided multiplication
distributes over addition.

Working first inside R+ or rather Q+, we have

X · (Y + Z) = Q+ r {x · u : x ∈ Q+ r X N u ∈ Q+ r (Y + Z)}
= Q+ r {x · (y + z) : x ∈ Q+ r X N y ∈ Q+ r Y N z ∈ Q+ r Z}
= Q+ r {x · y + x · z : x ∈ Q+ r X N y ∈ Q+ r Y N z ∈ Q+ r Z}
> X · Y + X · Z.

To prove the reverse inequality, suppose a ∈ Q+ and

(a) < X · (Y + Z).
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Then there is b in Q+ such that

(a)

Y + Z
< (b) 6 X.

Then (a/b) < Y + Z, so there is c in Q+ such that
(a

b

)
− Z < (c) 6 Y.

Consequently,

(a) =
(
b · a

b

)
=

(
b ·

(
c +

a

b
− c

))
=

(
b · c + b ·

(a

b
− c

))

= (b)(c) + (b)
(a

b
− c

)
6 X · Y + X · Z.

Since X · (Y + Z) = sup({(a) : a ∈ Q+
N (a) < X · (Y + Z)}) (by () and density of

Q+), we have
X · (Y + Z) 6 X · Y + X · Z.

This establishes distributivity of multiplication over addition on R+ and then all of R.
Uniqueness of R as a complete ordered field follows from Theorem . ¤

Henceforth we may say R is the complete ordered field.

.. Cauchy sequences. Another way to construct R is by means of Cauchy sequences.
First of all, a sequence (an : n ∈ N) converges to the real number b if, for all positive
real numbers ε, there is a natural number R such that, for all n in N, if n > R, then

|an − b| < ε.

In this case, we write
lim

n→∞
an = b,

or perhaps lim(an : n ∈ N) = b.

Lemma. A bounded monotone sequence in R converges.

Proof. Let (an : n ∈ N) be bounded an increasing, and let b = sup({an : n ∈ N}). Suppose
ε > 0. Then b − ε is not an upper bound of {an : n ∈ N}, so for some R in N, we have

b − ε < aR 6 b.

Since the sequence is increasing, if n > R, we have

b − ε < aR 6 an 6 b,

and therefore
|an − b| = b − an < ε.

Thus (an : n ∈ N) converges to b. Similarly, bounded decreasing sequences converge. ¤

A sequence (an : n ∈ N) of real numbers is a Cauchy sequence if, for every positive
real number ε, there is a natural number R such that, for all m and n in N, if m > R
and n > R, then

|am − an| < ε.
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For example, let sequences (pn : n ∈ N) and (qn : n ∈ N) be defined recursively by

p0 = 1, q0 = 1,

pn+1 = pn + 2qn, qn+1 = pn + qn.

Let an = pn/qn. Then

(an : n ∈ N) =
(
1,

3

2
,
7

5
,
17

12
,
41

29
, . . .

)
.

You can show that
pnqn+1 − qnpn+1 = (−1)n+1,

and hence

an+1 − an =
(−1)n

qn+1qn

.

Since (qn : n ∈ N) is increasing, it follows that

a0 < a2 < a4 < · · · < a5 < a3 < a1,

and moreover (an : n ∈ N) is a Cauchy sequence. Finally,

pn
2 − 2qn

2 = (−1)n+1,

so (an : n ∈ N) converges to
√

2, which however is not in Q, by Theorem .

Lemma. Every Cauchy sequence in R is bounded.

Proof. Let (an : n ∈ N) be a Cauchy sequence. Let R be such that, if m > R and n > R,
then |am − an| 6 1. In particular, if m > R, then

|am| 6 |am − aR| + |aR| 6 1 + |aR| .
Thus each |an| is bounded by max(|a0| , . . . , |aR−1| , 1 + |aR|). ¤

Theorem . Every Cauchy sequence in R converges.

Proof. Let (an : n ∈ N) be a Cauchy sequence. Then the sequence is bounded, by the
last lemma. In particular, we can define

bk = sup({an : n > k}).
Then (bk : k ∈ N) is bounded (why?) and decreasing, so it converges to some c by the
next to last lemma. We have

|am − c| 6 |am − an| + |an − bk| + |bk − c| .
Let ε > 0. There is some R such that, if k > R, m > R, and n > R, then |am − an| < ε/3
and |bk − c| < ε/3. For all k, there is n such that n > k and |an − bk| < ε/3. Therefore,
if m > R, then |am − c| < ε. Thus (an : n ∈ N) converges. ¤

For the alternative construction of R, let us denote by

QN

the set of functions from N to Q, that is, rational sequences. This becomes a commutative
ring when, writing a for (an : n ∈ N), we define

(a + b)n = an + bn, (−a)n = −an, (ab)n = anbn.
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Then Q embeds in this ring under the map that takes x to the sequence that is identically
x. We may identify Q with its image in QN. Let S be the set of Cauchy sequences in
QN. Then Q ⊆ S.

Lemma. S is a sub-ring of QN; that is, S contains 0 and 1 and is closed under +, −,
and ·.
Proof. The most difficult part is closure under multiplication. Let a and b be in S. By
the previous lemma, there is R such that, for all n in N, we have |an| 6 R and |bn| 6 R.
Hence

|ambm − anbn| = |ambm − anbm + anbm − anbn| 6 |am − an| |bm| + |an| |bm − bn|
6 R(|am − an| + |bm − bn|).

Then ab is Cauchy. ¤

By Theorem , we have a map x 7→ limx, in fact a homomorphism, from S to R.
Let I be the kernel, namely the set of sequences in QN that converge to 0. Then I is an
ideal of S.

Theorem . S/I ∼= R under x 7→ limx; in particular, I is a maximal ideal of S.

Proof. We just have to show x 7→ limx is surjective. Let a ∈ R. Then a = sup{x ∈
Q : x < a}. By the Axiom of Choice, there is a sequence b in QN such that

b0 < a, bn +
a − bn

2
< bn+1 < a.

Then lim b = a. Thus S maps onto R under x 7→ limx. ¤
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. Non-Archimedean fields

In moving from N to Z to Q to R, we achieve the following. The formal sentence

∀x ∀y ∃z x + z = y

is false in N, but true in Z. The sentence

∀x ∀y ∃z (x · z = y ∨ x = 0)

is false in Z, but true in Q. The sentence

∀x ∃y (y2 = x ∨ x < 0)

is false in Q, but true in R (why?). Thus, moving to R allows us to solve more equations.
Is there any advantage to moving beyond R?

In any case, we can move beyond R. Let

R[x]

denote the set of polynomials in x over R: these have the form

a0 + a1x + a2x
2 + · · · + anxn ()

or
n∑

k=0

akx
k,

where the coefficients ak are in R. Then R[x] is an integral domain in which R embeds.
Note that, if m 6 n, then

m∑

k=0

akx
k =

n∑

k=0

bkx
k ⇐⇒ a0 = b0 N . . . N am = bm N bm+1 = 0 N . . . N bn = 0.

Thus, a polynomial is not simply an expression of the form in (); it is an equivalence-
class of such expressions. However, every polynomial in x can be written uniquely as an
infinite series

∞∑

k=0

akx
k;

but here all but finitely many of the coefficients ak are 0.
Just as we construct Q from Z, so from R[x] we construct R(x), the set of rational

functions in x over R, consisting of the fractions

a0 + · · · + anxn

b0 + · · · + bmxm
. ()

Then R(x) is a field.

Theorem . R(x) becomes a non-Archimedean ordered field when, for every element as
in () such that anbm 6= 0, that element is considered positive if and only if anbm > 0.

Proof. Easily R(x) is an ordered field; it is non-Archimedean, since −a + x > 0, that is,
x > a, for all a in Z. ¤
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Suppose now K is an arbitrary ordered field that includes R. Each element of K that
is smaller (in absolute value) than some rational is called finite; each element that is
smaller than every nonzero rational is called infinitesimal. Elements of K that are not
finite are infinite.

For example, in R(x), for all a in Q, we have

a < x < x2 < x3 < · · · , ()

so the positive powers of x are infinite. Hence also, if a is a positive rational, we have

a >
1

x
>

1

x2
>

1

x3
> · · · > 0, ()

so the negative powers of x are infinitesimal.
With K as before, let R be the set of finite elements of K, and let I be the set of

infinitesimal elements. Then R is a sub-ring of K, and I is an ideal of R.
The units or multiplicatively invertible elements of a ring R compose a multiplicative

group denoted by
R×. ()

In our situation, an element a of K× is infinite if and only if a−1 ∈ I. In particular,
either a or a−1 is finite—belongs to R. For this reason, R is called a valuation ring;
the reason for the terminology will be seen below. It also follows that every element of
R r I is a unit of R. Consequently, I is a maximal ideal of R and is moreover the unique
maximal ideal of R. For this reason, R is called a local ring. (So every valuation ring
is a local ring.) Since I is maximal, we know R/I is a field.

Theorem . Let K be an ordered field that includes R, and let R be the ring of finite
elements of K, with maximal ideal I of infinitesimals. Then the quotient map x 7→ x + I
determines an isomorphism from R onto R/I.

Proof. Let h be x 7→ x + I on R. Then ker(h) = I ∩R, which is {0}. Thus h is injective.
It remains to show h is surjective onto R/I.

Let a ∈ R. Since a is finite, the set {x ∈ R : x < a} has an upper bound in R, hence a
supremum, a′. We shall show h(a′) = a+I. To this end, suppose b ∈ R, but h(b) 6= a+I.
This means b − a is not infinitesimal. In particular, for some real number δ, we have

0 < δ < |b − a| .
If b < a, then b < b + δ < a, so b is not an upper bound of {x ∈ R : x < a}. If a < b,
then a < b − δ, so b is not the supremum of {x ∈ R : x < a}. In either case, b 6= a′. ¤

If a and b are arbitrary elements of K such that a− b ∈ I, then a and b are infinitely
close, and we write

a ≃ b.

By the theorem, if a is finite, then a is infinitesimally close to some unique real number;
this number is called the standard part of a. In particular, the infinisimals are the
elements whose standard part is 0.

Let us see how this all works in R(x). The finite elements here are those of the form

anxn + · · · + a0

bnxn + · · · + b0
,
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where bn 6= 0. The standard part of this element is an/bn, since

anxn + · · · + a0

bnxn + · · · + b0
− an

bn

=
(an−1 − anbn−1/bn−1)x

n−1 + · · ·
bnxn + · · · + b0

.

Using the division algorithm taught in school, we can formally compute the quotient of
two nonzero elements of R[x], getting a possibly infinite series

c0 + c1x
−1 + c2x

−2 + · · ·
or simply

∞∑

n=0

ckx
−k;

this is a formal power series in x−1 with coefficients from R. For example, formally,
x

x − 1
= 1 + x−1 + x−2 + · · · .

The set of all formal power series in x−1 over R is denoted by R[[x−1]] or rather

R[[t]],

where t = x−1. This set is an integral domain in the obvious way, and its quotient field
is denoted by

R((t));

this is the field of formal Laurent series in t with coefficients from R, namely series
∞∑

n=k

antn, ()

where k ∈ Z, and each an is in R. This field includes R(t), which is R(x).
The ordering of R(t) extends to R((t)). Indeed, let a be the element in (), and

assume ak 6= 0. Then a is

() positive if and only if ak > 0,
() finite if and only if k > 0,
() infinitesimal if and only if k > 0.

If a is finite, then its standard part is a0 (which is 0 if k > 0).

.. Valuations. The construction of R((t)) as a field uses only that R is a field. Let
K be an arbitrary field, not necessarily ordered; then we can form the field

K((t))

of formal Laurent series in t with coefficients from K. This has the sub-ring

K[[t]]

of formal power series in t with coefficients from K. This ring is a valuation ring, with
unique maximal ideal (t); here (t) consists of the series

∑∞
n=1 antn with no constant term.

Theorem . K ∼= K[[t]]/(t) under ξ 7→ ξ + (t).
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There is another quotient we can form, namely

K((t))×/K[[t]]×.

Here

K((t))× = K((t)) r {0}, K[[t]]× = K[[t]] r (t).

The quotient map ξ 7→ ξK[[t]]× is the t-adic valuation. This can be understood by
noting that, if ak 6= 0, then

1

tk

∞∑

n=k

antn =
∞∑

n=0

ak+ntn,

which is in K[[t]]×. We might write
∞∑

n=k

antn ≡ tk (mod K[[t]]×).

Thus the t-adic valuation maps 〈t〉 (that is, {tn : n ∈ Z}) onto K((t))×/K[[t]]×. If again
ak 6= 0, let ∣∣∣∣∣

∞∑

n=k

akt
k

∣∣∣∣∣
t

= tk;

define also
|0|t = 0.

Suppose, as before, we order 〈t〉 ∪ {0} so that

0 < · · · < t2 < t < 1 < t−1 < · · ·
Then

() |ab|t = |a|t |b|t,
() |a|t = 0 if and only if a = 0,
() |a + b|t 6 max(|a|t , |b|t).

Compare these properties to the properties of absolute values in an ordered field, or on C:

() |ab| = |a| |b|,
() |a| = 0 if and only if a = 0,
() |a + b| 6 |a| + |b|.

All of this can be done quite generally. Let O be an arbitrary valuation ring with
unique maximal ideal p and and quotient field K. We order the multiplicative group
K×/O× by the rule

aO× 6 bO× ⇐⇒ a/b ∈ O,

and we say 0 is less than all elements of the group. Let the quotient map from K× to
O×, together with {(0, 0)} (the function taking 0 to 0) be denoted by

ξ 7→ |ξ|
p
;

this is the p-adic valuation on K, and with it, K becomes a valued field. The ordered
group K×/O× is the value group, and the field O/p is the residue field. So K((t)),
with the t-adic valuation, has the residue field K, by Theorem . For an arbitrary
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ordered field extending R, with valuation determined by the infinitesimals, the residue
field is (isomorphic to) R, by Theorem .

In the general situation,

O = {x ∈ K : |x|
p

6 1}, O× = {x ∈ K : |x|
p

= 1}, p = {x ∈ K : |x|
p

< 1}.
In particular, the elements of the subgroup {n · 1: n ∈ Z} of K take values no greater
than 1. But the elements of K rO take values greater than 1. For this reason, if p 6= (0),
the p-adic valuation is non-Archimedean. By contrast, the absolute value function on
a subfield of R or C is Archimedean.

Theorem . Let O be a valuation ring with maximal ideal p. On the quotient field
of O,

() |ab|
p

= |a|
p
|b|

p
,

() |a|
p

= 0 if and only if a = 0,

() |a ± b|
p

6 max(|a|
p
, |b|

p
),

() if |a|
p
6= |b|

p
, then |a ± b|

p
= max(|a|

p
, |b|

p
).

Proof. For , if b 6= 0, we have

|a ± b|
p

6 |b|
p
⇐⇒ a ± b

b
∈ O ⇐⇒ a

b
± 1 ∈ O ⇐⇒ a

b
∈ O ⇐⇒ |a|

p
6 |b|

p
.

For , suppose |a|
p

< |b|
p
. Since

|b|
p

= |±b|
p

= |a ± b − a|
p

6 max(|a ± b|
p
, |a|

p
),

we have |b|
p

6 |a ± b|
p

6 |b|
p
, so |b|

p
= |a ± b|

p
. ¤

In any valued field, there is the notion of Cauchy sequence and convergent se-
quence: the definitions are formally the same as for sequences in R. A valued field is
complete if every Cauchy sequence of its elements converges. Then K((t)) is complete
with respect to the t-adic valuation. Also, R and C are complete with respect to the
usual absolute value function.

A valuation is discrete if the value group is cyclic (hence isomorphic to Z). The t-adic
valuation of K((t)) is discrete.

Lemma. In a field with a discrete valuation, the sequence of values of terms of a Cauchy
sequence is eventually constant.

Theorem . Every field K with a discrete valuation x 7→ |x| has a completion, namely
a complete valued field K in which K embeds, such that any embedding of K in a valued
field extends to an embedding of K in that valued field.

Proof. Let R consist of the Cauchy sequences of K, and let I consist of those sequences
that converge to 0. Then R is a ring with maximal ideal I. Indeed, suppose (an : n ∈ N)
is in R r I. If n is large enough, then an 6= 0. Hence, for m and n large enough, we have∣∣∣∣

1

an

− 1

am

∣∣∣∣ =

∣∣∣∣
am − an

anam

∣∣∣∣ =
|am − an|
|anam| .

By the lemma, |anam| is eventually constant and nonzero. Therefore, if we define

bn =

{
an

−1, if an 6= 0,

1, if an = 0,
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then (bn : n ∈ N) ∈ R. Now let

cn =

{
0, if an 6= 0,

1, if an = 0.

Then (cn : n ∈ N) ∈ I, and anbn + cn = 1. Therefore I is indeed a maximal ideal of R.
We can embed K in the field R/I under the quotient map. We extend the valuation to
R/I by letting a Cauchy sequence have the value that its terms eventually reach. (Why
is R/I complete, and the completion of K?) ¤

The field of rationals has a non-Archimedean completion Qp for each prime p. Indeed,
the p-adic valuation on Q is given by

∣∣∣pn · a

b

∣∣∣
p

=
1

pn
,

where n ∈ Z, and a and b are integers indivisible by p. Then Qp consists of the p-adic
numbers, namely the formal sums

∞∑

n=k

anpn,

where k ∈ Z, and an ∈ {0, 1, . . . , p − 1}. For example, in Qp,

−1 =
∞∑

n=0

(p − 1)pk.

In sum:
() R is the unique complete ordered field;
() R is complete with respect to the absolute value function, but so is C;
() there are many fields, even fields that include Q, that are complete with respect

to a non-Archimedean valuation.
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. Ultrapowers

.. Algebra. For notational convenience, if n ∈ N, let us assume

n = {x ∈ N : x < n} = {0, . . . , n − 1}.
To be precise, we can define f on N by

f(0) = ∅, f(n + 1) = f(n) ∪ {f(n)}.
By induction, f(n) = {f(0), . . . , f(n − 1)}. With more work, one shows f is injective.
The image f [N] of N under f is denoted by

ω.

So 0 in ω is ∅, and n + 1 is n ∪ {n}. It will be convenient to treat ω as N.
Let Ω be a set, and n ∈ ω. We define

Ωn

as the set of functions from n (that is, {0, . . . , n − 1}) to Ω. In particular,

Ω0 = {∅} = {0} = 1.

A subset of Ωn is an n-ary relation on Ω. A typical element of Ωn might be denoted
by

(x0, . . . , xn−1)

or more simply
x.

On Ω there are just two 0-ary relations, namely ∅ and {∅}, that is, 0 and 1.
Suppose now m and n are in ω, and

f : m → n.

(If n = 0, then m must be 0.) Then a function from Ωn to Ωm is induced, namely

x 7→ x ◦ f.

Let us denote this function by
f∗

or more precisely f∗
Ω. Then

f∗(x0, . . . , xn−1) = (xf(0), . . . , xf(m−1)).

For example, if f is the inclusion of n in n+1, then f∗(x0, . . . , xn−1, xn) = (x0, . . . , xn−1),
or more simply f∗(x, y) = x.

In general, we get X 7→ f∗[X] from P(Ωn) to P(Ωm), where

f∗[A] = {f∗(x) : x ∈ A}
= {y ∈ Ωm : ∃(x0, . . . , xn−1) ((x0, . . . , xn−1) ∈ A N y = (xf(0), . . . , xf(m−1)))}.

In the language of category theory, the pair (m 7→ Ωm, f 7→ f∗) is a contravariant functor from the
category (ω, {functions}) to the category ({sets}, {functions}).
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We also have a function Y 7→ f∗(Y ) from P(Ωm) to P(Ωn) where

f∗(B) = (f∗)−1[B]

= {(x0, . . . , xn−1) ∈ Ωn : (xf(0), . . . , xf(m−1)) ∈ B}.
If again f is the inclusion of n in n + 1, then f∗(B) can be understood as B × Ω. If f is
a permutation of n, then

f∗[A] = (f−1)∗(A).

Now the statement of Theorem  below makes some sense.
So that the proof makes sense, suppose R is a commutative ring. As in § , we obtain

the commutative ring
Rω.

If a is an element (an : n ∈ ω) of this ring, let

supp(a) = {n ∈ ω : an 6= 0},
the support of a. In one case of interest, R is B, the two-element field {0, 1}.

If X and Y are subsets of some set, let

X △ Y = (X r Y ) ∪ (Y r X),

the symmetric difference of X and Y .

Theorem . The map x 7→ supp(x) is a bijection from Bω onto P(ω). Also

supp(0) = ∅,

supp(1) = ω,

supp(xy) = supp(x) ∩ supp(y),

supp(x + y) = supp(x) △ supp(y),

Thus P(ω) inherits from ω
ω the structure of a ring.

A ring (not necessarily commutative) is called Boolean if in it

x2 = x. ()

So B, Bω, and P(ω) are Boolean rings.

Theorem . Let R be a Boolean ring. In R,

2x = 0, ()

and hence
−x = x.

Also R is commutative, and R can be partially ordered by the rule

x 6 y ⇐⇒ xy = x.

Then a nonempty subset I of R is an ideal of R if and only if

x ∈ I N y ∈ I =⇒ x + y ∈ I,

x ∈ I N y 6 x =⇒ y ∈ I. ()

All prime ideals of R are maximal, and and ideal I is maximal if and only if

x ∈ I ⇐⇒ x + 1 /∈ I.
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Proof. For (), compute
2x = (2x)2 = 4x2 = 4x.

For commutativity then, compute

x + y = (x + y)2 = x2 + xy + yx + y2 = x + xy + yx + y,

0 = xy + yx.

Immediately from the definitions, x 6 x. If x 6 y and y 6 x, then x = xy = yx = y. If
x 6 y and y 6 z, then xz = xyz = xy = x, so x 6 z. Thus 6 partially orders R.

For the characterization of ideals, note that () is equivalent to x ∈ I =⇒ xz ∈ I.
From (), we get

x(x − 1) = 0,

so in every Boolean integral domain, the only elements are 0 and 1. In short, every
Boolean integral domain is a field, so prime ideals of R are maximal. Moreover, an ideal
I of R is maximal if and only if R/I is the disjoint union of two cosets, I and 1 + I; this
yields the characterization of maximal ideals. ¤

Corollary. A subset M of P(ω) is a maximal ideal if and only if

() x ∈ M N y ∈ M =⇒ x ∪ y ∈ M ,
() x ∈ M N y ⊆ x =⇒ y ∈ M ,
() x ∈ M ⇐⇒ ω r x /∈ M .

A principal ideal P(A) of P(ω) is maximal if and only if A = ω r {n} for some n in
ω. A maximal ideal of P(ω) is non-principal if and only if it contains all finite subsets
of ω.

For example, if n ∈ ω, then the principal ideal (ωr{n}), namely {x ∈ P(ω) : n /∈ x},
is a maximal ideal of P(ω).

Theorem . Let K be a field. The function X 7→ supp[X] gives a one-to-one corre-
spondence between the ideals of Kω and the ideals of P(ω).

Proof. We have

supp(x) ∩ supp(y) = supp(xy),

supp(x) △ supp(y) ⊆ supp(x + y) ⊆ supp(x) ∪ supp(y) = supp(x) △ supp(y) △ supp(xy).

Since x 7→ supp(x) is surjective onto P(ω), we can conclude that I is an ideal of Kω if
and only if supp[I] is an ideal of P(ω). Moreover, if I is an ideal of Kω, and a ∈ I, and
supp(b) ⊆ supp(a), then b ∈ I, since b = ca, where

cn =

{
an

−1, if an 6= 0,

0, if an = 0.

In particular, supp−1[supp[I]] = I; so X 7→ supp[X] is injective on ideals. ¤

Suppose M is a maximal ideal of P(ω). Then supp−1[M ] is a maximal ideal of Kω;
let us denote this ideal also by M . We can form the quotient

Kω/M,
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which must be a field; it is called an ultrapower of K. The diagonal map

x 7→ (x : n ∈ ω) + M

is an embedding of K in Kω/M ; we shall identify K with its image in Kω/M .
If a and b are in Kω, and a + M = b + M , let us write also

a ≡ b (mod M), ()

or simply a ≡ b. The elements of M (as an ideal of P(ω)) can be thought of as small.
Then () holds if and only if the set {n ∈ ω : an 6= bn} of indices where a and b differ
is small. This definition makes no use of the algebraic structure of K. So K can be just
a set, although in §  we shall be interested only in the case where K is the complete
ordered field R.

Theorem . Let K be an infinite set, and M a maximal ideal of P(ω). Then the
diagonal embedding of K in Kω/M is surjective if and only if M is principal.

Proof. Suppose the element a of Kω is injective, so that, if m 6= n, then am 6= an. Then
a + M is in the image of the diagonal embedding if and only if M is principal. ¤

We may henceforth assume that M is a non-principal maximal ideal of P(ω), though
we shall not actually use the assumption until § . We have a bijection

((x0
k : k ∈ ω), . . . , (xn−1

k : k ∈ ω)) 7→ ((x0
k, . . . , x

n−1
k ) : k ∈ ω)

from (Kω)n onto (Kn)ω; we may write the bijection more simply as

(x0, . . . , xn−1) 7→ (xk : k ∈ ω).

So a plainface x or xj , with a superscript at most, is an element of Kω or K, while a
boldface xk, with a subscript at most, is an element of Kn; but xj

k, with both superscripts
and subscripts, is in K. Instead of writing

(x0 + M, . . . , xn−1 + M),

we may write simply
(x0, . . . , xn−1) + M ;

and instead of
x0 ≡ y0

N · · · N xn−1 ≡ yn−1 (mod M),

we may write
(x0, . . . , xn−1) ≡ (y0, . . . , yn−1) (mod M).

If S ⊆ Kn, we define
∗S = {(x0, . . . , xn−1) + M : (xk : k ∈ ω) ∈ Sω}. ()

Thus we have a function X 7→ ∗X from P(Kn) to P(∗Kn) for each n in ω. Also
∗K = Kω/M. ()

Lemma. Let S ⊆ Kn. Then

(x0, . . . , xn−1) + M ∈ ∗S ⇐⇒ {k ∈ ω : xk /∈ S} ∈ M.
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Proof. Suppose (x0, . . . , xn−1) + M ∈ ∗S. There is (y0, . . . , yn−1) in (Kω)n such that
(x0, . . . , xn−1) ≡ (y0, . . . , yn−1) and each yk is in S. Then

{k ∈ ω : xk /∈ S} ⊆ {k ∈ ω : x0
k 6= y0

k ∨ · · · ∨ xn−1
k 6= yn−1

k }
= {k ∈ ω : x0

k 6= y0
k} ∪ · · · ∪ {k ∈ ω : xn−1

k 6= yn−1
k }.

Each of the sets {k ∈ ω : xj
k 6= yj

k} is in M , so their union is, and therefore {k ∈ ω : xk /∈
S} ∈ M , by the corollary to Theorem .

Now suppose conversely {k ∈ ω : xk /∈ S} ∈ M . Then in particular S 6= ∅. Pick some
y in S, and define

zk =

{
xk, if xk ∈ S,

y, if xk /∈ S.

Then (x0, . . . , xn−1) + M = (z0, . . . , z
n−1) + M , which is in ∗S. ¤

Theorem . Let K be a set, and let the functions X 7→ ∗X from P(Kn) to P(∗Kn)
be as given in (). Then

∗{(x, x) : x ∈ K} = {(x, x) : x ∈ ∗K}; ()

for all n in ω and all subsets S and T of Kn,

∗S ∩ Kn = S, ()
∗(Kn r S) = ∗Kn r ∗S, ()
∗(S ∩ T ) = ∗S ∩ ∗T ; ()

for all m and n in ω, all f from m to n, and all subsets S of Kn and T of Km,

∗(f∗[S]) = f∗[∗S], ()
∗(f∗(T )) = f∗(

∗T ). ()

(More precisely, the last equations are ∗(f∗
K [S]) = f∗

∗K [∗S] and ∗(fK
∗ (T )) = f

∗K
∗ (∗T ).)

Proof. For (), we have

(x, y) + M ∈ ∗{(x, x) : x ∈ K} ⇐⇒ {k ∈ ω : xk 6= yk} ∈ M

⇐⇒ x + M = y + M.

For (), we easily have S ⊆ ∗S∩Kn. Suppose conversely (x0, . . . , xn−1)+M ∈ ∗S∩Kn.
Then

{k ∈ ω : xk /∈ S} ∈ M,

and also, for some y in Kn, we have {k ∈ ω : xk 6= y} ∈ M . Since

{k ∈ ω : y /∈ S} ⊆ {k ∈ ω : y 6= xk ∨ xk /∈ S} = {k ∈ ω : y 6= xk} ∪ {k ∈ ω : xk /∈ S},

we can conclude {k ∈ ω : y /∈ S} ∈ M . (In particular, the set must be empty.) Hence
y ∈ S, so (x0, . . . , xn−1) + M ∈ S.
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For (), we have

(x0, . . . , xn−1) + M ∈ ∗(Kn r S) ⇐⇒ {k ∈ ω : xk /∈ Kn r S} ∈ M

⇐⇒ {k ∈ ω : xk /∈ S} /∈ M

⇐⇒ (x0, . . . , xn−1) + M /∈ ∗S

⇐⇒ (x0, . . . , xn−1) + M ∈ ∗Kn r ∗S.

For (), we have

(x0, . . . , xn−1) + M ∈ ∗(S ∩ T ) ⇐⇒ {k ∈ ω : xk /∈ S ∩ T} ∈ M

⇐⇒ {k ∈ ω : xk /∈ S} ∪ {k ∈ ω : xk /∈ T} ∈ M

⇐⇒ {k ∈ ω : xk /∈ S} ∈ M N {k ∈ ω : xk /∈ T} ∈ M

⇐⇒ (x0, . . . , xn−1) + M ∈ ∗S N

(x0, . . . , xn−1) + M ∈ ∗T

⇐⇒ (x0, . . . , xn−1) + M ∈ ∗S ∩ ∗T.

For (), we may assume S 6= ∅, since ∗∅ = ∅. Let (x0, . . . , xn−1) ∈ (Kω)m. There
is (yk : k ∈ ω) in Sω such that, for all k in ω, if xk ∈ f∗[S], then xk = f∗(yk). Hence

(x0, . . . , xm−1) + M ∈ ∗(f∗[S]) ⇐⇒ {k ∈ ω : xk /∈ f∗[S]} ∈ M

⇐⇒ {k ∈ ω : xk 6= f∗(yk)} ∈ M

⇐⇒ (x0, . . . , xm−1) + M = f∗(y0 + M, . . . , yn−1 + M)

⇐⇒ (x0, . . . , xm−1) + M ∈ f∗[∗S].

Finally, for (), we have

(x0, . . . , xn−1) + M ∈ ∗(f∗(T ))

⇐⇒ {k ∈ ω : xk /∈ f∗(T )} ∈ M

⇐⇒ {k ∈ ω : f∗(xk) /∈ T} ∈ M

⇐⇒ {k ∈ ω : f∗(xk) 6= yk} ∈ M for some (yk : k ∈ ω) in Tω

⇐⇒ f∗(x0 + M, . . . , xm−1 + M) = (y0, . . . , yn−1) + M for some (yk : k ∈ ω) in Tω

⇐⇒ (x0, . . . , xm−1) + M ∈ f∗(
∗T ). ¤

.. Logic. It will follow from Theorem  that K and ∗K agree on sentences of first-
order logic. This result is stated formally as Theorem , in §  below, for the case
K = R; but the general claim has the same proof, and the preliminary work done now
will be in terms of an arbitrary set K.

If S ⊆ Kn, then S can be understood as a name for:

() itself, in K,
() ∗S, in ∗K.

We can express this more symbolically by

SK = S, S
∗K = ∗S.
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An atomic formula is a string
St0 · · · tn−1,

where S ⊆ Kn, and each tk is either a variable or an element of ∗K. In case n = 2, we
customarily write

t0 S t1

instead of St0t1.
The formulas, simply, are defined recursively:

() atomic formulas are formulas,
() if φ is a formula, then so is the negation ¬φ,
() if φ and ψ are formulas, then so is the conjunction (φ N ψ),
() if φ is a formula, and x is a variable, then so is the instantiation ∃x φ is a

formula.

The following is sometimes overlooked in expositions of logic; but it is needed to allow
recursive definitions on the set of formulas.

Theorem  (Unique Readability). Every formula is uniquely an atomic formula, a
negation, a conjunction. or an instantiation. Every conjunction is (φ N ψ) for some
unique formulas φ and ψ.

We can introduce the other customary symbols as abbreviations:

() (φ ⇒ ψ) means ¬(φ N ¬ψ),
() (φ ∨ ψ) means (¬φ ⇒ ψ),
() (φ ⇔ ψ) means ((φ ⇒ ψ) N (ψ ⇒ φ)),
() ∀x φ means ¬∃x ¬φ.

Whether a variable is free in a formula is defined recursively:

() all variables in an atomic formula are free,
() the free variables of ¬φ are those of φ,
() the free variables of (φ N ψ) are those of φ or ψ,
() the free variables of ∃x φ are those of φ, except x.

If the free variables of a formula are all on the list (x0, . . . , xn−1), then the formula can
be called n-ary. In this case, if n 6 r, then the formula is also r-ary. If we want to
understand a formula φ as n-ary, we may write it as φ(x0, . . . , xn−1).

Suppose tk is in ∗K or is a variable for each k in ω. For each n-ary formula θ, a formula
θ(t0, . . . , tn−1) is defined. The definition is recursive:

() If θ is atomic, then θ(t) is the result of replacing each xk with tk.
() If θ is ¬φ, then θ(t) is ¬ψ, where ψ is φ(t).
() If θ is (φ N ψ), then θ(t) is (φ(t) N ψ(t)).
() If θ is ∃xℓ φ, then we can understand φ as r-ary, where r = max(ℓ+1, n). In this

case, θ(t) is ∃xℓ ψ, where ψ is φ(u), where

uk =

{
x, if k = ℓ,

tk, if k 6= ℓ.

I don’t know of a common term for formulas ∃x φ; instantiation seems to work, though, since the
formula will be interpreted as saying that φ is true for some instance of x.
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The case n = 0 is not excluded; in this case, θ(t0, . . . , tn−1) is simply θ.
The parameters of a formula are the (names of) elements of ∗K that appear in the

formula. A sentence is a formula with no free variables, namely a 0-ary or nullary
formula.

A sentence σ with parameters from K may be true in K, in which case we write

K ² σ;

otherwise σ is false in K, and we write

K 2 σ.

The definition is recursive:

() K ² Sa0 · · · an−1 if and only if (a0, . . . , an−1) ∈ S.
() K ² ¬σ if and only if K 2 σ.
() K ² (σ N τ) if and only if K ² σ and K ² τ .
() K ² ∃x φ if and only if, assuming φ is n-ary, there is a in Kn such that K ² φ(a).

All of the foregoing holds also with K replaced by ∗K.
The definition of truth shows why formulas as we have defined them are more precisely

called formulas of first-order logic. In our formulas, variables stand only for elements
of K. If we allowed variables standing for relations on K, then our formulas would be
second order. The third of the Peano axioms in § . is second order; so is the definition
of completeness of an ordered field. In §  we shall note that there is no first-order
definition of N or R.

If S = {(x, x) : x ∈ K}, then, instead of t0 S t1, we may write

t0 = t1.

Then K ² a0 = a1 if and only if a0 = a1; and likewise in ∗K, by (). An n-ary formula φ
defines an n-ary relation on ∗K, namely {a ∈ ∗Kn : ∗K ² φ(a)}; this relation can be
denoted by

φ
∗K .

In case σ is nullary, we have σ
∗K = {x ∈ {0} : ∗K ² σ}, so that

∗K ² σ ⇐⇒ σ
∗K = 1.

If the parameters of a formula all come from K, then the formula similarly defines a
relation on K, denoted by φK .

Theorem . Let θ be a formula with parameters from K. Then

∗(θK) = θ
∗K .

Proof. Since formulas are defined recursively, we can argue inductively. The claim is true
when θ is atomic, by (). If the claim is true when θ is φ, then by ()

∗((¬φ)K) = ∗(Kn r φK)

= ∗Kn r ∗(φK)

= ∗Kn r φ
∗K

= (¬φ)
∗K ,
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so the claim is true when θ is ¬φ. Similarly, if the claim is true when θ is φ or ψ, then
by () the claim is true when θ is (φ N ψ).

For the final case, let us first note that, if the claim is true when θ is considered as
m-ary, and m 6 n, then the claim is still true when θ is considered as n-ary. Indeed, let
f be the inclusion of m in n. Then

θ(x0, . . . , xn−1)K = θ(x0, . . . , xm−1)K × Kn−m = fK
∗ (θ(x0, . . . , xm−1)K),

and likewise with ∗K in place of K. Now use ().
To finish then, we suppose the claim is true when θ is φ, and we prove the claim when

θ is ∃xℓ φ. We may assume φ and ∃xℓ φ are both n-ary, where ℓ < n. Then we can
understand (x0, . . . , xn−1) as (x, y, z), where x is (x0, . . . , xℓ−1), and y is xℓ, and x is
(xℓ+1, . . . , xn−1). Then

(∃xℓ φ)K = {(a, b, c) ∈ Kn : K ² (∃xℓ φ)(a, b, c)}
= {(a, b, c) ∈ Kn : K ² ∃xℓ φ(a, xℓ, c)}
= fK

∗ ({(a, c) ∈ Kn−1 : K ² ∃xℓ φ(a, xℓ, c)}),
where f is the function from n − 1 to n given by

f(k) =

{
k, if k < ℓ,

k + 1, if ℓ 6 k < n − 1.

We have also that K ² ∃xℓ φ(a, xℓ, c) if and only if K ² φ(a, b, c) for some b in K. Then

{(a, c) ∈ Kn−1 : K ² ∃xℓ φ(a, xℓ, c)} = f∗
K [φK ].

Combining these results, we have

(∃xℓ φ)K = fK
∗ (f∗

K [φK ]).

By () and () then, the claim holds when θ is ∃xℓ φ. Therefore it holds generally. ¤

Theorem . Let σ be a sentence with parameters from K. Then

K ² σ ⇐⇒ ∗K ² σ.

Proof. When n = 0, then equation () is simply ∗S = S. ¤

.. Mock higher-order logic. If we want our logic to be able to refer generally to
subsets of a set, to functions on the set of functions on the set, and so forth, then we can
proceed as follows. First, we recursively define types as certain strings:

() 0 is a type,
() if n ∈ ω r {0}, and (t0, . . . , τn−1) is a list of n types, then the string

nτ0 · · · τn−1

is a type.

Note that the type 0 is also a type of the form nτ0 · · · τn−1, where n = 0.

Theorem  (Unique Readability). Every type has the form nτ0 · · · τn−1 for some unique
n in ω and some unique list (τ0, . . . , τn−1) of types.

In model-theoretic terms, the full structure on K is an elementary substructure of the structure
induced on ∗K by X 7→ ∗X.
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Given a set K, we can now define

() K0 = K,
() if τ is a type nτ0 · · · τn−1, where n > 0, then

Kτ = P(Kτ(0) × · · · × Kτ(n−1)).

Here τ(j) is just τj , when used as a subscript itself. The first condition is not a special
case of the second: if τ is not 0, then elements of Kτ are relations; but elements of K0

are just elements of K. Letting T be the set of types, we define

K̃ =
⋃

τ∈T

Kτ .

Letting M be a maximal ideal of P(ω) as before, we have a special case of ():

∗(K̃) = K̃ω/M.

This introduces a potential ambiguity, since K ⊆ K̃, but ∗K is not literally a subset of
∗(K̃). Since a relation S on K is also a relation on K̃, its image ∗S is either a relation
on ∗K or on ∗(K̃), but these two relations called ∗S are not generally the same. This
problem is taken care of by the following.

Theorem . ∗K embeds in ∗(K̃) under

{x ∈ Kω : x ≡ a} 7→ {x ∈ K̃ω : x ≡ a}.

Then an embedding i of P(∗Kn) in P(∗(K̃)n) is induced, and the following diagram
commutes.

P(Kn)
∗−−−−→ P(∗Kn)

⊆

y
yi

P(K̃n) −−−−→
∗

P(∗(K̃)n)

In particular, if S ⊆ Kn, then

i(∗S) = ∗S,

where ∗S is computed in ∗K and ∗(K̃) respectively.

Another ambiguity arises when we consider that some elements of K̃ are also relations
on K̃. Indeed, every element S of K̃ r K0 is a relation on K̃, so it determines both the
element (S : k ∈ ω) + M or S of ∗(K̃) and the relation ∗S on ∗(K̃), but these are not
literally the same. This is taken care of by the following.

Theorem . There is an embedding ι from the subset
⋃

τ∈T
∗(Kτ ) of ∗(K̃) into (∗̃K)

such that

() ι(x) = x when x ∈ ∗K,
() ι(x) ∈ (∗K)τ when x ∈ ∗(Kτ ), and

() if S ∈ K̃ r K0, then

ι(S) = {(ι(x0), . . . , ι(xn−1)) : x ∈ ∗S}. ()
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Proof. If τ is a type nτ0 · · · τn−1, let

Eτ = {(x, y) ∈ K̃n+1 : x ∈ y N y ∈ Kτ}.
Then the sentence

∀x ∀y (Eτxy ⇒ Kτ(0)x
0

N · · · N Kτ(n−1)x
n−1

N Kτy)

is true in K̃. By Theorem , it is true in ∗(K̃). By Theorem ,

(Kτx)
∗(K̃) = ∗(Kτ ).

Hence, if S ∈ ∗(Kτ ), then

(EτxS)
∗(K̃) ⊆ ∗(Kτ(0)) × · · · × ∗(Kτ(n−1)),

and the function that converts such S to (EτxS)
∗(K̃) is an embedding. We can now

define ι recursively:
() ι(x) = x if x ∈ ∗(K0),
() if τ = nτ0 · · · τn−1, and R ∈ ∗(Kτ ), then

ι(R) = {(ι(a0), . . . , ι(an−1)) : ∗(K̃) ² EτaR}. ()

By induction, ι maps ∗(Kτ ) into (∗K)τ . Moreover, if again τ = nτ0 · · · τn−1, and S ∈ Kτ ,
then the sentence

∀x (Sx ⇐⇒ EτxS)

is true in K̃, so it is true in ∗(K̃), which means in particular

∗S = S
∗(K̃) = (Sx)

∗(K̃) = (EτxS)
∗(K̃).

This and () establish (). ¤

As we shall see in § , ι is not generally surjective. Also, even though every element
of K̃ is an element of some Kτ , not every element of ∗(K̃) is an element of some ∗(Kτ ).
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. Analysis

Let ∗R be the ultrapower Rω/M of R, where M is a non-principal maximal ideal of
P(ω). Then R embeds properly in ∗R, by Theorem . Everything we do now will be
based on Theorem  in case K = R or K = R̃.

If S is a relation on R, then ∗S is a standard relation and is the extension of S.
Also, elements of Rn are standard. Note then that a standard relation might have
nonstandard elements.

Suppose S ⊆ Rn, and f is a function from S to R. Let

T = {(x, f(x)) : x ∈ S};
this is the graph of f . Then the sentences

∀x ∃y (Sx ⇒ Txy),

R ² ∀x ∀y ∀z (Sx N Txy N Txz ⇒ y = z)),

are true in R; by Theorem , they are true in ∗R. Therefore ∗T is the graph of a function
from ∗S to ∗R. We may denote this function by

∗f.

We have then
∗f ↾ S = f. ()

In a formula, in place of Txy, we may write

f(x) = y.

Theorem . ∗R is a non-Archimedean ordered field with respect to ∗<, ∗+, ∗−, and
∗·, and R is an ordered subfield of ∗R.

Proof. There is a first-order sentence σ saying that R is an ordered field; but then ∗R ² σ.
By () and (), R is an ordered subfield of ∗R. Since R is a proper subset of ∗R, the
latter must be non-Archimedean. ¤

Corollary. Being Archimedean is not a first-order property of fields.

In the notation of the proof of Theorem , we have the sentence

∀x (∃y E10yx N ∃z ∀y (E10yx ⇒ y 6 z) ⇒
∃w (∀y (E10yx ⇒ y 6 w) N ∀z (∀y (E10yx ⇒ y 6 z) ⇒ w 6 z))),

which says in R̃ that every subset x of R with an element y and an upper bound z has
a least upper bound w. This is true, so the same sentence is true in ∗(R̃). But more
precisely, in R̃, the sentence is not about subsets of R, but about elements of R10, which
is P(R). In ∗(R̃), the sentence says that every element of ∗(R10) with an upper bound
has a least upper bound. We know that ι(∗(R10)) ⊆ (∗R)10, which is P(∗R). Now we
can conclude that the embedding is proper, not surjective.

Theorem . N is a proper initial segment of ∗N. In particular, N consists of the finite
elements of ∗N.
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Proof. For each n in N, the sentence

∀x (Nx ⇒ x = 0 ∨ x = 1 ∨ · · · ∨ x = n ∨ x > n)

is true in R, hence in ∗R, so that {0, 1, . . . , n} is an initial segment of ∗N. The sentence

∀x ∃y (Ny N x < y)

is true in R and hence in ∗R. In particular, let a be a positive infinite element of ∗R.
Then there is n in ∗N such that a < n. Such n must be infinite and so are not in N. ¤

Corollary. The Peano Axioms are not first order.

Theorem . A standard relation has nonstandard elements if and only if it is infinite.

Proof. Suppose S = {a0, . . . ,an−1} ⊆ Rm. Then the sentence

∀x (Sx ⇔ x = a0 ∨ · · · ∨ an−1)

is true in R and ∗R, so ∗S = S.
Now suppose f is an injective function from N into R. Then ∗f is an injective function

on ∗N. If ∗f(n) is an element a of R for some n in ∗N, then the sentence

∃x (Nx N f(x) = a)

is true in ∗R and R, so n ∈ N. Thus, if n ∈ ∗N r N, then ∗f(n) ∈ ∗R r R. ¤

.. Sequences.

Theorem . Let a be a sequence (an : n ∈ N) in R. Then ∗a is a sequence (an : n ∈ ∗N)
for some an in ∗R (for n in ∗N r N). Also a converges if and only if ∗a converges. If ∗a
converges to b, then b ∈ R.

The following theorem can be understood as an alternative definition of convergence,
if one does not want to bother with the traditional definition.

Theorem . A standard sequence (an : n ∈ ∗N) converges to L if and only if, for all
infinite n,

an ≃ L.

Proof. Let a be the sequence, and suppose it converges to L. For every positive standard
ε, there is a standard M such that the sentence

∀x (Nx N x > M ⇒ |an − L| < ε)

is true in R and ∗R. In particular, for every infinite n, we have |an − L| < ε for every
standard positive ε; but this just means an ≃ L.

Suppose a does not converge to L. Then there is some positive standard ε such that
the sentence

∀y ∃x (Nx N x > y N |an − L| > ε)

is true in R and ∗R. In particular, if M is infinite, then there is some n in ∗N that is
greater than M (and therefore infinite) such that |an − L| > ε. ¤

For example, limn→∞ 1/n = 0, simply because 1/n is infinitesimal when n is infinite.
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Theorem . Let a and b be standard convergent sequences, and r ∈ R. Then

lim(a + b) = lim(a) + lim(b), ()

lim(ra) = r lim(a), ()

lim(ab) = lim(a) lim(b). ()

Proof. Let R be the ring of finite members of ∗R, and let I be its ideal of infinitesimals.
Suppose an ≃ L and bn ≃ M . Then an −L and bn −M are in I, hence so are (an + bn)−
(L + M) and ran − rL. This shows () and (). For (), note

|anbn − LM | = |anbn − anM + anM − LM | 6 |an| |bn − M | + |an − L| |M | .

But the last is in I since |an| and |M | are in R (why?). ¤

Theorem . A standard sequence is bounded if and only if every term is finite.

Proof. That a is bounded means that, for some M , the sentence

∀x (x ∈ N ⇒ |ax| < M)

is true in R; then it is true in ∗R, so every entry in ∗a is bounded by M , hence finite.
Suppose a is unbounded. Then the sentence

∀x ∃y (y ∈ N N |ay| > x

is true in R, hence in ∗R. Let L be positive and infinite; then there is n in ∗N such that
|an| > L. ¤

Compare the following with Theorem .

Theorem . A standard sequence (an) converges if and only if, for all infinite m and n,

am ≃ an.

Proof. If (an) converges to L, then a ≃ L for all infinite n, and therefore am ≃ an for all
infinite m and n, since ≃ is an equivalence relation.

Suppose conversely am ≃ an for all infinite m and n. If each an is finite, and n is
in particular infinite, then (an) converges to the standard part of an. Suppose some an

is infinite. Then by Theorem , the sequence (an : n ∈ N) is unbounded. Hence the
sentence

∀x ∃y (x ∈ N ⇒ y ∈ N N x 6 y N |ax| + 1 6 |ay|)
is true in R and ∗R, so am and an fail to be infinitely close for some infinite m and n. ¤

Traditionally, L is a limit point of (an) if for all positive ε and for all m in N, there
is n such that m < n and |L − an| < ε. The following can be used as an alternative
definition.

Theorem . A finite number L is a limit point of the standard sequence (an) if and
only if, for some infinite n,

an ≃ L.



NON-STANDARD ANALYSIS 

Proof. If L is a limit point of (an), then the sentence

∀x ∀y ∃z (x > 0 N y ∈ N ⇒ z ∈ N N y < z N |L − az| < x)

is true in R and ∗R, so for an infinitesimal ε there is an infinite n such that |L − an| < ε
and hence an ≃ L.

Suppose L is not a limit point of (an). Then there is some positive ε and some n in N

such that the sentence
∀x (x ∈ N ⇒ |L − ax| > ε)

is true in R and ∗R. This means |L − an| > ε whenever n is infinite. ¤

The non-standard proof of the following should be compared with the traditional
divide-and-conquer proof.

Theorem  (Bolzano–Weierstraß). Every bounded standard sequence has a limit point.

Proof. Indeed, by Theorem , if (an) is bounded, then each an has a standard part when
n is infinite, and that standard part is a limit point of the sequence by Theorem . ¤

.. Continuity. Suppose now f is a standard function defined on an interval [a, b]. If
c ∈ [a, b], we say, classically, that

lim
x→c

f(x) = lim
c

(f) = L

if for all positive ε there is a positive δ such that, for all x in [a, b],

0 < |x − c| < δ =⇒ |L − f(x)| < ε.

Theorem . If f is a standard function defined on an interval I that contains c, then
limc f = L if and only if, for all x in I that are distinct from c,

x ≃ c =⇒ f(x) ≃ L.

Theorem . If limc f and limc g exist, then

lim
c

(f + g) = lim
c

(f) + lim
c

(g),

lim
c

(fg) = lim
c

(f) lim
c

(g);

if also limc(f) 6= 0, then

lim
c

(
1

f

)
=

1

limc(f)
. ()

Proof. For (), if f(x) ≃ L, and L 6= 0, then |f(x)| > |L| /2, so that
∣∣∣∣

1

f(x)
− 1

L

∣∣∣∣ =
|L − f(x)|
|f(x)L| <

2

L2
|L − f(x)| ≃ 0. ¤

The function f is continuous at c, if limc(f) = f(c); continuous on [a, b], if con-
tinuous at every point of [a, b].

Theorem  (Intermediate Value). If f is continuous on [a, b], and d lies between f(a)
and f(b), then for some c in (a, b),

f(c) = d.
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Proof. Suppose f(a) < d < f(b). In R, for all n in N+, there is some least j in N such
that

f(a +
j

n
(b − a)) < d 6 f(a +

j + 1

n
(b − a)). ()

Then the same is true in ∗R, with ∗N replacing N. In particular, we have () for some
j in ∗N, where n is in ∗N r ∗N. Let c be the standard part of a + (j/n)(b − a). Then

f(a +
j

n
(b − a)) ≃ f(c) ≃ f(a +

j + 1

n
(b − a)).

Therefore f(c) = d. ¤

Theorem  (Extreme Value). If f is continuous on [a, b], then it attains a maximum
and minimum value on the interval.

Proof. For all positive natural numbers n, for some natural number j such that j 6 n,
the value of

f(a +
j

n
(b − a))

is maximized. In particular, this is so when n is infinite. If i 6 n, we now have

f(a +
i

n
(b − a)) 6 f(a +

j

n
(b − a)).

Let d be the standard part of a + (j/n)(b − a). For every c in [a, b], there is a natural
number i such that

a +
i

n
(b − a) 6 c < a +

i + 1

n
(b − a).

Then these three numbers are infinitely close, so

f(c) ≃ f(a +
i

n
(b − a)).

Therefore f(c) 6 f(d). ¤

.. Derivatives. If

lim
x→c

f(x) − f(c)

x − c
= d,

then we write
f ′(c) = d,

saying f is differentiable at c, with derivative d at c. So f ′(c) = d if and only if,
whenever c ≃ c but x 6= c, we have

f(x) − f(c)

x − c
≃ d.

Theorem . If f is differentiable at c, then it is continuous at c.

Proof. If f is differentiable at c and x ≃ c, then

f(x) − f(c) ≃ (x − c)f ′(c) ≃ 0;

so f is continuous at c. ¤

Theorem . If f and g are differentiable at c, then so are f + g and fg, and

(f + g)′(c) = f ′(c) + g′(c), (fg)′(c) = f ′(c)g(c) + f(c)g′(c).



NON-STANDARD ANALYSIS 

Proof. If x ≃ c, then

(fg)(x) − (fg)(c)

x − c
=

f(x) − f(c)

x − c
g(c) + f(x)

g(x) − g(c)

x − c
≃ f ′(c)g(c) + f(c)g′(c). ¤

The standard function f has a local maximum at c if, for some positive δ, the
function f is defined on (c − δ, c + δ) and on this interval is maximized at c.

Theorem . A standard function f has a local maximum at c if and only if f is defined
on {x : x ≃ c} and on this interval is maximized at c.

Proof. Necessity of the condition is immediate. To prove sufficiency, suppose f does not
have a local maximum at c. Then for every positive δ, and in particular for δ that are
infinitely close to c, either f is not defined on (c − δ, c + δ), or else f is not maximized
there at c. But that interval is a subset of {x : x ≃ c}. ¤

Theorem . If f has a local maximum and is differentiable at c, then f ′(c) = 0.

Proof. We assume that, if x ≃ c, but x 6= c, then f(x) 6 c, so

f(x) − f(c)

x − c

{
> 0, if x < c,

6 0, if x > c.

Since (f(x) − f(c))/(x − c) ≃ f ′(c), we can conclude that f ′(c) = 0. ¤

Theorem  (Rolle). If f is continuous on [a, b] and differentiable on (a, b), and f(a) =
f(b), then, for some c in (a, b),

f ′(c) = 0.

Proof. Theorems  and . ¤

.. Integrals. Classically, the integral of a bounded function f on an interval [a, b] can
be defined as follows. Suppose I is a number such that, for all positive ε, there is a
positive δ such that, for all positive integers n, for all lists (a0, . . . , an) and (ξ1, . . . , ξn)
of numbers such that

a = a0 6 ξ1 6 a1 6 · · · 6 an−1 6 ξn 6 an = b ()

and also

min(a1 − a0, . . . , an − an−1) 6 δ,

we have ∣∣∣∣∣I −
n∑

i=1

f(ξi)(ai − ai−1)

∣∣∣∣∣ < ε.

Then f is integrable on [a, b], and
∫ b

a

f = I.

This is not a first-order statement in R, so we move to R̃. Let A[a,b] be the set of finite
sequences (a0, ξ1, a1, . . . , xn, an) with entries from R, where n ∈ N and () holds. Such
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sequences can be understood as binary relations on R, so that A[a,b] ∈ R200. If f is a
bounded function on [a, b], let Sf,a,b be the function

(a0, ξ1, a1, . . . , ξn, an) 7→
n∑

i=1

f(ξi)(ai − ai−1)

on A. So Sf,a,b ∈ R22000. An element of ∗A[a,b] also takes the form (a0, ξ1, a1, . . . , ξn, an),
where again () holds; but now n ∈ ∗N. Such an element can be called fine if ai−1 ≃ ai

for each i in {1, . . . , n}. It must be noted that fine elements of ∗A do exist: for example,

(a, a +
1

n
(b − a), a +

1

n
(b − a), . . . , a +

n − 1

n
(b − a), a +

n − 1

n
(b − a)),

where n is infinite.

Theorem . Given a bounded function f on [a, b], Then f is integrable on [a, b] if and
only if, for any two fine elements a and a′ of ∗A[a,b],

∗Sf,a,b(a) ≃ ∗Sf,a,b(a
′).

In this case,
∫ b

a
f is the standard part of either of these sums.

Theorem  (Fundamental, of Calculus). Suppose f is continuous on [a, b]. If a 6 c 6 b,
then f is integrable on [a, c]. The function

x 7→
∫ x

a

f

is differentiable on [a, b], and its derivative is f .
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Appendix A. The Greek alphabet

capital minuscule transliteration name
Α α a alpha
Β β b beta
Γ γ g gamma
∆ δ d delta
Ε ε e epsilon
Ζ ζ z zeta
Η η ê eta
Θ θ th theta
Ι ι i iota
Κ κ k kappa
Λ λ l lambda
Μ µ m mu
Ν ν n nu
Ξ ξ x xi
Ο ο o omicron
Π π p pi
Ρ ρ r rho
Σ σ, ς s sigma
Τ τ t tau
Υ υ y, u upsilon
Φ φ ph phi
Χ χ ch chi
Ψ ψ ps psi
Ω ω ô omega

The following remarks pertain to ancient Greek. The vowels are α, ε, η, ι, ο, υ, ω, where η
is a long ε, and ω is a long ο; the other vowels (α, ι, υ) can be long or short. Some vowels
may be given tonal accents (ά, ©, ¦). An initial vowel takes either a rough-breathing
mark (as in ¡) or a smooth-breathing mark (¢): the former mark is transliterated by a
preceding h, and the latter can be ignored, as in Øπερβολή hyperbolê hyperbola, Ñρθογώνιον
orthogônion rectangle. Likewise, · is transliterated as rh, as in ·όµβος rhombos rhombus.
A long vowel may have an iota subscript (v, V, J), especially in case-endings of nouns.
Of the two forms of minuscule sigma, the ς appears at the ends of words; elsewhere, σ
appears, as in βάσις basis base.
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Appendix B. The German script

Writing in , Wilfrid Hodges [, Ch. , p. ] observes
Until about a dozen years ago, most model theorists named structures
in horrible Fraktur lettering. Recent writers sometimes adopt a notation
according to which all structures are named M , M ′, M∗, M̄ , M0, Mi or
occasionally N .

For Hodges, structures are A, B, C, and so forth; he refers to their universes as domains
and denotes these by dom(A) and so forth. This practice is convenient if one is using a
typewriter (as in the preparation of another of Hodges’s books [], from ). In ,
David Marker [] uses ‘calligraphic’ letters for structures, so that M is the universe
of M. I still prefer the Fraktur letters:

A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z

a b c d e f g h i
j k l m n o p q r
s t u v w x y z

A way to write these by hand is seen in a textbook of German from  []:
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