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Preface

The beginner has in his head a definition of the science; a childish definition
perhaps, but still a definition; of the science’s subject-matter he has no
definition at all.

Only the hope of a definition. ‘I don’t know what life, is, but I hope I
shall when I have studied physiology for long enough.’

‘That is true for a beginner in physiology; but for a master in physiology
the reverse is true; a master in physiology has found out all that it can tell
him and knows what life is. A beginner in physiology does not; for him
physiology is definable and life as yet, except in the language of hope,
indefinable.’

A man ceases to be a beginner in any given science and becomes a
master in that science when he has learned that this expected reversal is
never going to happen and that he is going to be a beginner all his life.

—R. G. Collingwood, The New Leviathan [, .–]

These notes are for use in a course called Introduction to Mathematical Logic and
Model Theory, Math , given at METU in the fall of . The notes are based on
the notes I prepared while teaching the course in the fall of . But I have made many
changes and additions.

The title of these notes refers to the methods of recursion and induction. I have become
increasingly aware of how these two methods are confused. In these notes, recursion is a
method of definition; induction is a method of proof. If a set is defined by recursion, then
properties of elements of the set can be proved by induction. However, it does not then
necessarily follow that functions on the set can be defined by recursion. Logic provides
examples of this phenomenon and a way to understand it.

These notes are intended as a supplement to the classroom experience, and not for
independent study. I say this because the notes may not give full explanations of some
matters; they may give too much explanation of other matters; and they may have
mistakes and other features to be changed during the course. Various examples and
topics are left as exercises: investigation of some of these will depend on the interest of
the student.

I first learned logic from David Kueker and Chris Laskowski, and from the notes that
I took in their courses and that I still consult today. Another influence on these notes
is the book [] of Alonzo Church: as a student, I obtained a leftover display copy of
this at a meeting of the Association for Symbolic Logic. References for current model
theory include Hodges [], Marker [], and Rothmaler []; but this is not a complete
list of the books consulted in the preparation of these notes. Shoenfield [, p. iv] is a
good source—though dated—for mathematical logic in general. Concerning his practice
of attribution, he writes





CONVENTIONS 

I have made no attempt to credit each result to its author; the names
attached to the principal theorems are there simply to give the reader some
idea of the people who have created the subject. I have also omitted all
bibliographical references.

My practice is not so extreme. Most of what is in these notes has been worked out only
since the late s, so it is possible to track down the original sources. I have done this
in a few cases. For sources in the other cases, especially in model theory, Hodges []
would be the place to look.

Conventions

The lemma called Lemma .., for example, is the second lemma in §. (namely,
Section Three of Chapter Five). Displayed expressions that will be referred to later are
labelled from the sequence

(∗) (†) (‡) (§) (¶) (‖) (∗∗) (††) (‡‡)

But the labels repeat. Hence a reference to (∗) is a reference to the last displayed
expression labelled as (∗).

Proofs begin with the word Proof and end with a box �. If there is no proof given,
then supplying it is an exercise. Other exercises are indicated in the text; these are
repeated, and more are added, at the ends of chapters.

I also put technical terms in boldface when they are being defined (perhaps only
implicitly). If they are only being emphasized for some other reason, then they may be
slanted. All such terms are listed in the index at the back. Throughout the text, ordinary
italics and ‘quotation marks’ are used for the usual sorts of reasons.



CHAPTER 

Introduction

.. Building blocks

An ordered pair is defined by the identity

(x, y) =
{
{x}, {x, y}

}
.

The sole purpose of the definition is to ensure that

(x, y) = (a, b) ⇐⇒ x = a & y = b.

(The sign ⇐⇒ is just an abbreviation of the English if and only if.) The Cartesian
product of sets A and B is the set

{(x, y) : x ∈ A & y ∈ B},

which is denoted by

A× B.

A relation from A to B is just a subset of A×B. If R is such a relation, and (a, b) ∈ R,
then we may also write

a R b.

The domain of R is given by

dom(R) = {x : ∃y x R y};

that is, the domain of R is the set of a for which there is some b such that a R b.
A relation R from A to B is a function from A to B if, for every element a of A,

there is a unique element b of B such that a R b. If f is a function from A to B, then we
can express this by writing

f : A −→ B.

The set B is the codomain of f , but (unlike the domain) it is not determined by f alone.
If a f b, then we usually write

f(a) = b

instead; also, b is the image of a under f . The function f itself can also be written as

x 7−→ f(x).

The function f is injective if for each b in B there is at most one element a of A such
that f(a) = b; surjective, if for each b in B there is at least one such element a of A;
bijective, if both injective and surjective. The set {y : ∃x f(x) = y} or {f(x) : x ∈ A}
is the image or range of f ; so f is surjective if and only if this image is B. If C ⊆ A,
then the restriction of f to C is given by

f � C = f ∩ (C ×B).


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A relation from A to itself is a binary relation on A. One such relation is the
diagonal, given by

∆A = {(x, y) : x = y & x ∈ A}.

This is a function from A to itself, namely the identity; considered as such, it may be
denoted by

idA .

If R ⊆ A× B, then the converse of R is given by

R̆ = {(y, x) : x R y}.

If also S ⊆ B ×C, then the composite of R and S is the relation from A to C given by

R/S = {(x, z) : ∃y (x R y & y S z)}.

The point of these derived relations is to allow some clever definitions of certain kinds of
relations. So, R is a function from A to B if and only if ∆A ⊆ R/R̆ and R̆/R ⊆ ∆B.

Assuming f : A→ B, we have that f is injective if and only if f/f̆ ⊆ ∆A, and surjective

if and only if ∆B ⊆ f̆ /f . If also g : B → C, then

g ◦ f = f/g.

A binary relation R on A is reflexive, if ∆A ⊆ R; irreflexive, if R ∩ ∆A = ∅;
symmetric, if R = R̆; antisymmetric, if R ∩ R̆ ⊆ ∆A; transitive, if R/R ⊆ R.
A relation is an equivalence-relation, or just an equivalence, if it is reflexive, sym-
metric, and transitive; an ordering, if antisymmetric, transitive, and either reflexive or
irreflexive. An irreflexive ordering is also called strict. An ordering R of A is total if
R ∪ R̆ ∪ ∆A = A× A; otherwise the ordering is partial. If R is an ordering of A, then
the pair (A,R) is an order.

A subset of A is a singulary relation on A. A ternary relation on A is a subset
of A× A× A, and so forth.

A singulary operation on A is a function from A to itself; a binary operation on
A is a function from A×A to A. Taking Cartesian products is itself a binary operation,

(A,B) 7→ A× B,

on the class of sets; taking power-sets, that is, sets of subsets, is a singulary operation,

A 7→ P(A),

on the class of sets. An element of a set can be considered as a nullary operation on
the set.

For some writers, ‘partial ordering’ means ordering, and ‘ordering’ means total ordering.
The word unary is often used instead of singulary. Following Quine, Church [, § , p. , n. ]

suggests singulary as a more etymologically correct word than unary. Indeed, whereas the first five Latin
cardinal numbers are un-, du-, tri-, quattuor, quinque, the first five Latin distributive numbers—
corresponding to the Turkish birer, ikişer, üçer, dörder, beşer []—are singul-, bin-, tern-, quatern-,
quin-. It is the latter sequence that gives us binary and ternary—also quaternary and quinary, if these
are desired. So singulary appears to be a better word than unary. In fact, singulary does not appear
in the original Oxford English Dictionary []. The word unary does appear in this dictionary, but it is
considered obsolete: only one use of the word, from , was discovered in English literature. There,
unary meant unit, although the word unit was not actually invented until , when it was introduced
by [John] Dee to correspond to the Greek µοναδ-.
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.. Model theory

To think that physics or chemistry ought to be defined in terms of matter
or physiology in terms of life is more than an egregious blunder; it is a
threat to the existence of science.

It implies that people know what matter is without studying physics or
chemistry, and what life is without studying physiology.

It implies that this non-scientific and pre-scientific knowledge concern-
ing the nature of matter or life is perfect and final, so far as it goes, and
can never be corrected by anything science can do.

It implies that, if anything scientists imagine themselves to have dis-
covered about matter or life or what not is inconsistent with anything
contained or implied in this non-scientific and pre-scientific knowledge, the
scientists have made a mistake.

It implies that, if they have made the mistake by using (for example)
experimental methods, it is experimental methods that are at fault and
must be abandoned.

It implies that, if they have made the mistake by arguing logically, it is
logic that is at fault and must be abandoned.

It implies that any scientists who will not yield to persuasion and confess
the supremacy of non-scientific or pre-scientific knowledge over all possible
scientific inquiry must be made to yield by any means that can be devised.

At one blow, by enunciating the apparently harmless proposition that
physics or chemistry is the science of matter, physiology the science of life,
or the like, we have evoked the whole apparatus of scientific persecution; I
mean the persecution of scientists for daring to be scientists.

In whose interest is such a persecution carried on? Who stands to gain
by it? The nominal beneficiary differs from time to time: sometimes it is
religion, sometimes statecraft, and so on. None of these has ever in fact
gained a ha’porth of advantage. The actual beneficiary has always been
obsolete science.

—R. G. Collingwood, The New Leviathan [, I.–]

Model theory is whatever is taught in courses and books that have model theory in
their titles. Different writers will give different definitions of what model theory is. In
my view, model theory is a kind of mathematics done self-consciously. It is mathematics
done while paying attention to what it means to do mathematics. In particular, model
theory pays attention to the language of mathematics. For a simple example, the sets
commonly denoted by N, Z, Q, R, and C can all be talked about in a language whose
special symbols include + and ×: this is a model-theoretic observation.

Model theory is the study of structures quâ models of theories. A brief elucidation of
the technical terms in this definition might run as follows.

Examples of structures include the sets like N that have just been mentioned, when
these are considered as being equipped with the named operations of addition and mul-
tiplication. An order in the sense of §., or a group, is a structure. A set by itself is the
simplest kind of structure. In general, a structure is a set equipped with some (or no)
operations and relations on it. The set itself may be called the universe of the structure.
A convention that I like to follow is that, if the universe is denoted by a plain letter, as A



.. USE AND MENTION 

or B, then the whole structure is denoted by the Fraktur form of that letter, as A or B.
(See Appendix A.) But when the universe is a standard set that is already denoted by a
fancy letter, as N, then this letter may also be understood to denote the whole structure
with that universe. We may refer to an element of a structure when we mean an element
of its universe.

The word quâ might be rendered literally in Turkish as ondan or neden, though
Redhouse [] suggests sıfatıyle and niteliğinde. It is a Latin relative pronoun in the
ablative case, used in technical English to mean in the capacity of. It is perhaps originally
a translation of the Greek Î, a relative pronoun in the dative case, used for example by
Aristotle [, IV, a] in referring to τÕ ×ν Î Ôν, being as such, as the subject of the
work now known as the Metaphysics. (On the Greek alphabet, see Appendix B.)

The special symbols for the operations and relations of a structure (such as + and
× for N or Q) constitute its signature. Sentences in this signature are either true or
false in the structure. A model of a set of sentences is a structure in which all of the
sentences are true. A set of sentences is theory if it contains all of the sentences that are
true in all of its models. The theory of a structure is the set of sentences that are true
in the structure. This theory may have models that are fundamentally different from the
original structure: this is one feature that makes model theory interesting.

.. Use and mention

Of the following three sentences, the first two use the word ice, while the last two
mention this word.

() Ice is frozen water.
() Ice has one syllable.
() The English word for frozen water has one syllable.

Note what happens when the sentences are translated into Turkish:

() Buz donmuş sudur.
() Ice’in bir hecesi vardır.
() Donmuş suyun İngilizcesinin bir hecesi vardır.

In sentence (), the word ice is used to mention itself. This self-referential use of a word
may be shown typographically, by using quotation-marks around the word, or setting it
in a different font:

‘Ice’ has one syllable.
Ice has one syllable.

But there need be no typographical distinction at all, as long as context makes the
intended use of a word clear.

The distinction between use and mention of an expression can be seen in mathematics,
as in

() 2 + 2 = 4.
() The sign + denotes addition.
() A sign resembling a Greek cross denotes addition.

Occasionally a word is not precise enough to make its use clear. For example, David
wrote A Treatise of Human Nature, and David is writing the present book: but this is
confusing or misleading. David Hume wrote the former book [], which was published
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in –, while David Pierce is writing the latter. Thus we can attach tags to the name
David to show which David is meant in each case.

The same occasional need for greater precision arises in mathematics. For example, a
group-homomorphism is a function f from one group to another for which the equation

f(x · y) = f(x) · f(y) (∗)

is an identity. Here it must be understood that the dot on the left-hand side of the
equation refers to multiplication in the domain of f ; on the right, the co-domain. If
f : G→ H, then by adding labels to the dots, we can write (∗) more precisely as

f(x ·G y) = f(x) ·H f(y).

.. The natural numbers

The natural numbers compose a set with the following five properties.

() There is an initial element.
() Every element has a unique successor.
() A subset is the whole set if it contains the initial element and contains the

successor of each of its own elements.
() The initial element is not the successor of any element.
() Elements with the same successor are the same.

These properties were identified by Richard Dedekind []; they were then written out
in a new logical notation by Giuseppe Peano [], and they have come to be called the
Peano axioms.

Let us denote the set of natural numbers by N; its initial element, by 1; and the
successor of an element k, by s(k) or by ks, according to convenience. Then we have a
structure, which we may denote by

(N, 1, s), (∗)

whose universe is N, and whose signature is

{1, s}. (†)

This is just what properties () and () give us. Note that, in (∗), the symbols 1 and
s refer to an element and a singulary operation respectively, while in (†), they refer to
themselves. If we do not like this ambiguity, then we may rewrite (∗) as

(N, 1N, sN).

As noted in § ., the single letter N may also be understood to denote this whole struc-
ture. Property () is that this structure admits (proof by) induction. The remaining
two properties can be written out more formally thus:

() ∀x 1 6= xs.
() ∀x ∀y (xs = ys ⇒ x = y).

This last property is just that the successor-operation is injective.
There are stuctures in the signature {1, s} that admit proof by induction, but do not

have properties () and (). For example, suppose A is a three-element set, as {c, d, e}.
We obtain a structure A in the signature {1, s} when we define 1A as c and define sA by
the following table.

x c d e
xs d e c
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Then A admits proof by induction. Indeed, every subset of A that contains c and the
successors of its elements must contain d and e, so it must be all of A. But the initial
element in A is a successor. We can define a new structure B with the same universe
{c, d, e}, and the same initial element c, but where sB is as follows.

x c d e
xs d e d

Now B admits proof by induction, and moreover, the initial element is not a successor;
but two distinct elements have the same successor.

Let us refer to all structures in the signature {1, s} as iterative structures; and let
us refer to iterative structures that admit proof by induction as inductive structures.
So N is an inductive structure, as are the other two structures just defined. A basic
consequence of induction is the following.

Theorem ... Every element of an inductive structure is either the initial element
or a successor.

Proof. Suppose A is an inductive structure. Let M be the set of elements of A that
are either the initial element or successors. Then the initial element is in M , and so is the
successor of every element of M , just because it is a successor. By induction, M = A. �

A homomorphism between two iterative structures is a function from (the universe
of) one to (the universe of) the other that takes the initial element to the initial element
and takes the successor of every element to the successor of its image. So, if A and B
are arbitrary iterative structures, and f : A → B, then f is a homomorphism from A to
B just in case

() f(1A) = 1B;
() f(sA(c)) = sB(f(c)) for all c in A, that is, f ◦ sA = sB ◦f .

An iterative structure A admits recursion if, for every iterative structure B, there is a
unique homomorphism from A to B. In this case, that unique homomorphism is said to
be recursively defined.

Theorem .. (Recursion). Every structure that satisfies the Peano axioms admits
recursion.

Proof. Suppose A meets the given five conditions, and B is another iterative struc-
ture. We show that there is a unique homomorphism from A to B.

Assuming existence for the moment, we can prove uniqueness by induction. Indeed,
suppose f and g are homomorphisms from A to B. Let M be the subset of A comprising
those c such that f(c) = g(c). Because f and g are homomorphisms, we have

f(1A) = 1B = g(1A),

so 1A ∈ M . Suppose d ∈ M , so f(d) = g(d). Again since f and g are homomorphisms,
we have

f(sA(d)) = sB(f(d)) = sB(g(d)) = g(sA(d)),

so sA(d) ∈M . By induction, M = A, so f = g.
It remains to show that such a homomorphism f exists at all. We want to say that f

is the set
{(1A, 1B), (sA(1A), (sB(1B)), (sA(sA(1A)), sB((sB(1B))), . . . }.

This is my term, for want of a better; another possibility might be discrete dynamical systems.
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We can write this set as {(1, 1), (1s, 1s), (1ss, 1ss), . . . }, as long as we understand that the
left entry in each ordered pair is in A; and the right, in B. In any case, we have to give
a valid definition of this set, to ensure that it exists. One way to do this is to build up f
as the union of the sets

{(1A, 1B)},

{(1A, 1B), (sA(1A), (sB(1B))},

{(1A, 1B), (sA(1A), (sB(1B)), (sA(sA(1A)), sB((sB(1B)))},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(‡)

That is, if C is the set of all sets listed in (‡), then we let f =
⋃

C. But we still have to
give a valid criterion for membership in C (and then prove f is a homomorphism).

To be precise, we let C comprise those subsets D of A × B such that, if (a, b) ∈ D,
then either

(a, b) = (1A, 1B) = (1, 1),

or else

(a, b) = (sA(c), sB(d)) = (cs, ds)

for some c and d such that (c, d) ∈ D. Now C is well defined. Let R =
⋃

C. Then R is
a well-defined relation from A to B. Moreover, since {(1, 1)} ∈ C, we have 1 R 1; and if
c R d, so that (c, d) ∈ D for some D in C, then D ∪ {(cs, ds)} ∈ C, so cs R ds. Thus R is
indeed a homomorphism from A to B, provided it is a function from A to B.

We can already conclude that, for every a in A, there is b in B such that a R b.
It remains to prove, assuming a R b, that this b is unique. For this, we shall use the
additional properties of A. Suppose 1 R b. Then (1, b) ∈ D for some D in C. In A, we
assume that 1 is not a successor. Therefore, by definition of C, we know that b = 1.

Now suppose that, for some c in A, there is a unique d in B such that c R d. We
know cs R ds. Suppose cs R e. Then (cs, e) ∈ D for some D in C. Since 1 is not a
successor in A, we must have (k, `) ∈ D for some k and ` such that (ks, `s) = (cs, e).
Since the successor-operation is injective, we have k = c. Since k R `, this means c R `.
By uniqueness of d, since c R d, we conclude ` = d, so e = `s = ds.

By induction, R is a function from A to B. This completes the proof. �

The Recursion Theorem allows us to define the usual arithmetic operations of addition
and multiplication and exponentiation on N. In particular, we can write s as x 7→ x+ 1.
In fact, addition and multiplication can be defined in any inductive structure; but not
exponentiation. See Appendix C.

A modification of the Recursion Theorem is

Corollary. Suppose A is a set with an element b, and F : N ×A→ A. Then there
is a unique function G from N to A such that

() G(1) = b, and
() G(n + 1) = F (n,G(n)) for all n in N.

Proof. Let f : N×A→ N×A, where f(n, x) = (n+1, F (n, x)). By recursion, there
is a unique function g from N to N × A such that g(1) = (1, b) and g(n + 1) = f(g(n)).
By induction, the first entry in g(n) is always n. The desired function G is given by
g(n) = (n,G(n)). Indeed, we now have G(1) = b; also, g(n + 1) = f(n,G(n)) =
(n+ 1, F (n,G(n))), so G(n+ 1) = F (n,G(n)). By induction, G is unique. �
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This allows taking factorials: again, see Appendix C.
An isomorphism is a homomorphism whose underlying function is a bijection whose

inverse is also a homomorphism. To the Recursion Theorem then, we have the following
converse.

Theorem ... Every iterative structure that admits recursion is isomorphic to N

and therefore satisfies the Peano axioms; in particular, it admits induction.

Proof. Suppose A is an iterative structure that admits recursion. Then there are
homomorphisms f from A to N and g from N to A. Then f ◦ g is a homomorphism from
N to itself. But the identity on N is also a homomorphism from N to itself; therefore f ◦g
must be the identity. For the same reason, g ◦ f is the identity on A. Thus f is invertible
as a homomorphism, so it is an isomorphism. �

The sets of predecessors of natural numbers are defined recursively. That is, we have
x 7→ pred(x) : N → P(N), where

pred(1) = ∅;

pred(ns) = pred(n) ∪ {n}.

The elements of pred(n) are the predecessors of n. We can define the binary relation
< on N by

x < y ⇐⇒ x ∈ pred(y). (§)

Conversely, if < is a binary relation on a set A, then (§) defines a predecessor-function
from A to P(A). Then the relational structure (A,<) admits (proof by) induction
if, for every proper subset B of A, there is an element c of A that B does not contain,
although B contains all predecessors of c. This means a subset C of A can be proved
equal to A, provided that, from the inductive hypothesis that pred(d) ⊆ C, it can be
proved that d ∈ C.

Note well that we now have two kinds of induction. Context must be relied on to
show which kind is meant.

Theorem .. (Induction). (N, <) admits proof by induction.

Proof. Suppose B is a subset of N such that, if pred(d) ⊆ B, then d ∈ B. We shall
show B = N. Let C comprise those elements of N whose predecessors belong to B. As 1
has no predecessors, they belong to B, so 1 ∈ C. Suppose n ∈ C. Then all predecessors
of n belong to B, so by assumption, n ∈ B. Thus, all predecessors of ns belong to B, so
ns ∈ C. By induction, C = N. In particular, for all n in N, we have ns ∈ C, so n (being
a predecessor of ns) belongs to B. Thus B = N. �

There are relational structures (A,<) that admit induction, although < is not tran-
sitive (exercise).

Theorem ... The relation < on N is transitive.

Proof. We show
x ∈ pred(n) =⇒ pred(x) ⊆ pred(n)

(where =⇒ stands for the English implies). The claim is vacuously true when n = 1,
since pred(1) = ∅. Suppose the claim is true when n = m. If x ∈ pred(ms), then
either x ∈ pred(m), or else x = m. In the former case, by inductive hypothesis, we have
pred(x) ⊆ pred(m); in the latter case, pred(x) = pred(m). In either case, pred(x) ⊆
pred(m) ⊆ pred(ms). By induction, we are done. �
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Lemma ... Every transitive relational structure that admits induction is a strict
order. �

In particular, (N, <) is a strict order. But the ordering guaranteed by the lemma need
not be total (exercise).

Lemma ... In N, 1 6 n. �

Lemma ... In N, if m < n, then ms 6 n.

Proof. The claim is trivially true when n = 1. Suppose it is true when n = k. Say
m < ks, that is, m ∈ pred(k)∪ {k}. If m ∈ pred(k), then m < k, so ms 6 k by inductive
hypothesis, hence ms 6 ks. If m = k, then ms = ks, so ms 6 ks. �

Theorem ... (N, <) is a strict total order.

Proof. We show
m 66 n =⇒ n < m.

The claim is trivially true when m = 1, by Lemma ... Suppose it is true when m = k.
Say ks 66 n. Then k 6< n by the last lemma. If k 6= n, then k 66 n, so n < k < ks by
inductive hypothesis. If k = n, then n = k < ks. �

A relational structure (A,<) admits recursion if, for every set B and function f from
P(B) into B, there is a unique function g from A to B such that

g(c) = f(g[pred(c)]) (¶)

for all c in A. Here g[X] means {g(x) : x ∈ X}.

Theorem ... A strict order that admits induction admits recursion.

Proof. Suppose (A,<) is a strict order that admits induction. Let B be a set, and
f : P(B) → B. Suppose there are functions h and h′ from A to B such that (¶) holds for
all c in A when g is h or h′. If h and h′ agree on pred(d), then

h(d) = f(h[pred(d)]) = f(h′[pred(d)]) = h′(d),

so h and h′ agree at d. By induction, h = h′.
It remains to show that such a function h exists at all. Let C comprise the relations

R from A to B such that, if a R b, then

() pred(a) ⊆ dom(R);
() b = f({y : ∃x (x < a & x R y)}).

Let S =
⋃

C. We shall show that S is the desired function h. Let

Sa = S ∩ (pred(a) ×B).

Our inductive hypothesis is that Sa is a function ha from pred(a) to B such that, when
c < a, then

ha(c) = f(ha[pred(c)])

= f({y : ∃x (x < c & ha(x) = y)})

= f({y : ∃x (x < c & x Sa y}).

By transitivity of <, if c < a, then pred(c) ⊆ pred(a), so pred(c) ⊆ dom(Sa). Hence
Sa ∈ C. Letting b = f(ha[pred(a)]), we have also Sa ∪ {(a, b)} ∈ C. Therefore a S b.
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Conversely, suppose a S b′. Then a R b′ for some R in C. But then pred(a) ⊆ dom(R),
and

R ∩ (pred(a) ×B) ⊆ S ∩ (pred(a) ×B) = Sa,

so R ∩ (pred(a) × B) = Sa. Therefore b′ = b. This completes the induction and the
proof. �

Hence (N, <) admits recursion.
A strict order (A,<) is well-founded if every non-empty subset B of A has a min-

imal element, that is, an element c than which no element of B is less (this means we
never have d < c if d ∈ B).

Theorem ... Strict orders that admit recursion are well-founded.

Proof. Suppose (A,<) is a strict order that is not well-founded. Then A has a
nonempty subset B that has no minimal element. Let C be the set of elements a of A
such that b 6 a for some b in B. Then C has no minimal element. Define g1 and g2 on
A by

g1(x) = 1; g2(x) =

{
2, if x ∈ C;

1, if x ∈ Ar C.

Define f from P({1, 2}) into {1, 2} by

f(X) =

{
2, if 2 ∈ X;

1, otherwise.

Then both g1 and g2 are functions g such that g(x) = f(g[pred(x)]). �

A well-founded total order is usually said to be a well-ordered set. So (N, <) is
well-ordered. We now complete the circle of implications begun in the last two theorems.

Theorem ... Well-founded strict orders admit induction. �

For orders then, induction and recursion are equivalent. For iterative structures, they
are not.

.. More building blocks

Note that we have not proved that N exists. We might supply this deficiency by
offering the following recursive definition, namely,

() 1 ∈ N;
() if n ∈ N, then n1 ∈ N.

By n1 is meant the result of writing 1 to the right of n. So the natural numbers are
obtained as strings 1 · · ·1, whose entries are vertical strokes. It is an exercise to check
that the set of these strings is a model of the Peano axioms.

Note that our recursive definition of N is the recursive definition of a set; it should be
distinguished from the recursive definition of a function.

If A ⊆ dom(f) and f [A] ⊆ A, then A is closed under f . One of the axioms of set-
theory is that there is a set Ω that contains ∅ and is closed under the operation x 7→ x′,
where x′ is the (set-theoretic) successor of x and is given by

x′ = x ∪ {x}.
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So (Ω,∅, ′) is an iterative structure. The set ω is defined as the intersection of all subsets
of Ω that contain ∅ and are closed under x 7→ x′. Then (ω,∅, ′) satisfies the Peano
axioms (exercise). Again we could offer a recursive definition:

() ∅ ∈ ω;
() if n ∈ ω, then n ∪ {n} ∈ ω.

Normally ∅ is denoted by 0; and 0′, by 1. In general, when n ∈ ω, then

n = {0, 1, . . . , n− 1}.

It is notationally convenient to consider the natural numbers to be the elements of ω, in
the following way.

The set of all functions from a set A to a set B can be denoted by

BA. (∗)

If n ∈ ω, then the nth Cartesian power of A is

An.

Thus, the nth Cartesian power of A is the set of functions from {0, 1, . . . , n − 1} to A.
An element of An can be written as any one of

(a0, . . . , an−1), i 7−→ ai, ~a ;

it can be called an (ordered) n-tuple from A. Note well that

A0 = {∅} = {0} = 1;

this is true even if A is empty. Also, every element of A1 is {(0, a)} for some a in A. So
we have a bijection

x 7−→ {(0, x)} (†)

from A to A1. We may sometimes treat this bijection as an identification: that is, we
may neglect to distinguish between a and {(0, a)}.

For any m and n in ω, we have a bijection

(~x , ~y ) 7−→ ~x ̂~y (‡)

from Am × An to Am+n. In this notation, ~a ̂~b is the (m+ n)-tuple

(a0, . . . , am−1, b0, . . . , bn−1);

this is the (m + n)-tuple ~c such that

ck =

{
ak, if k < m;

bk−m, if m 6 k < m+ n.

We shall always treat the bijection in (‡) as an identification; in particular, we shall

always write (~a ,~b ) instead of ~a ̂~b .
An n-ary operation on A is a function from An to A. The set of these is

AAn

.

In particular, a 0-ary or nullary operation on A is an element of A1; by the bijection
in (†) then, we may identify a nullary operation on A with an element of A.

An n-ary relation on A is a subset of An; the set of these is

P(An).

Some people write AB instead.
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In particular, a nullary relation is a subset of A0, that is, of 1 (or {0}); so the nullary
relation is 0 or 1.

An n-ary operation on A is then a (certain kind of) subset of An×A, and this product
can be identified with An × A1 and hence with An+1; so an n-ary operation on A can be
thought of as an (n+ 1)-ary relation on A. More precisely, if f : An → A, then one may
refer to the (n+ 1)-ary relation

{(~x , f(~x )) : ~x ∈ An}

as the graph of f ; but there is a bijection between graphs in this sense and operations.

.. Well-ordered sets and cardinalities

The notion of cardinality of sets can be developed with the help of well-ordered sets.
An injection h from one relational structure, (A,R), to another, (B, S), is an embed-

ding if x R y ⇐⇒ h(x) S h(y). An isomorphism is then a surjective embedding. An
initial segment of a relational structure is a subset that contains all of the predecessors
of its elements. The initial segment is proper if it is not the whole order; otherwise it is
improper. Only initial segments of orders will be of interest to us.

Lemma ... Of any two well-ordered sets, one is isomorphic to an initial segment
of the other.

Proof. Let A and B be well-ordered sets, and let ∞ be a non-element of B. Define
h from A to B ∪ {∞} by

h(x) =

{
min(B r h[pred(x)]), if this exists;

∞, otherwise.

Let A∗ = {x ∈ A : h(x) 6= ∞} and h∗ = h � A∗. Then A∗ is an initial segment of A,
and h∗ is an isomorphism between this and an initial segment of B. Moreover, one of
these segments is improper. �

Lemma ... If A and B are well-ordered sets, and A is isomorphic to a proper
initial segment of B, then B is not isomorphic to an initial segment of A. �

A set is transitive if it properly includes each of its elements. So A is transitive if
and only if x ∈ A ⇐⇒ x ⊂ A, that is,

x ∈ A & y ∈ x =⇒ y ∈ A.

Lemma ... On a well-ordered set A, let h be defined by

h(x) = h[pred(x)].

Then the image of h is transitive, is well-ordered by membership (∈), and, with this
ordering, is isomorphic to A. �

A set is an ordinal if it is transitive and well-ordered by membership. Ordinals are
often denoted by small letters from the beginning of the Greek alphabet, as α and β.

Theorem ... Every member of an ordinal is an ordinal. On an ordinal, member-
ship is the same as proper inclusion (⊂). The set-theoretic successor of an ordinal is an
ordinal. The union of a set of ordinals is an ordinal. �
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Theorem .. (Burali-Forti Paradox). The class of ordinals is transitive and well-
ordered by membership, which is the same as proper inclusion. �

The paradox is that, if the class of ordinals is a set, then it is an ordinal, so it belongs
to itself and therefore properly includes itself, which is absurd. So the class of ordinals
is not a set; it is ‘too big’ to be a set; it is a proper class. The class of ordinals can be
understood to have the following recursive definition.

() ∅ is an ordinal;
() if x is an ordinal, then so is x′;
() the union of a set of ordinals is an ordinal.

In particular, ω and its elements are ordinals.
If A is a well-ordered set, then, by the lemmas, it is isomorphic to a unique ordinal.

Two sets have the same cardinality if there is a bijection between them. One of the
equivalent forms of the Axiom of Choice is that every set can be well-ordered. Therefore
every set has the same cardinality as some ordinal. The least ordinal with the same
cardinality as the set is the cardinality of the set. The cardinality of A is denoted by

|A|.

An ordinal that is the cardinality of some set is a cardinal. We have |A| 6 |P(A)|, but
there is no bijection between A and P(A); therefore |A| < |P(A)|. In particular, there is
no largest cardinality. This allows us to define, on the class of ordinals, the function

α 7−→ ℵα,

where ℵα is the least infinite cardinal greater than those ℵβ such that β < α. In particular,

ℵ0 = ω.

All of the finite ordinals are cardinals. These and ℵ0 are countable; the other cardinals
are uncountable.

.. Structures

An informal definition of structure was given in .; now we can give more formal
definition. A structure is an ordered pair (A, I), also referred to as A, where:

() A is a set, called the universe of the structure;
() I is a function, written also

s 7−→ sA,

whose domain L is called the signature of the structure;
() sA is either an element of A or an n-ary operation or relation on A for some

positive n, for each s in L.

Then A is more precisely an L-structure. or a structure of L. If L = {s0, s1, . . . }, then
A can be written

(A, s0
A, s1

A, . . . ).

The elements, operations, and relations sA may be called basic.
We have made use of the inductive structure (ω, 0, ′) to define Cartesian powers and

hence structures in general. Algebra provides a wealth of examples of structures:

() a group G, or (G, ·, −1, 1);
() an abelian group G, or (G,+,−, 0);
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() a unital ring R, or (R,+,−, ·, 0, 1);
() the ring Z, or (Z,+,−, ·, 0, 1);
() the field R, or (R,+,−, ·, 0, 1);
() the two-element field F2, or (F2,+,−, ·, 0, 1);
() a vector-space V over a field K; here the signature of V is

{+,−, 0} ∪ {a · : a ∈ K},

where a · is the singulary operation of multiplying by a.

Further examples include:

() an order (Ω, <);
() the ordered field R, or (R,+,−, ·, 0, 1, <).

From a set Ω arises what we might call the power-set structure on Ω, namely

(P(Ω),∩,∪, c,∅,Ω,⊆). (∗)

In case Ω is the 1-element set {0}, which is 1, then we have P(Ω) = {0, 1}, and we may
write out the structure in (∗) as

(B,N,∨,¬, 0, 1,�).

In particular, B = {0, 1}. I propose to refer to any structure with universe B as a
truth-structure. In this context, we can understand 1 as truth, and 0 as falsehood.
Propositional logic is the study of truth-structures.

With I as above in the arbitrary structure (A, I):

() sA is the interpretation in A of s;
() s is a symbol for sA.

So s is one of the following:

() a constant, if sA is an element of A;
() an n-ary function-symbol, if sA is an n-ary operation on A;
() an n-ary predicate, if sA is an n-ary relation on A.

Since nullary operations on A can be considered as elements of A, a constant can be
considered as a nullary function-symbol.

Suppose A and B are two structures with the same signature L. A homomorphism
from A to B is a function h from A to B such that

() h(cA) = cB for all constants c in L;
() h(fA(a0, . . . , an−1)) = fB(h(a0), . . . , h(an−1)) for all ai in A and n-ary function-

symbols f in L, for all positive n;
() (a0, . . . , an−1) ∈ RA =⇒ (h(a0), . . . , h(an−1)) ∈ RB for all ai in A, for all n-ary

predicates R in L, for all positive n.

To say that h is a homomorphism from A to B, we may write

h : A −→ B.

Then h is an isomorphism if it is a bijection and its inverse is a homorphism. If A ⊆ B,
and the inclusion of A in B is a homomorphism, then we write

A ⊆ B

Or relation-symbol.
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and say that A is a substructure of B. So a substructure of B is a structure whose
universe is a subset of B that is closed under the basic operations of B (including the
nullary operations).

.. Algebras

A structure in a signature with no predicates is an algebra, and the signature itself
may be called algebraic. In particular, iterative structures in the sense of §. are
algebras. A substructure of an algebra can be called a subalgebra. An arbitrary algebra
admits (proof by) induction if it has no proper subalgebras. An algebra A in signature
L admits recursion if, for each algebra B of L, there is a unique homomorphism from
A to B. The earlier definitions, for iterative structures, were just special cases of these.

There are also two ‘degenerate’ cases to consider. If there are no constants, then only
the empty structure admits induction or recursion. If there are no function-symbols (of
positive arity), an algebra admits induction if and only if its universe consists entirely of
interpretations of the constants; the algebra admits recursion if and only if, in addition,
distinct constants have distinct interpretations.

So the simplest interesting cases of algebras that admit induction or recursion are
just the ones we have already considered, namely the iterative structures, in a signature
consisting of one constant and one singulary function-symbol.

In the signature {1, s, t} with one constant and two singulary function-symbols, let A
be the structure whose universe comprises the binary numerals (starting with 1), where
1A is 1, and sA is adding 0 on the right, and tA is adding 1 on the right. Then 1110 =
sA(tA(tA(1))) = s(t(t(1))) = 1tts, and (part of) A might be depicted as follows.
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This structure admits induction, since every numeral can be obtained from 1 by appli-
cation of sA and tA; it admits recursion, since every numeral is so obtained in a unique
way.

Theorem .. (Recursion). An algebra admits recursion, provided:

() it admits induction,
() its basic operations are injections, and
() the ranges of these operations (including the nullary operations) are pairwise

disjoint.

Proof. Suppose A is an algebra, in a signature L, meeting the given conditions. Let
B be another L-structure. Let C be the set of all relations D from A to B such that, if
a D b, then either a = cA and b = cB for some constant c in L, or a = fA(d0, . . . , dn−1)
and b = fB(e0, . . . , en−1) for some n-ary function-symbol in L, for some positive n, where
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di D ei for each i in n. Then
⋃

C is a homomorphism from A to B (exercise); it is unique
by induction (exercise). �

The converse to this theorem, in the signature {1, s}, is Theorem ... The proof has
three parts: () all algebras in the signature that admit recursion are isomorphic; () there
is a particular algebra, namely (N, 1, s), that admits recursion and satisfies the hypotheses
of Theorem ..; () therefore all algebras in the signature that admit recursion must
satisfy the hypotheses. To follow this line of argument in arbitrary algebraic signatures,
we need to find, in every such signature, an example of an algebra that admits recursion.
A first step in this direction is the following.

Theorem .. (Induction). Every algebra has a unique subalgebra that admits in-
duction.

Proof. Let A be an algebra in a signature L. The set of subalgebras of A is nonempty
and ordered by the substructure-relation ⊆. If C is a set of subalgebras of A, then

⋂
C is

also a subalgebra of A (exercise). Therefore the intersection of the set of all subalgebras
of A is a subalgebra B of A. Then B has no proper subalgebras, so it admits induction;
and it is a subalgebra of every subalgebra of A, so it is the only subalgebra of A that
admits induction. �

The subalgebra B found in the proof can be understood as given by the following
recursive definition:

() cA ∈ B whenever c is a constant in L;
() for all positive n, for all n-ary function-symbols f in L, if ~a ∈ Bn, then fA(~a ) ∈

B.

For every algebraic signature L, there is an algebra A in L whose universe A is the
set of all strings of symbols from L, and where

() cA is just c, when c is a constant in L;
() when f is an n-ary function-symbol of L, then fA is the function that, from an

n-tuple (A0, . . . ,An−1) of strings in A, constructs the string fA0 · · ·An−1.

Let the least subalgebra of A be denoted by

Tm0(L);

this is the algebra of constant terms of L.
An initial segment of a string is a string obtained by deleting some (or no) entries

on the right. The initial segment is proper if it results from deleting at least one entry.

Lemma ... No proper initial segment of an element of Tm0(L) is an element of
Tm0(L).

Proof. We prove by induction that every element of Tm0(L) neither is a proper
initial segment of another element, nor has another element as a proper initial segment.
This is true for all constants in L, since all other terms start with function-symbols that
are not constants. Suppose the claim is true for terms t0, . . . , tn−1, and f is an n-ary
function-symbol in L. Suppose the term ft0 · · · tn−1 is a proper initial segment of some
other term. This term must take the form gu0 · · ·um−1. Then g is f , and there is some
k such that either tk is a proper initial segment of uk, or the other way around. Either
way contradicts the inductive hypothesis. There is a similar contradiction if some proper
initial segment of ft0 · · · tn−1 is a term. �
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Theorem ... Tm0(L) admits recursion.

Proof. Use the Recursion Theorem (..). By construction, Tm0(L) admits induc-
tion. Its basic operations are injective, since if ft0 · · · tn−1 is the same term as fu0 · · ·un−1,
then each ti must be the same as ui, by the last lemma. The basic operations have disjoint
images, since elements of the image of f all start with f . �

The converse of the Recursion Theorem (..) now follows in the manner suggested.
Moreover, another method of proving the Theorem itself now arises: If A and B are
algebras with the same signature, then the product algebra A × B can be defined in the
obvious way. If C is the subalgebra of this that admits induction, and if A meets the
conditions of the Recursion Theorem, then C is just a homomorphism from A to B.

If A is an algebra with signature L, then the interpretation c 7→ cA in A of the
constants in L extends recursively to a function t 7→ tA from Tm0(L) into A, once we
require

ft0 · · · tn−1
A = fA(t0

A, . . . , tn−1
A).

We now introduce a set {xk : k ∈ ω} of new symbols, to be called (individual)
variables. We may add some or all of these to L as new constants. For Tm0(L ∪
{x0, . . . , xn−1}), we write

Tmn(L);

this is the set of n-ary terms of L. The union of these sets is Tm(L). If t is an n-ary
term, and ~a is an n-tuple from an L-structure A, then we recursively obtain an element
tA(~a ) of A as follows:

() xk
A(~a ) = ak;

() cA(~a ) = cA;
() (ft0 · · · tn−1)

A(~a ) = fA(t0
A(~a ), . . . , tk−1

A(~a )).

We shall see a special case of the function t 7→ tA(~a ) in §. and then develop it more
generally in §..

.. Propositional logic

The function-symbols in the signature of a truth-structure can be called proposi-
tional connectives. Possibilities include

() the nullary connectives 0 and 1;
() the singulary connective ¬;
() the binary connectives N, ∨, ⇒, ⇔, and <.

Each of these has a standard interpretation as an operation on B. The interpretations of
connectives with positive arity can be given by truth-tables:

P ¬P
0 1
1 0

P Q P N Q P ∨Q P ⇒ Q P ⇔ Q P < Q
0 0 0 0 1 1 0
1 0 0 1 0 0 1
0 1 0 1 1 0 1
1 1 1 1 1 1 0

There is an alternative approach to truth-structures. We can first understand B as the
two-element field F2, with the following addition- and multiplication-tables.

Alternatively, they are Boolean connectives.
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+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Then < is another symbol for addition on this field; N is another symbol for multiplica-
tion; and the remaining connectives are as follows.

symbol interpretation
¬ x 7→ x + 1
∨ (x, y) 7→ x · y + x + y
⇒ (x, y) 7→ x · y + x + 1
⇔ (x, y) 7→ x + y + 1

As mentioned above (p. ), propositional logic is the study of truth-structures. A
particular propositional logic, or a propositional calculus, consists of:

() for each n in ω, a set of strings called n-ary (propositional) formulas;

() a function F 7→ F̂ that converts each n-ary propositional formula into an n-ary
operation on B;

() a set of formulas called axioms;
() some operations, called rules of inference, on the set of all formulas.

The axioms and rules of inference together constitute a proof system. Desirable features
of a propositional logic include the following.

The set of formulas should be defined recursively, so that it admits proof by induction.
Moreover, it should admit recursion itself. One way to achieve this, as shown in the
previous section, is to let formulas be terms in the sense defined there; but there are
alternatives.

The function F 7→ F̂, the set of axioms, and the rules of inference should then be
recursively defined.

For every n, for every n-ary operation g on B, there should be some k and some
(n+ k)-ary formula F such that

F̂(~x , ~y ) = g(~x ).

In particular, if i < n, then the projection ~x 7→ xi from Bn to B will be F̂ for some
formula F; most naturally, this formula is just Pi, a propositional variable. (This is a
special case of the individual variables introduced in the last section.)

There will be propositional connectives, as mentioned above. These need not be
formulas by themselves; but if ∗ is an n-ary connective, then there is a corresponding
interpretation ∗̂ as an n-ary operation on B. If F0, . . . , Fn−1 are m-ary formulas, then
there should be an m-ary formula G such that

Ĝ = ∗̂ ◦ (F̂0, . . . , F̂n−1).

This G will presumably be some string in which ∗ appears as an entry, and in which the
Fi appear as substrings.

If a substring of a formula is also a formula, and it is replaced by another formula,
then the result should still be a formula, and that in a ‘natural’ way.

If F̂ is constantly 1, then F is a tautology. It is desirable that all axioms be tau-
tologies, and that the set of tautologies be closed under the rules of inference. Moreover,
it is desirable that the set of tautologies be least with these properties. Then the set of
tautologies will be recursively defined and so admit induction.
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In general, logic begins as a way to understand ordinary language and to make it pre-
cise. Propositional connectives correspond to conjunctions and other ‘structural’ words
like and, or, not, and if. . . then. For example, we interpret the connectives ¬ and ⇒ as
in the truth-tables above, because:

() we think of 0 as falsity and 1 as truth;
() we take ¬ to stand for a word like not that negates sentences, and we take ⇒ to

stand for the locution if. . . then;
() in our mathematical writing at any rate,

(a) a claim will be true if and only if its negation is false, and
(b) an implication If A, then B will be false if and only if A is true, but B is

false.

The function F 7→ F̂ assigns a ‘meaning’ to formulas. Hence anything to do with this
function can be called semantic. By contrast, a proof system is syntactic, involving
formulas only as strings. (The etymologies of semantic and syntactic are discussed in
Appendix D.) Gottlob Frege is credited with the first proof system. A bit of his peculiar
notation (discussed in Appendix E) survives: If F is an axiom or can be obtained from
the axioms by (possibly repeated) application of the rules of inference, then we write

` F,

apparently borrowing from Frege’s notation. By contrast, if F is a tautology, then we
may write

� F.

It is easy to ensure that ` F implies � F. Forty-two years after Frege, in , Emil Post
published a proof [, p. ] that there are proof systems in which ` F if and only if
� F.

Exercises

Exercise .. Suppose A is an inductive structure, and B is another structure in the
signature {1, s}, where 1A = 1B, and the two functions sA and sB agree on the intersection
A ∩ B of their domains (that is, sA � A ∩ B = sB � A ∩B). Prove that A ⊆ B.

Exercise .. Prove Theorem .. by obtaining f as an intersection of relations
from A to B.

Exercise ..

() Find a relational structure (A,<) that admits induction, although < is not tran-
sitive.

() Prove Lemma ...
() Find a partial order that admits induction.

Exercise .. Prove Lemma ...

Exercise .. Prove Theorem ...

Exercise .. Prove that N as defined in §. is indeed a model of the Peano axioms.

Exercise .. Prove that ω is a model of the Peano axioms.

It is possible to think the other way, where 0 is truth and 1 is falsity; this is done, for example, in
[, Ch. , Exercise ., p. ].



EXERCISES 

Exercise .. Supply all missing details in §..

Exercise .. Verify that the definition of isomorphism given in §. for relational
structures agrees with that given in §. for arbitrary structures.

Exercise .. Supply the missing details in the proof of Theorem ...

Exercise .. Prove that the intersection of a set of subalgebras of an algebra is a
subalgebra.

Exercise .. Fill in the details of the alternative proof of the Recursion Theorem
(..) mentioned after Theorem ...



CHAPTER 

Propositional model theory

.. Propositional formulas

This chapter presents a kind of model theory of propositional logic. It is inspired in
part by Chang and Kiesler [, § .], who describe the subject as ‘ “toy” model theory’. In
this toy model theory, the role of structures will by played by truth-assignments. These
will provide interpretations for propositional formulas and will serve as models for sets
of propositional formulas.

Until §., the official signature for our propositional logic will be {¬,⇒}. Our
propositional variables will compose the set {P0, P1, . . . }, or {Pn : n ∈ ω}; we may
also denote this set by

V.

To denote arbitrary members of V , we may use the boldface letters P, Q, and R. These
are in boldface as a reminder that they are not themselves propositional variables. The
set of propositional formulas will be called

PF.

We give this a recursive definition:

() Every propositional variable belongs to PF;
() if A belongs to PF, then so does ¬A;
() if A and B belong to PF, then so does (A ⇒ B).

So the propositional formulas are among the strings, each of whose entries is

() an element of the set V of variables, or
() one of the connectives ¬ or ⇒, or
() one of the parentheses ( or ).

We may refer to an arbitrary such string by A or B, as we did in the definition of PF;
we may refer to a formula by F, G, H, or K.

A formula obtained as ¬F is a negation; as (F ⇒ G), an implication. So negations
begin with the negation-sign ¬; implications, with the left parenthesis (. Every other
formula is simply a variable.

We may also refer to the operations of forming ¬A from A, and (A ⇒ B) from (A,B),
as negation and implication respectively. We may denote the operation of negation by
neg; of implication, by imp. Then (PF, P0, P1, P2, . . . , neg, imp) is the algebra admitting
induction whose existence is guaranteed by the Induction Theorem (..).

In technical terms, they are syntactical variables. That is, they are certain symbols of the syntax

language. This is the language—English, with some extra symbols—that we are using now. We are using
this syntax language to talk about the object language,which in this case is the language of propositional
logic. See [, § ].


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By induction one can prove for example that every propositional formula has the same
number of left as right parentheses. A somewhat more interesting induction will prove
Theorem .. below.

Suppose g : V → PF. We can use this as a basis for substituting formulas for variables
in a formula. Indeed, suppose F is an n-ary formula, so that its variables appear in the
list (P0, . . . , Pn−1). Then we can denote F more precisely by

F(P0, . . . , Pn−1).

Suppose g(Pk) is Gk for each k in ω. If we go through F entry by entry, replacing each
variable Pk with the formula Gk, then the resulting string can be denoted by

F(G0, . . . ,Gn−1),

or simply by

F(g).

This is the result of substitution with respect to g. If exactly m entries in F are
variables, so that F can be written as

. . . Pk0
. . . Pk1

. . . · · · . . . Pkm−1
. . . ,

then the formula F(g) is

. . .Gk0
. . .Gk1

. . . · · · . . .Gkm−1
. . .

Theorem ... If g : V → PF, and F is in PF, then so is F(g).

Proof. By induction on formulas, we prove that the set of formulas F such that F(g)
is a formula is all of PF.

() If P is a variable, then g(P) is assumed to be a formula; but P(g) is g(P), so
P(g) is in PF.

() Suppose F(g) is a formula H. Then substitution with respect to g in ¬F results
in ¬H, which is in PF by its definition.

() Suppose F(g) and G(g) are formulas H and H′ respectively. Then (F ⇒ G)(g)
is (H ⇒ H′), which again is in PF by definition.

This completes the induction and the proof. �

If the foregoing discussion of substitution seems too informal or imprecise, let it be
noted that the operation F 7→ F(g) can be defined recursively, by means of Theorem ..
below. However, substitution makes sense for sets of strings that do not admit recursion
or even induction.

.. Recursion

More is true than that PF is defined recursively, so that it admits proof by induction.
Every propositional formula carries the history of its construction, which can be displayed
in a tree whose ‘trunk’ or ‘root’ is the formula, and whose ‘leaves’ are variables. For
example, the formula (P0 ⇒ (¬P0 ⇒ P1)) can be analyzed in the following way, up to

The English analyze is from the Greek ¢νάλυσις, which literally means a freeing up.
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the variables.
P0

??

¬P0
??

P1
��

P0
??

(¬P0 ⇒ P1)
jjjj

(P0 ⇒ (¬P0 ⇒ P1))

We can also draw this picture upside down, showing the formula as built up from the
variables.

(P0 ⇒ (¬P0 ⇒ P1))

(¬P0 ⇒ P1)

TTTT

¬P0

��

P0

������������
P0

��
P1

///////

By the formal definition, a tree is an order (T,<) such that, for each element of T ,
the set of predecessors of that element is well-ordered by <. In the tree above, we have
F < G just in case G is a subformula of F. Trees can be drawn for all formulas, because
of Lemma .. below. First, an analogue of Lemma .. is

Lemma ... No proper initial segment of a propositional formula is a formula.

Proof. We prove by induction that every formula neither has a proper initial segment
that is a formula, nor is itself a proper initial segment of another formula.

By definition of PF, as we noted, every formula that is not just a variable starts with
¬ or (. So our claim holds for variables.

Suppose the claim holds for F. Then it holds for ¬F. Indeed, if ¬F has an initial
segment that is a formula, then we can write this formula as ¬H, where H is a formula.
But H is an initial segment of F, so by inductive hypothesis it must be F itself. Similarly,
¬F is not a proper initial segment of another formula.

Finally, suppose the claim holds for F and G. Then it holds for (F ⇒ G). Indeed,
suppose this has an initial segment that is a formula; then we can write this formula as
(H ⇒ K) for some formulas H and K. But then H is an initial segment of F, or the
other way around. Therefore H is F. Hence K is an initial segment of G, or the other
way around, so K is G. Similar considerations apply if (F ⇒ G) is an initial segment of
a formula. �

Lemma .. (Unique Readability). The operations neg and imp on PF are injective,
and their images are disjoint from each other and from V .

Proof. We already know that the images are disjoint since negations start with ¬;
implications, (. The operation of negation is injective, since if ¬F and ¬G are the same
formula, then so are F and G. Finally, if (F ⇒ G) and (H ⇒ K) are the same formula,
then F is an initial segment of H, or the other way around, so F and H are the same by
Lemma .., and hence so are G and K; thus implication is injective. �

Hence an implication takes the form (F ⇒ G) for some unique formulas F and G.
We may refer to F as the antecedent; G, the consequent; of the implication. By
Theorem .., we conclude
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Theorem .. (Recursion). Suppose A is a set, and

() h0 : V → A,
() g1 is a singulary operation on A, and
() g2 a binary operation on A.

Then there is a unique function h on PF such that

() h agrees with h0 on V ;
() h(¬F) = g1(h(F)), for all F;
() h((F ⇒ G)) = g2(h(F), h(G)), for all F and G. �

Corollary. Suppose

() h0 : V → A,
() g1 : PF × A→ A, and
() g2 : (PF × A)2 → A.

Then there is a unique function h on PF such that

() h agrees with h0 on V ;
() h(¬F) = g1(F, h(F)) for all F;
() h((F ⇒ G)) = g2((F, h(F)), (G, h(G))) for all F and G. �

We used Unique Readability (Lemma ..) to obtain the Recursion Theorem (..)
and its corollary. Conversely, Unique Readability follows from Recursion by the general
method given in §.. It also follows directly from the corollary. Indeed, using the
notation of this corollary, let A be PF, let h0 and g1 be chosen arbitrarily, and let g2 be

((F,F′), (G,G′)) 7−→ F.

Let h be the function guaranteed by the corollary. Then h((F ⇒ G)) = F. Thus h
selects, from an implication, its antecedent. Since h is a function, the antecedent must
be unique. Similarly for the consequent.

Note well that the Recursion Theorem is not a consequence of the Induction Theorem
alone. For example, suppose we define PF without using parentheses. We shall still be
able to use induction, but if we are not careful, we shall not have definitions by recursion.
Indeed, say we define nPF (for ‘not PF’) so that:

() each variable is in nPF;
() if A is in nPF, then so is ¬A;
() if A and B are in nPF, then so is A ⇒ B.

Then proof by induction in nPF is possible. However, suppose we try to define by
recursion a function f from nPF into PF so as to send every element of the former to its
‘equivalent’ in the latter:

() f(P) = P;
() f(¬F) = ¬f(F);
() f(F ⇒ G) = (f(F) ⇒ f(G)).

This fails as the definition of a function, since it implies that f(P0 ⇒ P1 ⇒ P2) must be
both (P0 ⇒ (P1 ⇒ P2)) and ((P0 ⇒ P1) ⇒ P2), even though these are different formulas.

.. Notation

A correct way to avoid using parentheses is to use Łukasiewicz or Polish notation,
writing ⇒ F G instead of (F ⇒ G). This is just the notation used for terms in §..
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Alternatively, without changing the order of symbols, we can remove some parentheses
from the formulas in PF, obtaining a set PF′ of formulas that still admits recursion. To
be precise, every formula in PF′ will be a variable, a negation, or an implication. Then
the recursive definition of PF′ is as follows.

() V is the set of variables in PF′.
() If A is a variable or a negation in PF′, then ¬A is a negation in PF′.
() If A is an implication in PF′, then ¬(A) is a negation in PF.
() If A is a variable or a negation in PF′, and B is in PF′, then A ⇒ B is an

implication in PF′.
() If A is an implication in PF′, and B is in PF′, then (A) ⇒ B is an implication

in PF′.

Thus, no formula in PF′ is enclosed in parentheses; but an implication must be so enclosed
when it is negated or used as the antecedent of another implication. It is left to the
reader to formulate and prove an analogue of the Recursion Theorem (..), so that the
following can then be proved:

Theorem ... There is a unique bijection F 7→ F from PF to PF′ such that

() P = P for all variables P;

() ¬F =

{
¬F, if F is a variable or negation;

¬(F), if F is an implication;

() (F ⇒ G) =

{
F ⇒ G, if F is a variable or negation;

(F) ⇒ G, if F is an implication.

The inverse of this function is a function F 7→ F from PF′ to PF such that

() P = P for all variables P;
() ¬F = ¬F;
() ¬(F) = ¬F;
() F ⇒ G = (F ⇒ G);
() (F) ⇒ G = (F ⇒ G).

Proof. In the notation of the corollary to the Recursion Theorem for Formulas, let
A be the set of strings of the symbols in V ∪ {⇒,¬, (, )}, let h0 be the inclusion of V in
A, and let

g1(F,A) =

{
¬A, if F is a variable or negation;

¬(A), if F is an implication;

g2((F,A), (G,B)) =

{
A ⇒ B, if F is a variable or negation;

(A) ⇒ B, if F is an implication.

Then the function from PF to PF′ exists uniquely as desired. This function is bijective,
with inverse as claimed (details are left to the reader). �

Henceforth we may use formulas PF′ to denote the corresponding formulas in PF.
But the official formulas still belong to PF. This is an important point. Substitution in
formulas in PF′ may have undesirable results. For example, in P0 ⇒ P1, if we substitute
P0 ⇒ P2 for P0, we get P0 ⇒ P2 ⇒ P1, which corresponds to the formula (P0 ⇒ (P2 ⇒
P1)) in PF; but this is not what we get by substituting (P0 ⇒ P2) for P0 in (P0 ⇒ P1).
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.. Truth

A truth-assignment is a function from V to B. Let ε be such a function. It
determines a substitution F 7→ F(ε) as in § ., although 0 and 1 are not formulas in PF.
By recursion, ε uniquely determines a function h on PF as follows.

h(P) = ε(P);

h(¬F) =

{
1, if h(F) = 0;

0, if h(F) = 1;

h(F ⇒ G) =

{
0, if h(F) = 1 and h(G) = 0;

1, otherwise.

Alternatively, using the considerations in §., we have

h(¬F) = h(F) + 1;

h(F ⇒ G) = h(F) · h(G) + h(G) + 1.

That is, h is the unique homomorphism from (PF, P0, P1, . . . , neg, imp) into

(B, ε(P0), ε(P1), . . . , x 7→ x + 1, (x, y) 7→ x · y + y + 1).

As such, it can be compared with the function t 7→ tA(~a ) defined in §.. We can denote
the homomorphism h by

F 7−→ F̂(ε).

If F is an n-ary formula, then F̂(ε) depends only on the n-tuple (ε(P0), . . . , ε(Pn−1)).
(This is obvious, but can be confirmed by induction on formulas.) Denoting this n-tuple
more briefly by ~e , we may write

F̂(~e )

instead of F̂(ε), and we may refer to ~e as an n-ary truth-assignment. Then the n-ary
operation

~e 7−→ F̂(~e ),

or just F̂, on B is the interpretation of F. The number F̂(~e ) is the truth-value of F

with respect to ε or ~e . In particular, F is true in ε (or ~e ) if F̂(ε) = 1; otherwise, F is
false in ε (or ~e ).

The truth-values of an n-ary formula F with respect to all n-ary truth-assignments
can be given in a truth-table with 2n rows and with one column for each entry in F

that is not a parenthesis. For example, the table for P0 ⇒ ¬P0 ⇒ P1 is the following.

P0 ⇒ ¬ P0 ⇒ P1

0 1 1 0 0 0
1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 1 1 1

In general, we can think of the rows as indexed by the numbers less than 2n, written in

binary notation. Indeed, let us define the elements e
(k)
i of B, where i < n and k < 2n, by

k =
n−1∑

i=0

e
(k)
i · 2i.
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Then row k of the truth-table corresponds to the truth-assignment (e
(k)
0 , . . . , e

(k)
n−1). The

corresponding truth-value for ¬F will be found in the column indexed by ¬; for F ⇒ G,
by ⇒. The truth-table for Pi is

e
(0)
i
...

e
(2n−1)
i

The truth-table for ¬F is S T , where T is the table for F, and, assuming the column of
T giving the values of F is

f0
...

f2n−1

then S is the column
f0 + 1

...
f2n−1 + 1

Similarly, the truth-table for F ⇒ G takes the form T0 S T1, where T0 is the table for F;
T1, for G; and S gives the values of F ⇒ G.

The following may seem obvious, once it is understood.

Theorem .. (Associativity). Suppose F is an n-ary formula, and H is a formula
F(G0, . . . ,Gn−1), and ~e and ~f are truth-assignments (of appropriate arity) such that

Ĝk(~e ) = fk

for each k in n. Then
F̂(~f ) = Ĥ(~e ).

Proof. We use induction on F. If F is a variable, then it is Pk for some k in n, so
H is Gk, and

Ĥ(~e ) = Ĝk(~e ) = fk = P̂k(~f ) = F̂(~f ).

Suppose the claim is true when F is F0 or F1. If F is ¬F0, then H is ¬H0, where H0 is
F0(G0, . . . ,Gn−1), so that

Ĥ(~e ) = 1 + Ĥ0(~e )

= 1 + F̂0(~f ) [by inductive hypothesis]

= F̂(~f ).

The remaining case, where F is (F0 ⇒ F1), is left to the reader. �

A formula is a tautology if it is true in every truth-assignment. The Associativity
Theorem immediately yields

Theorem .. (Substitution). If F is an n-ary tautology, then F(G0, . . . ,Gn−1) is
a tautology. �

Two n-ary formulas F and G are (logically) equivalent if the operations F̂ and Ĝ

are the same. Suppose F appears as a substring of H, so that H can be written as

. . .F . . .
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We might expect to be able to replace F with G, obtaining a new formula

. . .G . . .

or H′ such that, if F and G are equivalent, then so are H and H′. However, this fails for
PF′. For example, P0, P0 ⇒ P0, and ¬(P0 ⇒ P0) are formulas in PF′, but in the last, if
we replace P0 ⇒ P0 with P0, we get the non-formula ¬(P0).

In PF, replacement does work in the obvious way. First we define subformulas
recursively: Every formula is a subformula of itself, and moreover,

() subformulas of F are subformulas of ¬F;
() subformulas of F or G are subformulas of (F ⇒ G).

Lemma ... In PF, a formula that is a substring of F is a subformula of F. �

Lemma ... In a formula of PF, if a subformula is replaced with another formula,
the result is a formula.

Proof. The claim is trivially true when the original formula is a variable. Suppose
it is true when the original formula is F or G. Then it is true for ¬F and (F ⇒ G) as
well, since the proper subformulas of these are subformulas of F or G. �

Theorem .. (Replacement). In PF, suppose F and F′ are equivalent, and F is a
subformula of G, and G′ is the result of replacing F in G with F′. Then G and G′ are
equivalent. �

.. Logical entailment

We can think of truth as a relation from BV to PF, namely the truth-relation, �,
given by

ε � F ⇐⇒ F̂(ε) = 1. (∗)

The complement of � can be denoted by 2. Hence we can express a fundamental fact as
follows:

Lemma ... For all truth-assignments ε and formulas F,

ε � F ⇐⇒ ε 2 ¬F. (†)

Proof. Suppose e ∈ B. Then e = 1 ⇐⇒ e 6= 0 ⇐⇒ e + 1 = 0. Let G be ¬F.
Then

ε � F ⇐⇒ F̂(ε) = 1

⇐⇒ 1 + F̂(ε) = 0

⇐⇒ Ĝ(ε) = 0

⇐⇒ Ĝ(ε) 6= 1

⇐⇒ ε 2 G

⇐⇒ ε 2 ¬F,

as desired. �

Immediately,

ε 2 F ⇐⇒ ε � ¬F.
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From the truth-relation, we obtain three new functions, as follows. A model of a set
of formulas is a truth-assignment in which every element of the set is true. If Σ is a set
of formulas, let

Mod(Σ)

be the set of its models. This is the set⋂

F∈Σ

{ε ∈ BV : ε � F}.

We now have a function Σ 7→ Mod(Σ) from P(PF) to P(BV ). The theory of a set of
truth-assignments is the set of formulas that are true in all of the truth-assignments. If
E is a set of truth-assignments, let

Th(E)

be its theory. This is the set ⋂

ε∈E

{F ∈ PF: ε � F}.

So we have a function E 7→ Th(E) from P(BV ) to P(PF). The logical consequences
of a set of formulas are the formulas that are true in every model of the set. The logical
consequences of Σ compose a set

Con(Σ).

This is the set ⋂

ε∈Mod(Σ)

{F ∈ PF: ε � F},

which is
Th(Mod(Σ)).

So we have a singulary operation Σ 7→ Con(Σ) on P(PF). If T is a set of formulas that
is the theory of some set of truth-assignments, then T can be called a theory, simply. If
F is a logical consequence of Σ, we may say also that Σ logically entails F. So we have
several ways of saying the same thing:

() F is a logical consequence of Σ;
() Σ logically entails F;
() F ∈ Con(Σ).

The logical consequences of ∅ are called tautologies; these are the formulas that are
true in every truth-assignment.

Note well that the definition of logical entailment is not recursive. There is, at the
moment, no obvious way to prove by induction that a given set of formulas contains all
logical consequences of Σ (or even all tautologies).

Lemma ... The functions Σ 7→ Mod(Σ) and E 7→ Th(E) are inclusion-reversing,
that is,

() Σ ⊆ Γ =⇒ Mod(Γ) ⊆ Mod(Σ), and
() D ⊆ E =⇒ Th(E) ⊆ Th(D).

The operations Σ 7→ Con(Σ) and E 7→ Mod(Th(E)) are increasing, that is,
() Σ ⊆ Con(Σ);
() E ⊆ Mod(Th(E)). �

Another way might be Σ � F, as suggested in §.; but this should not be confused with the notation
introduced in (∗), which has a different meaning.
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Theorem ... A subset Σ of PF is a theory if and only if

Σ = Con(Σ).

Proof. If Σ = Con(Σ), then Σ is the theory of Mod(Σ). For the converse, note from
the lemma that Th(E) ⊆ Con(Th(E)) by (), but

Con(Th(E)) = Th(Mod(Th(E))) ⊆ Th(E)

by (), so Th(E) = Con(Th(E)). �

See Appendix F for a discussion of the functions Σ 7→ Mod(Σ) and E 7→ Con(E) in
general terms.

.. Compactness

A set of formulas with a model can be called satisfiable.

Lemma ... Σ logically entails F if and only if Σ ∪ {¬F} is not satisfiable.

Proof. Suppose Σ does not logically entail F. Then Σ has a model ε in which F is
false. Hence ε � ¬F by Lemma .., so ε is a model of Σ ∪ {¬F}. Suppose conversely
that Σ ∪ {¬F} has a model. Then F is false in this model, again by Lemma .., so F

is not a logical consequence of Σ. �

A set of formulas whose every finite subset has a model can be called finitely satis-
fiable.

Lemma ... If Σ is finitely satisfiable, then so is Σ ∪ {F} or Σ ∪ {¬F}.

Proof. Suppose Σ is finitely satisfiable, but Σ ∪ {F} is not. Then there is a finite
subset Γ of Σ such that Γ∪{F} has no model. Then Γ∪{¬¬F} has no model, so Γ � ¬F

by the last lemma. Say Λ is another finite subset of Σ. Then Γ∪Λ is also a finite subset
of Σ, so it has a model, and ¬F is true in each of its models. Thus Λ∪{¬F} has a model,
by Lemma ... Hence Σ ∪ {F} is finitely satisfiable. �

Theorem .. (Compactness). Every finitely satisfiable set of formulas is satisfiable.

Proof. Let Σ be finitely satisfiable. By recursion (in the sense of Theorem ..), we
first define a function n 7→ Fn from ω into PF. Suppose {Fk : k < n} has been defined.
We then let Fn be Pn, if Σ ∪ {Fk : k < n} ∪ {Pn} is finitely satisfiable; otherwise, Fn is
¬Pn. This completes the recursive definition.

We now observe by induction that every set Σ ∪ {Fk : k < n} is finitely satisfiable.
Indeed, it is true by assumption when n = 0; and if it is true when n = m, then it is true
when n = m + 1, by the last lemma and the definition of the Fk.

Now let ε be the truth-assignment given by

ε(Pk) =

{
1, if Fk = Pk;

0, if Fk = ¬Pk.
(∗)

This is a model of Σ. Indeed, suppose G ∈ Σ. Then G is n-ary for some n. The finite
set {G}∪{Fk : k < n} has a model ζ. In particular, ζ must agree with ε on {Pk : k < n}
(why?); so ε � G. �



 . PROPOSITIONAL MODEL THEORY

There are sets Σ of formulas such that every finite subset of Σ has a model that is
not a model of Σ itself. For example, let Σn comprise the formulas

P0 ⇒ P1 ⇒ · · · ⇒ Pk

where k < n. (The precise recursive definition of the sets Σn is left as an exercise.) So
Σ0 is empty, Σ1 = {P0}, and we have a chain

Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · .

Let Σ =
⋃

n∈ω
Σn. Then every finite subset of Σ is a subset of some Σn. Let εn be the

truth-assignment such that

εn(Pk) = 1 ⇐⇒ k < n.

Then εn is a model of Σn, but not of Σn+1 (why?), hence not of Σ. But Σ must have a
model, by Compactness. In fact, Pk 7→ 0 is a model.

If a set A is a finite subset of a set B, we may denote this by

A ⊆f B.

Now one consequence of the Compactness Theorem can be expressed as follows:

Corollary. Con(Σ) =
⋃

Γ⊆fΣ

Con(Γ).

Proof. By Theorem .., it is enough to show that

Con(Σ) ⊆
⋃

Γ⊆fΣ

Con(Γ).

Suppose F is not a member of the union. Then, for each finite subset Γ of Σ, the set
Con(Γ) does not contain F, and so the set Γ∪ {¬F} is satisfiable, by Lemma ... This
means Σ ∪ {¬F} is finitely satisfiable; so it is satisfiable, by the Compactness Theorem.
Therefore ¬F /∈ Con(Σ), again by Lemma ... �

.. Syntactic entailment

Logical entailment is one way to derive formulas from a given set of formulas. Another
way is by formal proof or deduction.

A proof system consists of axioms and rules of inference. An axiom is a particular
formula, and a rule of inference is a clearly defined way of obtaining one formula from
finitely many others. Then a formal proof from a set Σ of formulas is a list of formulas,
each of which is an element of Σ, or is an axiom, or is obtainable by a rule of inference from
formulas appearing earlier on the list. The last formula on the list is the conclusion; the
formulas in Σ are hypotheses from which this conclusion is deducible in the system.
We may say also that the conclusion is a syntactic consequence of the hypotheses.

Our axioms will take any of the following three forms:

() F ⇒ G ⇒ F (Affirmation of the Consequent),
() (F ⇒ G ⇒ H) ⇒ (F ⇒ G) ⇒ F ⇒ H (Self-Distribution of Implication),
() (¬F ⇒ ¬G) ⇒ G ⇒ F (Contraposition).

Church [, §, p. ] uses this term for this axiom. However, the term is also used for the fallacy
of concluding F from G and F ⇒ G.
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That is, the axioms are K0(F,G), K1(F,G,H), and K2(F,G), where the formulas Ki

are respectively P0 ⇒ P1 ⇒ P2, (P0 ⇒ P1 ⇒ P2) ⇒ (P0 ⇒ P1) ⇒ P0 ⇒ P2, and
(¬P0 ⇒ ¬P1) ⇒ P1 ⇒ P0. Our only rule of inference will be Detachment, or Modus

Ponens, namely, that from formulas F and F ⇒ G, the formula G can be derived. If F

is deducible from Σ, then we shall write

Σ ` F.

If F is deducible from ∅, then we may just write

` F.

(See Appendix E on the origin of this notation.)

Lemma ... ` F ⇒ F.

Proof. The following is a formal proof, with justifications.

() F ⇒ (F ⇒ F) ⇒ F [Affirmation of the Consequent]
() (F ⇒ (F ⇒ F) ⇒ F) ⇒ (F ⇒ F ⇒ F) ⇒ F ⇒ F [Self-Distribution of ⇒]
() (F ⇒ F ⇒ F) ⇒ F ⇒ F [Detachment from () and ()]
() F ⇒ F ⇒ F [Affirmation of the Consequent]
() F ⇒ F [Detachment from () and ()]

Thus ` F ⇒ F. �

The next two lemmas are immediate.

Lemma ... If Σ ` F, and Σ ⊆ Γ, then Γ ` F. �

Lemma ... Every initial segment of a formal proof is itself a formal proof. �

Theorem ... The set of syntactic consequences of a set Σ is the set Γ given
recursively by the following rules:

() Σ ⊆ Γ;
() Γ contains the axioms;
() if F ∈ Γ, and F ⇒ G is in Γ, then G ∈ Γ.

Thus the set of syntactic consequences of Σ admits induction.

Proof. Let Γ′ be the set of syntactic consequences of Σ. We first prove Γ ⊆ Γ′ by
induction. If F belongs to Σ or is an axiom, then F is a one-line proof that Σ ` F, so
F ∈ Γ′. If F and F ⇒ G are in Γ′, then they have formal proofs

(H1, . . . ,Hm−1,F), (K1, . . . ,Kn−1,F ⇒ G)

respectively; but then

(H1, . . . ,Hm−1,F,K1, . . . ,Kn−1,F ⇒ G,G)

is a formal proof of G, so G ∈ Γ′. By induction, Γ ⊆ Γ′.
Now we show Γ′ ⊆ Γ by induction on the lengths of formal proofs. Suppose F ∈ Γ

whenever F has a formal proof from Σ of length less than n. Suppose G has a formal proof
from Σ of length n. If G is an element of Σ or an axiom, then G ∈ Γ by definition. The
only other possibility is that, in its proof, G is preceded by F and (F ⇒ G). Then, by
inductive hypothesis and Lemma .., both F and F ⇒ G are in Γ, so that G ∈ Γ. �
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The proof that Γ′ ⊆ Γ is ‘really’ by induction on the set of formal proofs, when this
is ordered so that the predecessors of a proof are its proper initial segments. Indeed, the
set of formal proofs then becomes a tree, and trees admit proof by induction (exercise).
In particular, one shows by induction that, for all formal proofs (F0, . . . ,Fn−1,G) from
Σ, we have G ∈ Γ.

We can understand the last theorem as that formal proofs themselves correspond to
certain trees. For example, the proof of F ⇒ F can be written as the following tree.

F ⇒ (F ⇒ F) ⇒ F

77
77

77
77

(F ⇒ (F ⇒ F) ⇒ F) ⇒ (F ⇒ F ⇒ F) ⇒ F ⇒ F
eeeeee

(F ⇒ F ⇒ F) ⇒ F ⇒ F

uu
uuu

uu
uu

uu
u

F ⇒ F ⇒ F
III

I

F ⇒ F

However, the formula F ⇒ F does not appear to carry within itself this tree: there is no
obvious way to extract the tree from the formula.

Establishing syntactic entailment by formal proof is usually quite tedious. Theo-
rem .. allows some short-cuts, including the following.

Corollary .

() if F ∈ Σ, then Σ ` F;
() if F is an axiom, then Σ ` F;
() Detachment: if Σ ` F, and Σ ` F ⇒ G, then Σ ` G. �

Corollary .

() Affirmation of the Consequent: If Σ ` F, then Σ ` G ⇒ F.
() Self-Distribution of Implication: If Σ ` F ⇒ G and Σ ` F ⇒ G ⇒ H,

then Σ ` F ⇒ H.
() Contraposition: If Σ ` ¬F ⇒ ¬G, then Σ ` G ⇒ F. �

More short-cuts are as follows.

Theorem .. (Deduction). Σ ` F ⇒ G ⇐⇒ Σ ∪ {F} ` G.

Proof. The forward implication is an exercise. The reverse implication is by induc-
tion on the lengths of formal proofs. Suppose this implication holds for all G that have
formal proofs shorter than the proof of H; and suppose Σ ∪ {F} ` H. With respect to
the formal proof, there are three possibilities for H.

If H is an axiom, or is one of the formulas in Σ, then Σ ` H; hence Σ ` F ⇒ H by
Affirmation of the Consequent.

If H is F, then ` F ⇒ H by Lemma .., so Σ ` F ⇒ H by Lemma ...
The last possibility is that, in its formal proof, H is preceded by some formulas K

and K ⇒ H. By Lemma .., these formulas are deducible from Σ ∪ {F}, and the
inductive hypothesis applies to them. Therefore Σ ` F ⇒ K and Σ ` F ⇒ K ⇒ H.
By Self-Distribution of Implication, Σ ` F ⇒ H. This completes the induction and the
proof. �

Again, the proof is ‘really’ by induction in the tree of formal proofs.
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Lemma ... If Σ ` F, and Γ ` G for all G in Σ, then Γ ` F. �

Lemma ... The following are deducible from ∅:
() ¬G ⇒ G ⇒ F;
() ¬¬F ⇒ F;
() F ⇒ ¬¬F;
() (F ⇒ G) ⇒ ¬G ⇒ ¬F;
() F ⇒ ¬G ⇒ ¬(F ⇒ G).
() (F ⇒ G) ⇒ (¬F ⇒ G) ⇒ G.

Proof. We have

{¬G} ` ¬G,

{¬G} ` ¬F ⇒ ¬G, [Affirmation of the Consequent]

{¬G} ` G ⇒ F, [Contraposition]

` ¬G ⇒ G ⇒ F, [Deduction]

and thus (). As a special case of the penultimate conclusion,

{¬¬F} ` ¬F ⇒ ¬¬¬F,

{¬¬F} ` ¬¬F ⇒ F, [Contraposition]

{¬¬F} ` F, [Deduction]

` ¬¬F ⇒ F, [Deduction]

so (). Part () is an exercise. For (), we have

{F ⇒ G,F} ` G,

{F ⇒ G,¬¬F} ` G, [Lemma .. and ()]

{F ⇒ G,¬¬F} ` ¬¬G, [()]

{F ⇒ G} ` ¬¬F ⇒ ¬¬G,

{F ⇒ G} ` ¬G ⇒ ¬F,

` (F ⇒ G) ⇒ ¬G ⇒ ¬F.

The remaining () and () are an exercise. �

.. Completeness

An arbitrary proof system is

() sound, if every set of formulas logically entails its syntactic consequences;
() complete, if every set of formulas syntactically entails its logical consequences.

We shall show that our proof system is sound and complete.

Theorem .. (Soundness). If Σ ` F, then F ∈ Con(Σ).

Proof. We use induction on the set of syntactic consequences of Σ (that is, Theo-
rem ..) to show that it is a subset of Con(Σ). All elements of Σ are logical consequences
of Σ. Since all axioms are tautologies, they are logical consequences of Σ. Finally, sup-

pose F and F ⇒ G are logical consequences of Σ, and ε is a model of Σ. Then F̂(ε) = 1.
Also, writing H for F ⇒ G, we have

1 = Ĥ(ε) = 1 + F̂(ε) + F̂(ε) · Ĝ(ε) = 1 + 1 + 1 · Ĝ(ε) = Ĝ(ε),
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so ε � G. This completes the induction and the proof. �

Proving completeness will take more work.

Lemma ... Let ~e be an n-ary truth-assignment, and for all n-ary formulas F, let

F′ =

{
F, if F̂(~e ) = 1;

¬F, if F̂(~e ) = 0.

Then

{P0
′, . . . , Pn−1

′} ` F′.

Proof. We use induction on n-ary formulas. Let Σ = {P0
′, . . . , Pn−1

′}. If F is a
variable Pk, where k < n, then F′ is in Σ, so Σ ` F′. Suppose the claim holds when F is
G. Let F be ¬G. There are two cases to consider.

() If F̂(~e ) = 1, then Ĝ(~e ) = 0, so F′ is F, but G′ is ¬G, which is F, that is, F′.

() If F̂(~e ) = 0, then Ĝ(~e ) = 1, so G′ is G, but F′ is ¬F, which is ¬¬G, that is,
¬¬G′.

Since we assume Σ ` G′, we immediately have Σ ` F′ in the first case. In the second case,
we have Σ ` G, hence Σ ` ¬¬G, that is, Σ ` F′, by Lemma ..() and Detachment.
Suppose finally that the claim holds when F is G or H. Let F be G ⇒ H. There are
three cases to consider:

() Ĝ(~e ) = 0;

() Ĥ(~e ) = 1;

() Ĝ(~e ) = 1 and Ĥ(ε) = 0.

Details are left to the reader. This completes the proof. �

Theorem .. (Completeness). If F ∈ Con(Σ), then Σ ` F.

Proof. Suppose F ∈ Con(Σ). By Compactness (rather, its corollary), Σ has a finite
subset Γ such that F ∈ Con(Γ). Write Γ as {F0, . . . ,Fm−1}, and F as Fm. Then the
formula

F0 ⇒ · · · ⇒ Fm

is a tautology (exercise). Call this tautology G, and suppose it is n-ary. Let Pk
′ ∈

{Pk,¬Pk} for each k in n. By the previous lemma, we have

{P0
′ . . . , Pn−1

′} ` G. (∗)

By the Deduction Theorem (..), remembering that P`
′ can be either P` or ¬P`, we

have

{P0
′ . . . , Pn−2

′} ` Pn−1 ⇒ G,

{P0
′ . . . , Pn−2

′} ` ¬Pn−1 ⇒ G.

so {P0
′ . . . , Pn−2

′} ` G by Lemma ..(). Continuing this elimination process, we arrive
at the conclusion ` G, that is, ` F0 ⇒ · · · ⇒ Fm−1 ⇒ F. By Deduction in the other
direction, {F0, · · · ,Fm−1} ` F. �

The following lemma corresponds to one found in Church [, *, p. ]; the origin is not clear.
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.. Other propositional logics

An arbitrary signature L for propositional logic may have connectives of any arity.
Then the formulas in L can be written in Polish notation, as terms are in §., so that

() each variable is a formula;
() ∗F0 · · ·Fn−1 is a formula, if ∗ is an n-ary connective from L, and the Fi are

formulas. (If n = 0, then ∗ by itself is a formula.)

Then the set of formulas admits recursion by Theorem ...
Each connective is given an interpretation as an operation on B; from these, and a

truth-assignment ε, a function F 7→ F̂(ε) is determined as in §.. We may say then that

an n-ary formula F represents the n-ary operation ~e 7→ F̂(~e ) or F̂ on B. The formal
definition is recursive:

() If k < n, then the formula Pk is an n-ary formula and, as such, represents the
operation ~e 7→ ek.

() If (F0, . . . ,Fk−1) is an k-tuple of formulas, each of them n-ary, and if ∗ is a k-ary
connective in L, then the formula ∗F0 · · ·Fk−1 represents the function

~x 7−→ g(F̂0(~x ), . . . , F̂k−1(~x ))

from Bn to B, where g is the standard interpretation of ∗.

In particular, if ∗ is n-ary, then its standard interpretation is Ĝ, where G is the formula
∗P0 · · ·Pn−1.

Each n-ary operation g on B determines, for each k, the (n+ k)-ary operation

(~x , ~y ) 7−→ g(~x ).

If F is an (n+k)-ary formula representing this operation, let us say also that F represents
g itself. Then a signature L for a propositional logic is adequate if each operation on B is
represented by a formula of the logic. The following basic tool for establishing adequacy
of a signature was proved by Emil Post in  []:

Lemma ... A signature of propositional logic is adequate, provided that, in this
signature, the following operations are represented:

() the nullary operations 0 and 1;
() the ternary operation f given by the following table.

e0 e1 e2 f(~e )
0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1

Proof. We use induction on the arity of operations. The nullary operations are
represented in the signature by assumption. Suppose all n-ary operations are represented,
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and g is (n + 1)-ary. If e ∈ B, let he be the n-ary operation ~x 7→ g(~x , e). By definition,

f(e0, e1, e2) =

{
e0, if e2 = 0;

e1, if e2 = 1.

Then for all ~d in Bn, we have

g(~d , e) = he(~d ) = f(h0(~d ), h1(~d ), e).

Thus the operation g is
(~x , y) 7−→ f(h0(~x ), h1(~x ), y).

By inductive hypothesis, each of the operations he is represented by some formula

He(P0, . . . , Pn−1, . . . );

by assumption, f is represented by some formula F(P0, P1, P2, . . . ). Hence g is represented
by

F(H0(P0, . . . , Pn−1, . . . ),H1(P0, . . . , Pn−1, . . . ), Pn, . . . ).

By induction, the operations of all arities are represented. �

Theorem ... The propositional signature {¬,⇒} is adequate.

Proof. By the lemma, it is enough to observe that P0 ⇒ P0 represents 1, and
¬(P0 ⇒ P0) represents 0, while the formula ¬((¬P2 ⇒ P0) ⇒ ¬(P2 ⇒ P1)) has the
truth-table

¬ ((¬ P2 ⇒ P0) ⇒ ¬ (P2 ⇒ P1))
0 1 0 0 0 1 0 0 1 0
1 1 0 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0 1 1
1 1 0 1 1 0 0 0 1 1
0 0 1 1 0 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
1 0 1 1 0 0 0 1 1 1
1 0 1 1 1 0 0 1 1 1

and so represents the operation in the lemma. �

The propositional signature {¬,⇒} may be adequate, but it is not very useful for
doing mathematics. It is perhaps more convenient to use the propositional signature

{¬,⇒,N,∨,⇔}

and use infix notation for formulas, as we did for PF, so that

() variables are formulas;
() if A is a formula, then so is ¬A;
() if A and B are formulas, then so is (A ∗ B), where ∗ is ⇒, N, ∨, or ⇔.

The interpretations of the new connectives were given in §.. Note then that the formula
in the last theorem is equivalent to ((¬P2 ⇒ P0) N (P2 ⇒ P1)). In writing formulas,
we may follow the conventions established in §. for PF′, so that, for example, we
may omit the outer parentheses. We may also remove interior parentheses, with the
understanding that N and ∨ are more binding then ⇒ and ⇔. Then, for example,
instead of ((F N G) ⇒ H), we may just write F N G ⇒ H. Since the interpretation
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N (namely, multiplication on B) is associative, the interpretation of F N G N H is
unambiguous; likewise for F ∨ G ∨ H.

For the purposes of writing recursive definitions and inductive proofs, it will be con-
venient to think of our official signature as {¬,N}. We can do this, because

Corollary. The propositional signature {¬,N} is adequate.

Proof. (F ⇒ G) is equivalent to ¬(F N ¬G). �

Exercises

Exercise .. Prove by induction that

() every propositional formula has the same number of left as right parentheses;
() an entry ¬ is never preceded by a variable in any formula.

Exercise .. As in the example on p. , draw trees for some formulas, such as

() (P0 ⇒ (P1 ⇒ P0)),
() ((P0 ⇒ (P1 ⇒ P2)) ⇒ ((P0 ⇒ P1) ⇒ (P0 ⇒ P2))),
() ((¬P0 ⇒ ¬P1) ⇒ (P1 ⇒ P0)).

Exercise .. Supply the missing details in the proof of the Recursion Theorem
(..) and its corollary.

Exercise .. Prove the Recursion Theorem for Formulas under the assumption that
all formulas are written in Łukasiewicz notation (see §.).

Exercise .. Formulate and prove an analogue of Theorem .. for PF′.

Exercise .. Complete the proof of Theorem ...

Exercise .. Construct truth-tables for some formulas, such as those in Exercise ..

Exercise ..

() Complete the proof of Theorem ...
() Prove Lemma ...
() Prove the Replacement Theorem (..).

Exercise .. Let Σ be {P0 ⇒ P1, P1 ⇒ P2}.

() Find Mod(Σ).
() Find a formula F such that

Mod(Σ) = Mod({F}).

() Find a formula G such that G ∈ Con(Σ) but Mod({G}) 6= Mod(Σ).

Exercise .. Prove Lemma ...

Exercise .. Prove that Σ is a theory if and only if Con(Σ) = Σ.

Exercise .. Can you find a formula F such that Con({F}) is

() PF?
() ∅?
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Exercise ..

() If Con({F}) ⊆ Con({G}), must G logically entail F?
() How is Con({F ⇒ G}) related to Con({¬F}) and Con({G})?
() Can you find pairwise-inequivalent formulas F, G, and H such that

Con({F}) ∪ Con({G}) = Con({H})?

() If Σ logically entails F ⇒ G, must it entail either ¬F or G?

Exercise ..

() Show that ⋂

i∈I

Mod(Σi) = Mod(
⋃

i∈I

Σi).

() Show that Mod({F}) ∪ Mod({G}) = Mod({¬F ⇒ G}).

(This shows that the sets Mod(Σ) are the closed sets in a topology for BV . Then the
Compactness Theorem is that this topology is compact.)

Exercise .. Show that Mod({F})c = Mod({¬F}).

Exercise .. If Γ ∪ {F} is not satisfiable, why is Γ ∪ {¬¬F} not satisfiable?

Exercise .. Why has the set {F,¬F} no models?

Exercise .. In the proof of the Compactness Theorem, why does ζ agree with ε
on {Pk : k < n}?

Exercise .. In the example in §.:

() Give a precise recursive definition of the sets Σn.
() Prove that εn ∈ Mod(Σn) r Mod(Σn+1).
() What is Con(Σ)?

Exercise .. Suppose I is a set, and there is a function i 7→ Fi from I into PF,
such that ⋃

i∈I

Mod({Fi}) = BV .

Prove that I has a finite subset J such that
⋃

i∈J Mod({Fi}) = BV .

Exercise .. Define a binary operation ∗ on PF such that, for each formula F, the
function

G 7→ F ∗ G

is recursively defined, and F ∗ (F ⇒ G) = G.

Exercise .. Prove that all trees admit proof by induction.

Exercise .. Prove the corollaries of Theorem ...

Exercise .. Prove the forward implication of the Deduction Theorem.

Exercise .. Prove Lemma ...

Exercise .. Prove the remainder of Lemma ...

Exercise .. Complete the proof of Lemma ...
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Exercise .. Prove that, if Fm ∈ Con({F0, . . . ,Fm−1}), then the formula

F0 ⇒ · · · ⇒ Fm

is a tautology.

Exercise .. Prove that {|} is adequate, where | (the Sheffer stroke) is given by

P | Q
0 1 0
1 1 0
0 1 1
1 0 1

Exercise .. Prove that {N,∨} is not adequate.



CHAPTER 

First-order logic

Throughout this chapter, let A stand for an arbitrary structure (in the sense of §.);
its signature will be L. So A has universe A, which is just a set. We shall use the
letters c, R and f to stand for arbitrary constants, predicates and function-symbols of L,
respectively. The arity of R and and of f will be n.

Instead of propositional variables, we shall use the set of individual variables,

{xk : k ∈ ω},

introduced in §.. The definition of terms there makes sense for arbitrary structures.
Much of the account of terms given below will be a retelling of the account in §.. Terms
do not involve predicates, but symbolize the ways of combining basic operations to get
new operations. The ways of combining these with basic relations to get new relations
will be symbolized by (first-order) formulas.

Our logic will be first order, because we shall use only individual variables, and
not set variables. This means that the notions of induction and recursion cannot be
formulated in first-order logic. This deficiency is compensated for by the Compactness
Theorem, .. below, which fails in second-order logic.

.. Terms

If k < n, then there is an n-ary operation

~x 7−→ xk (∗)

on A. This operation is projection onto the kth coordinate. Each element b of A
determines, for each positive n, the constant n-ary operation

~x 7−→ b. (†)

If b is cA, then we have the n-ary operation ~x 7→ cA. More generally, if α is an n-ary
operation on A, then there is an (n+ k)-ary operation on A, namely

(~x , ~y ) 7−→ α(~x ).

All operations on A that are symbolized in L can be composed with one another and
with projections to give other operations on A. The terms of L symbolize these new
operations. The symbols used in terms of L are:

() the variables xi, which will symbolize the projections;
() the constants c of L;
() the function-symbols f of L.

Then the terms of L are defined inductively thus:

() Each individual variable is a term of L.
() Each constant in L is a term of L.


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() If f is an n-ary function-symbol of L, and t0, . . . , tn−1 are terms of L, then the
string

ft0 · · · tn−1

is a term of L.

(Note well that ft0 · · · tn−1 is not generally a string of length n + 1. If f is binary, then
we may unofficially write the term as (t0 f t1) instead of ft0t1.) Let the set of terms of
L be denoted by

Tm(L).

This set admits recursion by Theorem ... If the variables in a term t come from
{xk : k < n}, then t is n-ary; the set of n-ary terms of L can be denoted by

Tmn(L).

Note then
Tm0(L) ⊆ Tm1(L) ⊆ Tm2(L) ⊆ · · · .

The nullary terms are the constant terms. By the recursive definition in §., a constant
term is interpreted in A as an element of A; an n-ary term, as an n-ary operation on A:

() xk
A is ~x 7→ xk (as in (∗)), if k < n.

() cA is ~x 7→ cA (as in (†); here c is understood respectively as term and constant).
() (ft0 · · · tn−1)

A is

~x 7−→ fA(t0
A(~x ), . . . , tn−1

A(~x )),

that is, fA ◦ (t0
A, . . . , tn−1

A).

We may say that t represents the operation tA on A.
For example, say L is the signature {+,−, ·, 0, 1} of fields, and A is an infinite field

(such as Q or R or C). If t is a term of L(A), then tA is a polynomial over A. But a
difficulty arises when A is a finite field, such as F2. In this case, if t is either x0 · (x0 + 1)
or 0, then tA(a) = 0 for both a in A. However, the two terms may represent different
polynomials over larger fields, such as F4 (which can be defined as F2[X]/(X2 + 1)).

If t is an n-ary term, and u0, . . . , un−1 are m-ary terms, then (as in §.), by substi-
tuting ui for xi, we obtain the m-ary term denoted by

t(u0, . . . , un−1).

For example, if t is n-ary, then t is precisely the term denoted by

t(x0, . . . , xn−1).

We have a generalization of Theorem ..:

Theorem .. (Associativity). In a signature L, if t is an n-ary term, and u0, . . . ,
un−1 are m-ary terms, then

t(u0, . . . , un−1)
A = tA ◦ (u0

A, . . . , un−1
A)

for all L-structures A. �

An important special case arises as follows. Suppose L ⊆ L′. An expansion of A to
L′ is a structure A′ whose signature is L′, and whose universe is A, such that

sA′

= sA

for all s in L. Then A is the reduct of A′ to L. For example, the ring (Z,+,−, ·, 0, 1) is
an expansion of (Z,+,−, 0), an abelian group; the latter is a reduct of the former.
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We can treat the elements of A as new constants (not belonging to L); adding these
to L gives the signature L(A). Then A has a natural expansion AA to this signature, so
that

aAA = a

for all a in A. We shall also want to speak of expansions AX of A, where X is an arbitrary
subset of A.

An n-tuple ~a from A determines a function t 7→ t(~a ) from Tmn(L) to Tm0(L(A)).
The tuple ~a also determines the function g 7→ g(~a ) from AAn

to A. Then we have two
functions, t 7→ tA(~a ) and t 7→ t(~a )A, from Tmn(L) into A. These can be understood as
two paths in the following diagram.

Tmn(L)
~a

−−−→ Tm0(L(A))

I

y
yI

AAn

−−−→
~a

A

By Associativity, it doesn’t matter which way one moves around this diagram:

tA(~a ) = t(~a )AA . (‡)

In a word, the diagram commutes.

.. Atomic formulas

As terms symbolize operations, so formulas will symbolize relations. Each n-ary
formula ϕ of L will, for each L-structure A, have an interpretation ϕA as an n-ary relation
on A. A nullary formula will be a sentence. Hence, if σ is a sentence of L, then σA ∈ B.
If σA = 1, then σ is true in A, and we write

A � σ.

In practice, it will be easier to define truth before defining interpretations in general.
So-called polynomial equations are examples of atomic formulas, which are the first

kinds of formulas to be defined. From these, we shall define open formulas, and then
arbitrary formulas.

The atomic formulas of L are of two kinds:

() If t0 and t1 are terms of L, then the equation t0 = t1 is an atomic formula of
L.

() If R is an n-ary predicate of L, and t0, . . . , tn−1 are terms of L, then Rt0 · · · tn−1

is an atomic formula of L. (If R is binary, then we may unofficially write (t0 R t1)
instead of Rt0t1.)

An atomic formula α can be called k-ary if the terms it is made from are k-ary.
A polynomial equation over R has a solution-set, which can be considered as the

interpretation of the equation in R. Likewise, arbitrary atomic formulas have solution-
sets, which are their interpretations: If α is a k-ary atomic formula of L, then the

If a ∈ A, some writers prefer denote by ca the new constant whose interpretation in A is a.
Some writers prefer to use a symbol like ≡ instead of =.
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interpretation in A of α is the k-ary relation αA on A defined as follows. (Strictly, the
validity of the definition depends on unique readability, given by Theorem .. below.)

(t0 = t1)
A = {~x ∈ Ak : t0

A(~x ) = t1
A(~x )};

(Rt0 · · ·Rn−1)
A = {~x ∈ Ak : (t0

A(~x ), . . . , tn−1
A(~x )) ∈ RA}.

As a special case, if k = 0, we have

(t0 = t1)
A = 1 ⇐⇒ t0

A = t1
A;

(Rt0 · · · tn−1)
A = 1 ⇐⇒ (t0

A, . . . , tn−1
A) ∈ RA.

(∗)

Note that the atomic formula t0 = t1 can be considered as the special case of Rt0 · · · tn−1

when n = 2 and R is =. We treat the special case separately because we consider the
equals-sign to be always available for use in formulas, and we always interpret it as
equality.

.. Open formulas

An open or quantifier-free formula is obtained from a propositional formula by
substituting atomic formulas for the propositional variables. Let F be an n-ary proposi-
tional formula, and let σ0, . . . , σn−1 be atomic sentences. Then the interpretation of
the open sentence F(σ0, . . . , σn−1) in A is given by

F(σ0, . . . , σn−1)
A = F̂(σ0

A, . . . , σn−1
A).

Now suppose more generally that ϕ0, . . . , ϕn−1 are m-ary atomic formulas. Let θ be the
m-ary open formula F(ϕ0, . . . , ϕn−1). If ~a ∈ Am, then θ(~a ) has the obvious meaning: it
is the result of substituting ai for xi in θ, for each i in m. Then θ and A determine the
m-ary relation

{~a ∈ Am : θ(~a )AA = 1}

on A. Defining the interpretation of an open formula this way is like defining the inter-
pretation of a term t as ~a 7→ t(~a )AA . As terms allow also another approach, shown in (‡),
so with open formulas we can proceed recursively as follows. We have defined ϕA when
ϕ is atomic. Suppose we have defined ϕA and ψA for two m-ary open formulas ϕ and ψ.
Then

¬ϕA = (ϕA)c = Am r ϕA;

(ϕ N ψ)A = ϕA ∩ ψA.
(†)

By induction,

θA = {~a ∈ Am : θ(~a )AA = 1}

for all open θ.
Yet another way to understand interpretations of open formulas is by the equation

F(ϕ0, . . . , ϕn−1)
A = F̂(ϕ0

A, . . . , ϕn−1
A),

where the right-hand side has the same formal definition as F̂(~e ) in §., with adding
1 in B now replaced with complementation in P(Am), and multiplication in B replaced
with intersection in P(Am).
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.. Formulas in general

Formulas in general may contain the existential quantifier ∃. The inductive defi-
nition of formulas is:

() atomic formulas are formulas;
() if ϕ and ψ are formulas, then so are ¬ϕ and (ϕ N ψ);
() if ϕ is a formula, and x is a variable, then ∃x ϕ is a formula.

The possibility of defining the foregoing interpretations of open formulas depends on
the following.

Theorem .. (Unique Readability). Every formula of L is uniquely one of the
following:

() t0 = t1, for some terms te of L;
() Rt0 · · · tn−1 for some terms tk and n-ary predicate R of L, for some positive n;
() ¬ϕ for some formula ϕ;
() (ϕ N ψ) for some formulas ϕ and ψ;
() ∃x ϕ for some formula ϕ and some variable x. �

In order to define interpretations of arbitrary formulas, we can still use (†) above to
define ¬ϕA and (ϕ N ψ)A in terms of ϕA and ψA. We should also define (∃x ϕ)A in terms
of ϕA; but for this, we need a notion of arity of arbitrary formulas. Ultimately, if ϕ is
(n+ 1)-ary, and x is xn, then we shall have

~a ∈ (∃x ϕ)A ⇐⇒ (~a , b) ∈ ϕA for some b in A. (‡)

But complications arise if x is xk, where k < n. When one takes care of these things, then,
for every n-ary formula ϕ of L, there will be an n-ary relation ϕA on A; this relation is
defined by ϕ, and the relation can be called a 0-definable relation of A. The definable
relations are those defined by formulas of L(A); more generally, if X ⊆ A, then the X-
definable relations are those defined by formulas of L(X). (Singulary definable relations
can just be called definable sets.)

If X and Y are k-ary definable relations of A, then so are X c, X ∩ Y , X ∪ Y , &c. In
short, all Boolean combinations of definable relations are definable, since we work in
an adequate signature for propositional logic.

If ϕ is an n-ary formula, defining as such the n-ary relation X, then we can also treat
ϕ as (n+ 1)-ary, defining the relation X × A on A. This relation is the set

{(~x , y) ∈ An+1 : ~x ∈ X}.

This set is also π−1[X], where π is the function

(~x , y) 7−→ ~x (§)

from An+1 to An; this function is projection onto the first n coordinates. In short then,
inverse images of definable sets under projections are definable. By (‡), images under
projections will be definable.

Let the set of formulas of L be

FmL .

We recursively define a function

ϕ 7−→ fv(ϕ)

from FmL to P({xk : k ∈ ω}) as follows:
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() fv(α) is the set of variables in α, if α is atomic;
() fv((ϕ N ψ)) = fv(ϕ) ∪ fv(ψ);
() fv(∃x ϕ) = fv(ϕ) r {x}.

Then fv(ϕ) is the set of free variables of ϕ. If fv(ϕ) = ∅, then ϕ is a sentence; the
set of sentences of L can be denoted by

SnL .

So an atomic sentence α is a nullary atomic formula; in this case, we can define

A � α ⇐⇒ αA = 1; (¶)

in either case, α is true in A. Otherwise, α is false in A, and we can write

A 2 α.

We can also define
A � ¬σ ⇐⇒ A 2 σ;

A � σ N τ ⇐⇒ A � σ & A � τ ;
(‖)

provided σ and τ are sentences for which truth and falsity in A have been defined. To
define A � ∃x ϕ, we need a notion of substitution, whereby to convert ϕ to a sentence;
but then we should assume that we have been working with formulas of L(A) all along.
For formulas ϕ, if x is a variable and t is a term, we define the formula

(ϕ)x
t

recursively:

() If α is atomic, then (α)x
t is the result of substituting t for x in α;

() (¬ϕ)x
t is ¬(ϕ)x

t ;
() ((ϕ N ψ))x

t is ((ϕ)x
t N (ψ)x

t );
() (∃x ϕ)x

t is ∃x ϕ (no change);
() (∃u ϕ)x

t is ∃u (ϕ)x
t , if u is not x.

Then (ϕ)x
t is the result of replacing each free occurrence of x in ϕ with t. Now we can

define

A � ∃x ϕ ⇐⇒ A � ϕx
a for some a in A. (∗∗)

We have now completed the definition of truth; it is expressed by (∗), (¶), (‖), and (∗∗).
If fv(ϕ) ⊆ {xk : k < n}, then ϕ can be called n-ary, and we can write ϕ as

ϕ(x0, . . . , xn−1).

Then, instead of (· · · ((ϕ)x0

a0
) · · · )xn−1

an−1
, we can write

ϕ(a0, . . . , an−1)

or ϕ(~a ). Note well that ~a is a tuple of constants. We can let it be a tuple (t0, . . . , tn−1)
of arbitrary terms; but then we must ensure that ϕ(t0, . . . , tn−1) is the result of simulta-
neously substituting each tk for the free instances of the corresponding variable xk. Now
we can define

ϕA = {~a ∈ An : A � ϕ(~a )}

for all formulas ϕ.
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Theorem ... Let ϕ be an n-ary formula of L.

() If ϕ is ¬ψ, then ϕA = An r ψA.
() If ϕ is (χ N ψ), then ϕA = χA ∩ ψA.
() If ϕ is ∃xn ψ, then ϕA = π[ψA], where π is as in (§). �

If fv(ϕ) = {u0, . . . , un−1}, and

A � ∃u0 · · · ∃un−1 ϕ,

then ϕ is satisfied in A, or A satisfies ϕ.
In a formula of L(A), any constants from A can be called parameters. So the

definable relations of A are, more fully, the relations definable with parameters. Algebraic
geometry studies the definable relations of C and of other fields. See Appendix G for
more on definable sets in general.

Strictly, interpretations and the truth-relation � have been defined for a particular
signature. However, expanding a structure does not change the interpretation of a formula
or the truth-value of a sentence in that structure.

Theorem ... Say L ⊆ L′, and A is an L-structure with an expansion A′ to L′. If
ϕ is a formula of L, then

ϕA′

= ϕA.

In particular, if σ is a sentence of L, then

A′ � σ ⇐⇒ A � σ.

Proof. The definition of the interpretation of ϕ involves no symbols in L′ r L or
their interpretations, so ~a ∈ ϕA′

⇐⇒ ~a ∈ ϕA. �

Two sentences are (logically) equivalent if each is a logical consequence of the other.
We define subformulas as in propositional logic, and we have analogues of Lemmas ..
and .., and hence

Theorem .. (Replacement). If ϕ is a subformula of ψ, and ϕ′ is another formula,
then the result of replacing ϕ with ϕ′ in ψ is a formula ψ′. If also ϕ is equivalent to ϕ′,
then ψ is equivalent to ψ′. �

We can use (ϕ ⇒ ψ) as equivalent to ¬(ϕ N ¬ψ), and (ϕ ⇔ ψ) as equivalent to
((ϕ⇒ ψ) N (ψ ⇒ ϕ)).

Theorem ...

() Two sentences σ and τ of L are equivalent if and only if � (σ ⇔ τ).
() Logical equivalence is an equivalence-relation on SnL. �

.. Logical entailment

Having defined the truth-relation � for first-order logic, we have related notions, as
in propositional logic. If Σ is a set of sentences, each of which is true in A, then A is a
model of Σ, and we write

A � Σ.

The L-structures that are models of Σ compose

ModL(Σ);
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if this is nonempty, then it is a proper class (see §.). The theory of a class K of
structures is the set

Th(K)

of sentences that are true in each structure in K. If K has a single element, A, then
Th(K) can be written as

Th(A).

Hence

σ ∈ Th(A) ⇐⇒ A � σ.

The set of logical consequences of a set Σ of sentences is Th(ModL(Σ)), also denoted
by

ConL(Σ).

Then ConL(Σ) is always a theory, namely the theory of ModL(Σ). We now have analogues
of Lemma .. and Theorem ...

If σ ∈ ConL(Σ), then Σ logically entails σ. The logical consequences of ∅ are the
validities. In particular, if F is a tautology of propositional logic, and σi are sentences
of L, then F(τ0, . . . , τn−1) is a validity of L. Such a validity is also called a tautology;
but there are validities that are not tautologies, for example ¬∃x x 6= x.

Instead of ¬∃v ϕ, we may write

∀v ¬ϕ.

Here ∀ is the universal quantifier. Then ¬∀v ϕ is equivalent to ∃v ¬ϕ. Let P and Q
be singulary predicates. To prove that the sentence

(∀x (Px⇒ Qx) ⇒ (∀x Px⇒ ∀x Qx)) (∗)

is a validity, it is enough to show that A � (∀x Px ⇒ ∀x Qx) whenever A � ∀x (Px ⇒
Qx). So suppose

A � ∀x (Px⇒ Qx). (†)

It is now enough to show that, if also A � ∀x Px, then A � ∀x Qx. So suppose

A � ∀x Px. (‡)

Let a ∈ A. Then A � Pa, by (‡). But A � (Pa ⇒ Qa), by (†). Hence A � Qa. Since a
was arbitrary, we have A � ∀x Qx. Therefore (∗) is a validity.

The theory ConL(Σ) is axiomatizeed by Σ; the elements of Σ are axioms for this
theory. If fv(ϕ) = {u0, . . . , un−1}, then the sentence ∀u0 · · · ∀un−1 ϕ is a generalization
of ϕ. We may use formulas to denote their generalizations. For example, group-theory in
the signature {1, −1, · } is axiomatized by the (generalizations of the) following formulas.

x · (y · z) = (x · y) · z,

x · 1 = x,

1 · x = x,

x · x−1 = 1,

x−1 · x = 1.

(§)

If Σ has no models, then ConL(Σ) = SnL. Thus SnL is the only theory (of L) with
no models. A theory with models is complete if, for every sentence σ of its signature,
the theory contains either σ or ¬σ (hence exactly one of these).

Theorem ... Every theory Th(A) is complete. Every complete theory is Th(A)
for some A.



 . FIRST-ORDER LOGIC

Proof. Since

σ ∈ Th(A) ⇐⇒ A � σ ⇐⇒ A 2 ¬σ ⇐⇒ ¬σ 6∈ Th(A),

Th(A) is complete. If T is a complete theory, then in particular it has a model A. Then
T ⊆ Th(A); but also

σ 6∈ T =⇒ ¬σ ∈ T =⇒ A � ¬σ =⇒ ¬σ ∈ Th(A) =⇒ σ 6∈ Th(A),

by completeness of T , and hence Th(A) ⊆ T . �

Exercises

Exercise ..

() Prove the Associativity Theorem, ...
() What does this theorem have to do with Theorems C.() and C.()?

Exercise .. Prove Theorem ...

Exercise .. Prove Theorem ...

Exercise .. Let L = {R}, where R is a binary predicate, and let A be the L-
structure (Z,6). Determine ϕA if ϕ is:

() ∀x1 (Rx1x0 ⇒ Rx0x1);
() ∀x2 (Rx2x0 ∨ Rx1x2).

Exercise .. Let L be {S, P}, where S and P are binary function-symbols. Then
(R,+, ·) is an L-structure. Show that the following sets and relations are definable in
this structure:

() {0};
() {1};
() {x ∈ R : 0 < x};
() {(x, y) ∈ R2 : x < y}.

Exercise .. Show that the following sets are definable in (ω,+, ·,6, 0, 1):

() the set of even numbers;
() the set of prime numbers.

Exercise .. Let R be the binary relation

{(x, x + 1): x ∈ Z}

on Z. Show that R is 0-definable in the structure (Z, <); that is, find a binary formula ϕ
in the signature {<} such that ϕ(Z,<) = R.

Exercise .. Find an open sentence that is a validity, but not a tautology.

Exercise .. Prove the Lemma on Constants: Suppose Σ is a set of sentences
of L, and ck are constants not in L, and ϕ is an n-ary formula of L. Then

Σ � ∀x0 · · · ∀xn−1 ϕ ⇐⇒ Σ � ϕ(c0, . . . , cn−1).

Exercise .. Prove the Replacement Theorem, ...

Exercise .. Prove Theorem ...
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Exercise .. Letting P and Q be singulary predicates, determine, from the defi-
nition of �, whether the following hold.

() ∃x Px⇒ ∃x Qx � ∀x (Px⇒ Qx);
() ∀x Px⇒ ∃x Qx � ∃x (Px⇒ Qx);
() ∃x (Px⇒ Qx) � ∀x Px⇒ ∃x Qx;
() {∃x Px, ∃x Qx} � ∃x (Px N Qx);
() ∃x Px⇒ ∃y Qy � ∀x ∃y (Px⇒ Qy).

Exercise .. Axiomatize group-theory in the signature { · }.



CHAPTER 

Quantifier-elimination and complete theories

It is easy to show that a theory is not complete. For example, the theory of groups is
not complete, since the sentence

∀x ∀y x · y = y · x

is true only in abelian groups (by definition), but there are non-abelian groups (such as
the group of permutations of three objects). The theory of abelian groups is not complete
either, since (in the signature {+,−, 0}) the sentence

∀x (x+ x = 0 ⇒ x = 0)

is true in (Z,+,−, 0), but false in (Z/2Z,+,−, 0).
To show that a theory is complete, there are various methods that can be tried. One

of these is elimination of quantifiers, which we shall perform in two examples.

.. Total orders

Let TO be the theory of strict total orders; this is axiomatized by the generalizations
of:

x 6< x,

x < y ⇒ y 6< x,

x < y N y < z ⇒ x < z,

x < y ∨ y < x ∨ x = y.

This theory is not complete, since (ω, <) and (Z, <) are models of TO with different
complete theories (exercise).

Let TO∗ be the theory of dense total orders without endpoints: this means TO∗

has the axioms of TO, along with the generalizations of:

∃z (x < z N z < y), ∃y y < x, ∃y x < y.

The theory TO∗ has a model, namely (Q, <). We shall show that TO∗ is complete, hence
equal to Th(Q, <).

Two formulas ϕ and ψ are equivalent modulo a theory T , or equivalent in T , if

T � ϕ⇔ ψ.

Then T admits (full) elimination of quantifiers if, for every formula, there is an open
formula that is equivalent to it in T .

Lemma ... An L-theory T admits quantifier-elimination, provided that, if ϕ is an
open formula, and v is a variable, then ∃v ϕ is equivalent modulo T to an open formula.

Proof. Use induction on formulas. Every atomic formula is equivalent in T to an
open formula, namely itself. Now suppose ϕ and ψ are equivalent in T to open formulas
α and β respectively. Then

T � ¬ϕ⇔ ¬α, T � ϕ N ψ ⇔ α N β;





.. TOTAL ORDERS 

but ¬α and α ⇒ β are open. Finally, T � ∃v ϕ ⇔ ∃v α (exercise); but by assumption,
∃v α is equivalent to an open formula γ; so T � ∃v ϕ⇔ γ (exercise). This completes the
induction. �

The lemma can be improved slightly. First, if Σ is a set {ϕk : k < n} of formulas,
then for the disjunction ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕn−1, we may write simply

∨

k<n

ϕk,

or even
∨

Σ. The order in which the ϕk appear in the original disjunction is unimportant.
Likewise, the conjunction ϕ0 N ϕ1 N · · · N ϕn−1 can be denoted by

∧

k<n

ϕk,

or even
∧

Σ.

Theorem ... Every open formula is logically equivalent to a formula
∨

i<m

∧
Σi (∗)

where Σi is {α
(j)
i : j < n}, and each α(j)

i is an atomic or a negated atomic formula.

Proof. Exercise. �

The formula in (∗) is in disjunctive normal form. Note that

� ∃v
∨

i<m

∧
Σi ⇔

∨

i<m

∃v
∧

Σi (†)

(exercise). The formulas ∃v
∧

Σi are said to be primitive. In general, a primitive
formula is a formula

∃u0 · · · ∃un−1

∧
Σ,

where Σ is a finite non-empty set of atomic and negated atomic formulas. Using (†), we
can adjust the induction in the proof above to show

Lemma ... A theory admits quantifier-elimination, provided that every primitive
formula with one (existential) quantifier is equivalent, modulo the theory, to an open
formula. �

Henceforth suppose L is {<}, and TO ⊆ T ; so T is a theory of total orders. Then we
can improve Lemma .. even more. Indeed, the atomic formulas of L now are x = y
and x < y, where x and y are variables. Moreover,

TO � x 6< y ⇔ x = y ∨ y < x,

TO � x 6= y ⇔ x < y ∨ y < x.

Hence, in L, any formula is equivalent, modulo TO, to the result of replacing each negated
atomic subformula with the appropriate disjunction of atomic formulas. If this replace-
ment is done to a formula in disjunctive normal form, then the new formula will have a
disjunctive normal form that involves no negations. So T admits quantifier-elimination,
provided that every formula

∃v
∧

Σ
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is equivalent, modulo T , to an open formula, where now Σ is a set of atomic formulas.
Using this criterion, we show:

Theorem ... TO∗ admits elimination of quantifiers.

Proof. Let Σ be a finite, non-empty set of atomic formulas of L. We shall eliminate
the quantifier from the formula ∃v

∧
Σ. Let X be a set {x0, . . . , xn} containing all

variables appearing in formulas in Σ. Suppose A is an L-structure, and ~a ∈ An+1. Then
we can let

Σ(~a ) = {α(~a ) : α ∈ Σ}.

Suppose in fact

A � TO ∪ {
∧

Σ(~a )}.

Let us define Σ(A,~a ) as the set of atomic formulas α such that fv(α) ⊆ X and A � α(~a ).
Then

Σ ⊆ Σ(A,~a ).

Moreover, once Σ has been chosen, there are only finitely many possibilities for the set
Σ(A,~a ). Let us list these possibilities as

Σ0, . . . ,Σm−1.

Now, possibly m = 0 here. In this case,

TO � ∃v
∧

Σ ⇔ v 6= v,

so we are done. Henceforth we may assume m > 0. If B � TO ∪ {
∧

Σ(~b )}, then

B �
∧

Σi(~b )

for some i in m. Therefore
TO �

∧
Σ ⇔

∨

i<m

∧
Σi,

and hence
TO � ∃v

∧
Σ ⇔

∨

i<m

∃v
∧

Σi.

Therefore, for our proof of quantifier-elimination, we may assume that Σ is one of the
sets Σ(A,~a ) (so that, in particular, m = 1).

Now partition Σ as Γ∪∆, where no formula in Γ, but every formula in ∆, contains v.
There are two extreme possibilities, where one of these sets is empty. Suppose first Γ = ∅.
Then X = {v} (since if x ∈ Xr {v}, then Γ contains x = x). Also, Σ = ∆ = {v = v}, so

� ∃v
∧

Σ ⇔ v = v,

and we are done in this case. Now suppose ∆ = ∅. Then v /∈ X, and

� ∃v
∧

Σ ⇔
∧

Σ,

so we are done in this case. Henceforth, suppose neither Γ nor ∆ is empty. Then

� ∃v
∧

Σ ⇔
∧

Γ N ∃v
∧

∆.

We shall show that
TO∗ � ∃v

∧
Σ ⇔

∧
Γ, (‡)
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which will complete the proof. To show (‡), it is enough to show

TO∗ �
∧

Γ ⇒ ∃v
∧

∆.

Since Σ is Σ(A,~a ), we have for all i and j in n+1 that ai < aj if and only if Σ contains
xi < xj, and ai = aj if and only if Σ contains xi = xj. We also have v ∈ X. We can
relabel the elements of X as necessary so that v is xn and

a0 6 · · · 6 an−1.

Suppose B � TO∗, and Bn contains ~b such that B �
∧

Γ(~b ). We have to show that

there is c in B such that B �
∧

∆(~b , c). Now, for all i and j in n, we have

bi < bj ⇐⇒ ai < aj, bi = bj ⇐⇒ ai = aj.

Because B is a model of TO∗ (and not just TO), we can find c as needed according to
the relation of an with the other ai:

() If an = ai for some i in n, then let c = bi.
() If an−1 < an, then let c be greater than bn−1.
() If an < a0, then let c be less than b0.
() If ak < an < ak+1, then we can let c be such that bk < c < bk+1.

This completes the proof that TO∗ admits quantifier-elimination. �

In the proof, we can let X be precisely the set of variables appearing in Σ. Then
we have that, modulo TO∗, the formula ∃v

∧
Σ is equivalent to v 6= v or v = v or an

open formula with the same free variables as ∃v
∧

Σ. In the signature {<}, there are no
open sentences. Therefore, modulo TO∗, every sentence is equivalent to v 6= v or v = v.
The former is an absurdity (the negation of a validity), which we can denote by ⊥; and
v = v is a validity, which we can denote by >.

Theorem ... TO∗ is a complete theory.

Proof. As we have just noted, every sentence is equivalent to an absurdity or a
validity. Suppose TO∗ � σ ⇔ ⊥. But � (σ ⇔ ⊥) ⇔ ¬σ; so TO∗ � ¬σ. Similarly, if
TO∗ � σ ⇔ >, then TO∗ � σ. Hence, for all sentences σ, if TO∗ 2 σ, then TO∗ � ¬σ.
Therefore TO∗ is complete by Theorem ... �

.. The natural numbers

Let us now understand the signature of iterative structures (in the sense of §.) as
{0, ′}. In this signature, let Itr be the theory axiomatized by (the generalizations of)

x′ 6= 0,

x′ = y′ ⇒ x = y; (∗)

let Itr∗ be the theory with the same two axioms and one more, namely

∃y (x = 0 ∨ y′ = x). (†)

Note that all models of Itr that admit induction are isomorphic to ω; models of Itr∗

satisfy one consequence of induction, namely Theorem ...
An embedding of algebras is an injective homomorphism.

Lemma ... For every model A of Itr, for every b in A, the unique homomorphism
from ω into (A, b, ′) is an embedding. �
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Theorem ... The theory Itr∗ admits elimination of quantifiers.

Proof. Instead of x′′···′ with n primes, let us write x(n). Let Σ be a non-empty finite
set of atomic and negated atomic formulas. If the variable v does not appear in any
formula in Σ, then ∃v

∧
Σ is equivalent modulo Itr∗ to

∧
Σ. So suppose it does appear.

We consider the case where v is the only variable in some formula in Σ. If

Σ = Λ ∪ {v(m) = v(m)},

then ∃v
∧

Σ is equivalent in Itr to ∃v
∧

Λ, while if Σ contains v(m) 6= v(m), then ∃v
∧

Σ
is equivalent to v 6= v. By Lemma .., if Σ contains v(m) = v(n) where m 6= n, then
∃v

∧
Σ is equivalent to v 6= v, while if Σ = Λ∪{v(m) 6= v(n)} where m 6= n, then ∃v

∧
Σ

is equivalent to ∃v
∧

Λ.
We may now assume that v never appears on both sides of an equation or inequation

in Σ. But suppose Σ = Λ ∪ {v(m) = t(n)}, where t is a term not featuring v. By the
injectivity of x 7→ x′ ensured by (∗), we may assume that m or n is 0. Suppose first
m = 0. Let Λ∗ be the result of replacing each v appearing in a formula in Λ with t(n).
Then

Itr∗ � ∃v
∧

Σ ⇐⇒ ∃v
(∧

Λ∗
N v = t(n)

)

⇐⇒
∧

Λ∗
N ∃v v = t(n)

⇐⇒
∧

Λ∗.

Now suppose instead n = 0. Whenever v appears in an equation or inequation in Λ, we
can add primes to both sides until v has at least m primes on it: the resulting formula
is equivalent to the original formula. Then we can replace v(m) with t. Thus we get Λ∗

such that

Itr∗ � ∃v
∧

Σ ⇐⇒ ∃v
(∧

Λ∗
N v(m) = t

)

⇐⇒
∧

Λ∗
N ∃v v(m) = t.

But by (†) we have also

Itr∗ � ∃v v(m) = t⇔
∧

k<m

t 6= 0(k).

In the final case, v appears only in inequations in Σ (and only on one side of each
of these), not in equations. Let Σ∗ be the result of deleting those inequations. Then
∃v

∧
Σ is equivalent to

∧
Σ∗. To see this, note first that all models of Itr∗ are infinite.

We may assume that the variables in Σ form the list (x0, . . . , xn), where xn is v, so that
the variables in Σ∗ are on the list (x0, . . . , xn−1). Let A � Itr∗ and A � Σ∗(~a ) for some ~a
from A. The inequations in Σ(~a , v) involving v give a finite set of elements of A that v
cannot be. Chose b from outside this set. Then Itr∗ � Σ(~a , b), so Itr∗ � ∃v

∧
Σ(~a , v). �

Theorem ... Itr∗ = Th(ω, 0, ′); in particular, Itr∗ is complete. �

Exercises

Exercise .. Show that (ω, <) and (Z, <) have different complete theories.

Exercise .. Supply the details of the proof of Lemma ...
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Exercise .. Prove Lemma ...

Exercise .. Prove Theorem ...

Exercise .. Describe all models of Itr∗. In particular, find a one-to-one correspon-
dence between the cardinal numbers and the isomorphism-classes of models of Itr∗. Why
does this, together with Theorem .., not contradict Theorem ..?

Exercise .. Let A be an infinite set, that is, an infinite structure in the empty
signature. Find a complete axiomatization of Th(A).

Exercise .. Find a complete axiomatization of Th(ω, 0, ′, <), and describe all
models of this theory.

Exercise .. Describe all definable sets of a model of TO∗.

Exercise .. Describe all definable sets of

() (ω, 0, ′);
() an arbitrary model of Itr∗;
() (ω, 0, ′, <);
() an arbitrary model of Th(ω, 0, ′, <).
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Relations between structures

Given a signature L, we consider several relations on the class of L-structures, namely

ModL(∅).

Throughout this chapter, let A and B be arbitrary L-structures.

.. Basic relations

If h : A→ B, then we may understand h also as the function from An to Bn given by

h(a0, . . . , an−1) = (h(a0), . . . , h(an−1)). (∗)

Then A and B are isomorphic, and we write

A ∼= B,

if there is a bijection h from A to B such that

() h(cA) = cB for all constants c in L,
() h ◦ fA = fB ◦ h for all function-symbols f in L,
() h[RA] = RB for all predicates in L.

In this case, we may write

h : A
∼=

−→ B,

calling h an isomorphism. This is also the name of the relation ∼=, which is an
equivalence-relation on ModL(∅).

Another equivalence-relation on ModL(∅) is elementary equivalence. The two
structures A and B are elementarily equivalent, and we write

A ≡ B,

if they have the same theory, that is, Th(A) = Th(B).
The notion of substructure was introduced in §.. We say that A is a substructure

of B, and B is an extension of A, and we write

A ⊆ B,

if A ⊆ B and

() cA = cB for all constants c of L,
() fA = fB ◦ idAn for all n-ary function-symbols f of L, for all positive n in ω,
() RA = An ∩ RB for all n-ary predicates R of L, for all positive n in ω.

Then ⊆ is a reflexive ordering of ModL(∅).


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.. Derived relations

If A ⊆ B and AA ≡ BA, then A is an elementary substructure of B, and B is an
elementary extension of A, and we write

A 4 B.

Then 4 is also a reflexive ordering of ModL(∅).

Now suppose h : A
∼=
→ C. If also C ⊆ B, then h is an embedding of A in B, and we

may write
h : A −→ B;

if in addition C 4 B, then h is an elementary embedding of A in B, and we may write

h : A
≡

−→ B.

The notion of homomorphism defined in §. is weaker than embedding and will no longer
be of much interest.

.. Implications

The (Robinson) diagram of A is the set of open sentences of Th(AA); it can be
denoted by

diag(A).

Then Th(AA) may be called the complete or the elementary diagram of A.
Isomorphic structures are practically the same. We have already used this implicitly,

in Theorem .. for example. The following makes this precise.

Lemma .. (Diagram Lemma). Suppose h : A→ B, and B∗ is the expansion of B
to L(A) such that

aB∗

= h(a) (†)

for all a in A. Then

B∗ � diag(A) ⇐⇒ h : A −→ B; (‡)

B∗ � Th(AA) ⇐⇒ h : A
≡

−→ B. (§)

Hence if T is a theory admitting quantifier-elimination, then all embeddings of models of
T are elementary embeddings. If h is surjective, then

B∗ � diag(A) ⇐⇒ h : A
∼=

−→ B ⇐⇒ B∗ � Th(AA). (¶)

If A ⊆ B, then

B � diag(A) ⇐⇒ A ⊆ B;

B � Th(AA) ⇐⇒ A 4 B.

Proof. Suppose h : A→ B. Then

B∗ � ϕ(~a ) ⇐⇒ Bh[A] � ϕ(h(~a )). (‖)

Assume first B∗ � diag(A). We want to show h : A → B, that is,

() h(cA) = cB for all constants c in L,
() h ◦ fA = fB ◦ h for all function-symbols f in L,
() h[RA] = h[A] ∩ RB for all predicates in L.

Some people just write A ≺ B.
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This follows by considering the open formulas c = x0, fx0 · · · xn−1 = xn, and Rx0 . . . xn−1.
Indeed, if cA = a, then diag(A) contains c = a, so cB = h(a) by (‖). The remaining cases
are similar.

Now assume conversely h : A → B. We establish B∗ � diag(A) by showing

~a ∈ ϕA ⇐⇒ h(~a ) ∈ ϕB (∗∗)

for all ~a from A, for all open formulas ϕ of L. We first establish by induction that

h ◦ tA = tB ◦ h (††)

for all terms t of L. The claim is true by definition of embedding if t is a constant or
variable. If (††) is true when t ∈ {u0, . . . , un−1}, and now t is fu0 · · ·un−1, then

h ◦ tA = h ◦ fA ◦ (u0
A, . . . , un−1

A) [by def’n of tA]

= fB ◦ h ◦ (u0
A, . . . , un−1

A) [by def’n of embedding]

= fB ◦ (h ◦ u0
A, . . . , h ◦ un−1

A) [by (∗)]

= fB ◦ (u0
B ◦ h, . . . , un−1

B ◦ h) [by inductive hyp.]

= fB ◦ (u0
B, . . . , un−1

B) ◦ h

= tB ◦ h. [by def’n of tA]

Therefore (††) holds for all t. To prove (∗∗) for all ~a , for all open formulas ϕ, we again
use induction. If ϕ is t0 = t1 for some terms ti, then

~a ∈ ϕA ⇐⇒ t0
A(~a ) = t1

A(~a ) [by definition of ϕA]

⇐⇒ h(t0
A(~a )) = h(t1

A(~a )) [since h is injective]

⇐⇒ t0
B(h(~a ))) = t1

B(h(~a ))) [by (††)]

⇐⇒ h(~a ) ∈ ϕB. [by definition of ϕB]

If ϕ is Rt0 · · · tn−1 for some terms ti and predicate R, then:

~a ∈ ϕA ⇐⇒ (t0
A(~a ), . . . , tn−1

A(~a )) ∈ RA [by def’n of ϕA]

⇐⇒ h(t0
A(~a ), . . . , tn−1

A(~a )) ∈ RB [by def’n of embedding]

⇐⇒ (t0
B(h(~a )), . . . , tn−1

B(h(~a ))) ∈ RB [by (††)]

⇐⇒ h(~a ) ∈ ϕB. [by def’n of ϕB]

If (∗∗) holds for all ~a when ϕ is ψ, and now ϕ is ¬ψ, then:

~a ∈ ϕA ⇐⇒ ~a /∈ ψA [by def’n of ϕA]

⇐⇒ h(~a ) /∈ ψB [by inductive hypothesis]

⇐⇒ h(~a ) ∈ ϕB. [by def’n of ϕB]

Similarly, if (∗∗) holds for all ~a when ϕ is χ or ψ, and now ϕ is χ N ψ, then:

~a ∈ ϕA ⇐⇒ ~a ∈ χA & ~a ∈ ψA [by def’n of ϕA]

⇐⇒ h(~a ) ∈ χB & h(~a ) ∈ ψB [by inductive hypothesis]

⇐⇒ h(~a ) ∈ ϕB. [by def’n of ϕB]

We have now established (‡).
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If h : A → B and h is surjective, then the foregoing proof serves to establish (∗∗) for
all ~a and all formulas ϕ, once we add one more step. Suppose (∗∗) holds when ϕ is an
(m+ 1)-ary formula ψ, and now ϕ is the m-ary ∃xm ψ. We have

~a ∈ ϕA ⇐⇒ (~a , b) ∈ ψA for some b in A

⇐⇒ (h(~a ), h(b)) ∈ ψB for some b in A

⇐⇒ (h(~a ), c) ∈ ψB for some c in A

⇐⇒ h(~a ) ∈ ϕB.

(Note how the surjectivity of h was used.) This gives us (¶) and then (§). �

Corollary. If A ∼= B, then A ≡ B. �

Lemma .. (Tarski–Vaught Test). Suppose B is an L-structure, A ⊆ B, and for
all singulary L(A) formulas ϕ, if B � ∃x0 ϕ, then B � ϕ(a) for some a in A. Then A is
the universe of an elementary substructure of B.

Proof. The assumption ensures that A is the universe of a substructure A of B. We
now want to show

AA � ϕ(~a ) ⇐⇒ BA � ϕ(~a ),

for all ~a from A, for all L-formulas ϕ. Since A ⊆ B, we have the claim when ϕ is open.
Moreover, the set of ϕ for which the claim holds is closed under negation and conjunction.
Finally, if the claim holds when ϕ is an (n+ 1)-ary formula ψ, then

AA � ∃x ϕ(~a , x) ⇐⇒ AA � ϕ(~a , b) for some b in A

⇐⇒ BA � ϕ(~a , b) for some b in A

⇐⇒ BA � ∃x ϕ(~a , x)

by assumption. This completes the induction. �

.. Cardinalities

The cardinality of a structure is the cardinality of its universe. At the end of §.,
it was noted that the same theory may have models of different cardinalities. Usually
cardinals are denoted by Greek letters like κ and λ. The cardinality of |SnL| is sometimes
denoted simply by |L|: so this is always infinite, even though L may be a finite signature.
Also,

|L(X)| = max(|L|, |X|,ℵ0).

Theorem .. (Downward Löwenheim–Skolem). Suppose B is an L-structure, X ⊆
B, and

|L(X)| 6 κ 6 |B|.

Then A 4 B for some A of cardinality κ such that X ⊆ A.

Proof. If Y ⊆ B, let Y ′ be a set such that Y ⊆ Y ′ ⊆ B and, for all singulary formulas
ϕ of L(Y ), if B � ∃x0 ϕ, then BB � ϕ(a) for some a in Y ′. We may assume |Y ′| 6 |L(Y )|.
Now let X0 = X and Xn+1 = Xn

′. by the Tarski–Vaught Test,
⋃
{Xn : n ∈ ω} is the

universe of an elementary substructure A of B such that X ⊆ A. Also |A| 6 |L(X)|. We
may assume also |X| = κ, in which case |A| = κ. �
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A theory T is called κ-categorical if

() T has a model of cardinality κ;
() all models of T of cardinality κ are isomorphic (to each other).

A theory is totally categorical if it is κ-categorical for each infinite κ. There is an easy
example. In the empty signature, structures are pure sets, and isomorphisms are just
bijections. Hence, if L = ∅, then ConL(∅) is totally categorical.

However, there are theories that are ω-categorical (that is, ℵ0-categorical), but not
κ-categorical for any uncountable κ. To give an example, we first note that there are
sentences σn (where n > 0) in the empty signature such that, for all theories T and
structures A of some common signature,

A � T ∪ {σn : n > 0} ⇐⇒ A � T & |A| > ω.

Indeed, let σn be

∃x0 · · · ∃xn−1

∧

i<j<n

xi 6= xj.

Moreover, for any singulary formula ϕ, if n > 1, we can form the sentence

∃x0 · · · ∃xn−1

( ∧

i<j<n

xi 6= xj N

∧

i<n

ϕ(xi)
)
;

this sentence can be abbreviated by

∃>nx ϕ.

Then
A � ∃>nx ϕ ⇐⇒ |ϕA| > n.

Now suppose L = {E}, where E is a binary predicate, and let T be the theory of an
equivalence-relation with exactly two classes, both infinite. So T has as axioms the
generalizations of

x E x,

x E y ⇒ y E x,

x E y N y E z ⇒ x E z,

∃x ∃y ¬(x E y),

x E y ∨ y E z ∨ z E x,

∃>ny x E y.

(Note that there are infinitely many axioms.) Then T is ω-categorical. However, if κ
is an uncountable cardinal, then T is not κ-categorical. For example, there is a model
in which both E-classes have size ℵ1, and a model in which one class has size ℵ1, the
other ω.

The continuum is R, whose cardinality is |2ω|. The Continuum Hypothesis is
that |2ω| = ω1; but this is logically independent of the usual axioms of set-theory.
In a countable signature, there are at most continuum-many non-isomorphic countable
structures, because in such a structure A, each symbol in the signature will be interpreted
as a subset of some An, and there are at most continuum-many of these.

For a given signature L, the spectrum-function is

(T, κ) 7−→ I(T, κ),

where T is a theory, κ is an infinite cardinal, and I(T, κ) is the number of non-isomorphic
L-structures of cardinality κ that are models of T . If T is included in another theory, U ,
of L, then

I(U, κ) 6 I(T, κ).
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Usually we are interested in I(T, κ) only when T is complete.
If |L| = ω, then a theory of L is also called countable. Let T be such, with

an infinite model. By the Downward Löwenheim–Skolem Theorem, T has a countable
model. Therefore

1 6 I(T,ω) 6 |2ω|. (∗)

Letting T be the theory of an infinite sets (in the empty signature) shows that the lower
bound cannot be improved when T is complete. Vaught’s Conjecture is that

I(T,ω) < |2ω| =⇒ I(T,ω) 6 ω.

If the Continuum Hypothesis is accepted, than this implication is trivial; the Conjecture
is that the implication holds even if the Continuum Hypothesis is rejected.

The upper bound of (∗) cannot be improved. For example, let L be {Pn : n ∈ ω},
where each Pn is a singulary predicate. Let T have as axioms all sentences of the form

∃x
(∧

i∈I

Pix N

∧

j∈J

¬Pjx
)
,

where I and J are finite disjoint subsets of ω. Then T admits quantifier-elimination and
is complete (exercise). But T has continuum-many countably infinite models. To see
this, we start with the uncountable model A, where A = 2ω and

Pn
A = {σ ∈ A : s(n) = 1}

for each n in ω. This has the substructure B, where B comprises only those elements of
2ω that are eventually 0; that is, σ ∈ B if and only if, for some k, if n > k, then σ(n) = 0.
Then B is a countable model of T . Indeed, if σ ∈ B, let σ∗ = σ � n + 1, where n is the
greatest k such that σ(k) = 1. Then σ 7→ σ∗ is an injection from B into 2<ω, where

2<ω =
⋃

n∈ω

2n.

This set is partially ordered by ⊂ and is a tree, part of which can be depicted as follows.
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(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

A branch of a tree is a maximal totally ordered subset; the union of a branch of 2<ω is an
element of 2ω, and conversely. So 2<ω is countable, but has continuum-many branches.
If σ and τ are distinct elements of 2ω, then σ(n) 6= τ(n) for some n in ω, and then

σ ∈ Pn
A ⇐⇒ τ /∈ Pn

A.

Hence, if also σ and τ are not in B, then B ∪ {σ} and B ∪ {τ} are the universes of non-
isomorphic models of T . Hence T has at least (and therefore exactly) continuum-many
countable models.
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When T = Th(ω, 0, ′), then I(T,ω) = ω. Indeed, let A � T . There is an equivalence-
relation ∼ on A such that a ∼ b if and only if a(m) = b(n) (in the notation of the proof of
Theorem ..) for some m and n in ω. Let [a] be the ∼-class of a. If a ∼ 0A, then ([a], ′)
is isomorphic to (ω, ′); if a 6∼ 0A, then ([a], ′) is isomorphic to (Z, x 7→ x + 1). Thus A is
determined up to isomorphism by |A/∼|. Moreover,

|A| =

{
ω, if |A/∼| 6 ω;

|A/∼|, otherwise.

Therefore

I(Th(ω, ′, 0), κ) =

{
ω, if κ = ω;

1, if κ > ω.

Thus the theory of (ω, 0, ′) is uncountably categorical.
We shall see in Theorem .. that TO∗ is ω-categorical; however, it is not κ-

categorical if κ > ω. In a countable signature, the question of whether κ-categoricity for
one uncountable κ implies the same for all was answered affirmatively by Michael Morley
in his  doctoral dissertation []. The question of which finite values can be taken
by I(T,ω) is treated below in Ch. .

Exercises

Exercise .. An existential formula is a formula of the form ∃x0 · · · ∃xn−1 ϕ,
where ϕ is open; a universal formula takes the form ∀x0 · · · ∀xn−1 ϕ. Suppose A ⊆ B,
in signature L. Let σ be a sentence of L(A). Prove that,

() if σ is universal, and B � σ, then A � σ;
() if σ is existential, and A � σ, then B � σ.

Exercise ..

() Show that, in the signature {1, −1, · }, every substructure of a group is a group.
() Show that this fails in the signature {1, · }.
() Does it fail in the signature {−1, · }?

Exercise .. Supply missing details in the proof of the Diagram Lemma, and prove
its corollary.

Exercise .. For any theory T , let T∀ be the set of universal consequences of T .
By Exercise ., every substructure of a model of T is a model of T∀. By Exercise .,
we shall have the converse. Meanwhile, it is possible to identify T∀ when T is the theory
of fields. That is, it is possible to find a theory U such that every substructure of a field
is a model of U , and every model of U extends to a field. Do this: find U .

Exercise .. Axiomatize the theory of infinite sets and show that this theory is
complete and totally categorical.



EXERCISES 

Exercise .. In the signature {∼, f}, where ∼ be a binary predicate, and f a
singulary function-symbol, let T be the theory saying that ∼ is an equivalence-relation
with just two classes, and f is an injective function taking every element to an inequivalent
element.

() Find a theory U such that T ⊆ U and U is totally categorical.
() Find a theory T ∗ such that every model of T extends to a model of T ∗ and

I(T ∗,ω) = ω.

Exercise .. In §., prove that the theory in the signature {Pn : n ∈ ω} is com-
plete.

Exercise .. For each n in ω, let En be a binary predicate. In the signature
{En : n ∈ ω}, let T be the theory saying that each En is an equivalence-relation with
infinitely many classes, and each equivalence-class of En+1 is included in an equivalence-
class of En.

() Show that T is complete.
() Show that I(T,ω) = |2ω|.

Exercise .. Find I(T, κ) for all infinite κ when T is the theory of:

() (ω, 0, ′, <);
() vector-spaces over a given scalar-field;
() the field C of complex numbers.



CHAPTER 

Compactness

.. Theorem

A subset Σ of SnL is

() satisfiable if it has a model;
() finitely satisfiable if every finite subset of Σ has a model.

We now aim to prove that every finitely satisfiable set is satisfiable: this is compactness
for first-order logic.

To prove the Compactness Theorem for propositional logic, we used Lemma ...
The following is the same lemma for first-order logic and has the same proof.

Lemma ... If Σ is finitely satisfiable, then so is Σ ∪ {σ} or Σ ∪ {¬σ}. �

In propositional logic, we took a finitely satisfiable set Σ of propositional formulas and
extended it to a set from which we could obtain a model of Σ. We can try to do something
similar to prove compactness for first-order logic. Suppose Σ is a maximal finitely
satisfiable set of first-order formulas in some signature L: this means σ ∈ Σ ⇐⇒ ¬σ /∈ Σ.
We can try to define an L-structure A by letting:

() A be the set of constants in L;
() cA = c for every constant c in L;
() fA(c0, . . . , cn−1) = d ⇐⇒ (fc0 · · · cn−1 = d) ∈ Σ;
() (c0, . . . , cn−1) ∈ RA ⇐⇒ Rc0 · · · cn−1 ∈ Σ.

We want A to be a model of Σ. There are three potential problems:

() The signature L might not contain any constants.
() Suppose L does contain constants c and d. We have

A � c = d ⇐⇒ cA = dA ⇐⇒ c = d.

So A can’t be a model of Σ unless either Σ does not contain the sentence c = d,
or c and d are the same symbol.

() If A � (¬ϕ)x
c for every constant c in L, then A � ∀x ¬ϕ. However, possibly Σ

contains all of the formulas (¬ϕ)x
c , but also ∃x ϕ.

The solutions to these problems will be as follows.

() We expand L to a signature L′ that contains infinitely many constants. Then
we enlarge Σ to a maximal finitely satisfiable subset Σ′ of SnL′.

() Letting C be the set of constants of L′, we define an equivalence-relation E on
C by

c E d ⇐⇒ (c = d) ∈ Σ′.

Then we let A be, not C, but C/E.
() In enlarging Σ to Σ′, we ensure that, if ∃x ϕ ∈ Σ′, then (ϕ)x

c ∈ Σ′ for some c
in C.


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The proof that these do solve the problems will depend on |L|.

Theorem .. (Compactness). Every finitely satisfiable set of sentences (in some
signature) is satisfiable.

Proof. Suppose Σ is a finitely satisfiable subset of SnL. Let C be a set of new
constants (so L∩C = ∅). For any L-structure A, there is some a in A; so we can expand
A to an L ∪ C-structure A′ by defining

cA
′

= a

for all c in C. In particular, Σ is still finitely satisfiable as a set of sentences of L′.
Assume first that L is countable, and let C be countably infinite. Then we can

enumerate SnL∪C as {σn : n ∈ ω}, and C as {cn : n ∈ ω}. We shall define a chain

Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · ,

where each Σk is finitely satisfiable, and only finitely many constants in C appear in
formulas in Σk. The recursive definition is the following:

() Σ0 = Σ. (By assumption, Σ0 is finitely satisfiable, and it contains no constants
of C.)

() Assume Σ2n has been defined as required. Then define

Σ2n+1 =

{
Σ2n ∪ {σn}, if this is finitely satisfiable;

Σ2n, if not.

Then Σ2n+1 is as required.
() Suppose Σ2n+1 has been defined as required. Suppose also σn ∈ Σ2n+1, and σn

is ∃x ϕ for some ϕ. The set of m such that cm does not appear in a formula in
Σ2n+1 has a least element, k. Then the set Σ2n+1 ∪ {(ϕ)x

ck
} is finitely satisfiable.

For, if Γ is a finite subset of Σ2n+1, then it has a model A. Then A � (ϕ)x
a for

some a in A; so we can expand A to a model of Σ2n+1 ∪ {(ϕ)x
ck
} by interpreting

ck as a. In this case we define

Σ2n+2 = Σ2n+1 ∪ {(ϕ)x
ck
};

otherwise, let Σ2n+2 = Σ2n+1. In either case, Σ2n+2 is as desired.

Now we define

Σ∗ =
⋃

n∈ω

Σn.

This is finitely satisfiable, since each finite subset is a subset of some Σn. Suppose
Σ∗∪{σ} is finitely satisfiable. But σ is σn for some n, and Σ2n∪{σ} is finitely satisfiable,
so σ ∈ Σ2n+1, and σ ∈ Σ∗. So Σ∗ is a maximal finitely satisfiable set.

We now define a structure A of L∪C that will turn out to be a model of Σ. We first
define

E = {(c, d) ∈ C2 : (c = d) ∈ Σ∗}.

Then E is an equivalence-relation on C (exercise). So, we can let

A = C/E.

Let the E-class of c be denoted by [c]. We can define

cA = [c].
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If R is an n-ary predicate in L, we let RA consist of those ([c0], . . . , [cn−1]) such that Σ∗

contains Rd0 · · ·dn−1 for some di such that di E ci for each i in n. Then

([c0], . . . , [cn−1]) ∈ RA ⇐⇒ Rc0 · · · cn−1 ∈ Σ∗

(exercise). If f is an n-ary function-symbol in L, then Σ∗ contains ∃x fc0 · · · cn−1 = x
(since this sentence is true in every structure), so Σ∗ contains fc0 · · · cn−1 = d for some
d in C, by construction of Σ∗. Moreover, if ci E c′i for each i in n, and Σ∗ contains both
fc0 · · · cn−1 = d and fc′0 · · · c

′
n−1 = d′, then d E d′ (exercise). Hence we can define fA by

fA([c0] · · · [cn−1]) = [d] ⇐⇒ fc0 · · · cn−1 = d ∈ Σ∗

(exercise). This works, even if f is nullary—is a constant c of L. That is, we define

cA = [d] ⇐⇒ c = d ∈ Σ∗.

So we have A.
It remains to show A � Σ∗. We shall do this by showing

A � σ ⇐⇒ σ ∈ Σ∗ (∗)

for all sentences σ of L ∪ C. Rather, so that we can use induction, we shall show

A � ϕ(~c ) ⇐⇒ ϕ(~c ) ∈ Σ∗

for all ~c from C, for all formulas ϕ. We need a preliminary observation: If t is a constant
term, and c ∈ C, then

tA = [c] ⇐⇒ t = c ∈ Σ∗

(exercise). Now suppose σ is the atomic sentence Rt0 · · · tn−1, and ti
A = [ci] for each i in

n. Then

A � σ ⇐⇒ (t0
A, . . . , tn−1

A) ∈ RA

⇐⇒ ([c0], . . . , [cn−1]) ∈ RA

⇐⇒ Rc0 · · · cn−1 ∈ Σ∗

⇐⇒ σ ∈ Σ∗.

If instead σ is the equation t0 = t1, then

A � σ ⇐⇒ t0
A = t1

A

⇐⇒ [c0] = [c1]

⇐⇒ c0 = c1 ∈ Σ∗

⇐⇒ σ ∈ Σ∗.

Now suppose that (∗) holds when σ is τ . If σ is ¬τ , then

A � σ ⇐⇒ A 2 τ ⇐⇒ τ /∈ Σ∗ ⇐⇒ σ ∈ Σ∗

by maximality of Σ∗. If (∗) holds also when σ is θ, and now σ is τ N θ, then

A � σ ⇐⇒ A � τ & A � θ

⇐⇒ τ ∈ Σ∗ & θ ∈ Σ∗

⇐⇒ σ ∈ Σ∗
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by maximality of Σ∗. Finally, suppose (∗) holds whenever σ is ϕ(c) for some c. If σ is
∃x ϕ, then

A � σ ⇐⇒ A � ϕ(a) for some a in A

⇐⇒ A � ϕ(c) for some c in C

⇐⇒ ϕ(c) ∈ Σ∗ for some c in C

⇐⇒ ∃x ϕ ∈ Σ∗

by definition of Σ∗. By induction, (∗) holds for all σ, so A � Σ∗. This completes the proof
when L is countable. If |L| = κ > ω, then we can enumerate SnL∪C as {σα : α ∈ κ},
and C as {cα : α ∈ κ}. We proceed as before, only, if λ is a limit ordinal in κ, then
Σλ =

⋃
α∈λ Σα. �

For the model A of Σ produced in the proof, we have |A| 6 |C| = |L|.

.. Applications

Theorem ... If T is a theory such that, for all n in ω, there is a model of T of
size greater than n, then T has an infinite model.

Proof. For each n in ω, introduce a new constant cn. Every model of the theory
T ∪ {ci 6= cj : i < j < ω} is infinite. Also this theory has models, by Compactness, since
the theory is finitely satisfiable. Indeed, every finite subset of the theory is a subset of
T ∪ {ci < cj : i < j < n} for some n. We can expand a model of T of size greater than
n to a model of the larger theory by interpreting each ci by a different element of the
universe. �

For example, let K be the class of finite fields (considered as structures in the signature
{+,−, ·, 0, 1}). Then Th(K) has infinite models; these are called pseudo-finite fields.
Every field F has a characteristic: If

F � 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0

for some prime number p, then p is the characteristic of F , or char(F ) = p; if there is no
such p, then char(F ) = 0. The field F is perfect if either:

() char(F ) = 0; or
() char(F ) = p and every element of F has a p-th root.

Then perfect fields are precisely the fields that satisfy the axioms

∀x ∃y (1 + · · ·+ 1︸ ︷︷ ︸
p

= 0 ⇒ yp = x).

Now, if F is finite, then char(F ) = p for some prime p, and the function x 7→ xp is an
automorphism of F , that is, an isomorphism from F to itself. This shows F is perfect.
Therefore the pseudo-finite fields are also perfect. In fact, axioms can be written for the
theory of pseudo-finite fields [].



 . COMPACTNESS

Another field-theoretic application of Compactness is to ordered fields, namely,
structures F or (F,+,−, ·, 0, 1, <) such that:

() (F,+,−, ·, 0, 1) is a field;
() (F,<) is a total order;
() F � ∀x ∀y (0 < x N 0 < y ⇒ 0 < x + y N 0 < x · y);
() F � ∀x (x < 0 ⇒ 0 < −x).

An ordered field must have characteristic 0 (why?); hence Q can be treated as a sub-field
of it. In an ordered field, the formula 0 < x defines the set of positive elements. The
ordered field F is Archimedean if, for all positive a and b in F , there is a natural number
n such that

F � a < b + · · ·+ b︸ ︷︷ ︸
n

.

Then R is an Archimedean ordered field. However, there is an ordered field F such that
F ≡ R, but F is not Archimedean. Indeed, let c be a new constant. Then the theory

Th(R) ∪ {1 + · · ·+ 1︸ ︷︷ ︸
n

< c : n ∈ ω}

is finitely satisfiable, since for every finite subset Σ of this theory, R itself expands to
a model of Σ. So the theory has a model F, by Compactness; but this model is not
Archimedean.

Lemma .. (Löwenheim–Skolem). Suppose A is an infinite L-structure, and κ is
an infinite cardinal such that |L| 6 κ. Then there is an L-structure B such that |B| = κ
and A ≡ B.

Proof. Introduce κ-many new constants cα (where α < κ). In the proof of the
Compactness Theorem, let Σ be Th(A) ∪ {cα 6= cβ : α < β < κ}. This set is finitely
satisfiable. Indeed, any finite subset is included in a subset Th(A)∪{cαi

6= cαj
: i < j < n}

for some finite subset {α0, . . . , αn−1} of κ. Then A expands to a model of this set of
sentences, once we interpret each constant cαi

as a different element of A. (Since A is
infinite, we can do this.) Therefore Σ is finitely satisfiable. The proof of Compactness
now produces a model of Σ of size κ. �

Theorem .. (Upward Löwenheim–Skolem). If A is an infinite L-structure, and
|L(A)| 6 κ, then A has an elementary extension of cardinality κ.

Proof. In the lemma, replace A with AA and use the Diagram Lemma. �

Theorem .. (Łoś–Vaught Test). Suppose T is a satisfiable theory of L. If

() T has no finite models, and
() T is κ-categorical for some κ such that |L| 6 κ,

then T is complete.

Proof. Suppose T is satisfiable, and has no finite models, but is not complete. Then
for some sentence σ, neither σ nor ¬σ is a consequence of T . Hence, both T ∪ {¬σ} and
T ∪{σ} have models. By Lemma .., they have models of size κ. These models are not
elementarily equivalent, so they are not isomorphic; this means T is not κ-categorical. �

Hence the theory of an equivalence-relation with just two classes, both infinite (§.),
is ω-categorical. Likewise for many other examples given above.



EXERCISES 

Exercises

Exercise .. Supply the missing details of the proof of Compactness.

Exercise ..

() Show that every Archimedean ordered field is elementarily equivalent to some
countable, non-Archimedean ordered field.

() Show that every non-Archimedean ordered field contains infinitesimal elements,
that is, positive elements a that are less than every positive rational number.

() Find an explicit example of a non-Archimedean ordered field.

Exercise .. The order of an element g of a group is the size of the subgroup
{gn : n ∈ Z} that g generates. In a periodic group, all elements have finite order.
Suppose G is a periodic group in which there is no finite upper bound on the orders of
elements. Show that G ≡ H for some non-periodic group H.

Exercise .. Suppose (X,<) is an infinite total order in which X is well-ordered
by <. Show that there is a total order (X∗, <∗) such that

(X,<) ≡ (X∗, <∗),

but X∗ is not well-ordered by <∗.

Exercise .. For any theory T , prove that A � T∀ if and only if A is a substructure
of a model of T . (See Exercise ..)

Exercise .. Find a theory that is ω-categorical, but not complete.

Exercise .. Describe all fields F such that the theory of vector-spaces over F is
complete.

Exercise .. Give a complete axiomatization of Th(C).



CHAPTER 

Completeness

.. Introduction

We aim now to establish a sound, complete proof system for first-order logic. The
terminology is just as for propositional logic in §. and §.. But since we shall consider
various possible proof-systems S, we shall write

Σ `S σ

in case there is a formal proof, in the system S, of σ from Σ. If T is another proof
system, which has the axioms and rules of inference of S among its own axioms and rules
of inference, then we may write

S ⊆ T .

To the basic observations of Lemmas .., .., and .., which hold quite generally,
we can add

Lemma ...

() if Σ `S σ and S ⊆ T , then Σ `T σ;
() if Σ `S σ, then Σ0 `S σ for some finite subset Σ0 of Σ. �

.. Propositional logic

A generalization of Theorem .. is

Lemma ... Let S be a proof system for propositional logic. Then S is sound if and
only if:

() each axiom of S is a tautology;
() Φ � ϕ whenever ϕ can be inferred from Φ by one of the rules of inference of S.

Proof. Suppose S is sound. If ϕ is an axiom of S, then `S ϕ and therefore � ϕ.
Suppose that ϕ can be inferred from Φ by one of the rules of inference of S. Then there
is a subset {ψ0, . . . , ψn} of Φ for which the sequence

(ψ0, . . . , ψn−1, ϕ)

is a deduction of ϕ from Φ in S. Hence Φ `S ϕ, and therefore Φ � ϕ.
The converse can be proved by induction on deductions from Φ. Suppose () and ()

hold. Say ϕ has a deduction (ψ0, . . . , ψn−1, ϕ) from Φ in S. As an inductive hypothesis,
suppose Φ � ψi for each i in n. If ϕ ∈ Φ, then Φ � ϕ trivially. If ϕ is an axiom of S,
then � ϕ by assumption, so Φ � ϕ. The remaining possibility is that ϕ can be inferred,
by a rule of inference of S, from some subset Φ0 of {ψ0, . . . , ψn−1}. Then Φ0 � ϕ by
assumption, so Φ � ϕ by Lemma ... �





.. TAUTOLOGICAL COMPLETENESS 

Let us return again in this chapter to using the signature {¬,⇒} for propositional
logic. In Ch.  we established a sound and complete proof system in this system. Hence-
forth, for propositional logic, let us just use the system P, in which all tautologies are
axioms, and Deduction is the only rule of inference. This too is sound and complete.

.. Tautological completeness

Let L be a signature for first-order logic. To prove that a certain proof system for SnL

is complete, we shall use the method first expounded by Leon Henkin, in []. (Henkin’s
proof was a part of his doctoral thesis; see []. We have already used Henkin’s method
to prove Compactness.) The particular treatment in these notes owes something to
Shoenfield’s in []. I introduce the notions of tautological and deductive completeness
completeness merely to make our ultimate proof system seem natural.

Let us say that a proof-system S for SnL is tautologically complete if, from the
assumption that

Fk ∈ Con(F0, . . . ,Fk−1) (∗)

where the Fi are n-ary propositional formulas, it follows that

{F0(~σ ), . . . ,Fk−1(~σ )} `S Fk(~σ ) (†)

for all n-tuples ~σ from SnL.

Lemma ... Let S be a proof system for SnL. Then S is tautologically complete if
and only if:

() `S σ for all tautologies σ of SnL, and
() {σ, σ ⇒ τ} `S τ for all σ and τ in SnL.

Proof. If S is tautologically complete, then immediately () follows; () follows since
{P0, P0 ⇒ P1} � P1.

To prove the converse, we can take advantage of the completeness of P and use
induction in the tree of formal proofs. Suppose we have (∗). Then Fk has a formal proof
from {F0, . . . ,Fk−1}. Say this proof is

(G0, . . . ,Gm−1,Fk),

and suppose (†) holds when Fk is any of the Gi. There are three possibilities:

() If Fk ∈ {F0, . . . ,Fk−1}, then trivially (†) follows.
() If Fk is a tautology, then `S Fk(~σ ) by assumption, so (†).
() If Gj is (Gi ⇒ Fk) for some i and j in m, then, by inductive hypothesis, we

have

{F0(~σ ), . . . ,Fk−1(~σ )} `S Gi(~σ ); {F0(~σ ), . . . ,Fk−1(~σ )} `S Gj(~σ );

hence (†) by assumption.

In all cases then, (†) follows. �

It should be clear that a complete proof system is tautologically complete. The
converse fails. For example, the proof system in which all tautologies are axioms and
Detachment is the only rule of inference is not complete, since it cannot be used to prove
the validity ∃x x = x.

Let ⊥ be the negation of a tautology, say

¬(∃x x = x⇒ ∃x x = x).



 . COMPLETENESS

Henceforth, let Σ ⊆ SnL and σ ∈ SnL.

Lemma ... In a tautologically complete proof system S, the following are equiva-
lent:

() Σ `S ¬σ for some σ in Σ;
() Σ `S σ and Σ `S ¬σ for some σ in SnL;
() Σ `S σ for every σ in SnL;
() Σ `S ⊥. �

If Σ `S ⊥, then Σ is inconsistent in S; otherwise, it is consistent.

Lemma ... In a complete proof system, every consistent subset of SnL has a model.

Proof. If S is complete, but Σ has no model, then Σ � ⊥, so Σ `S ⊥ by completeness,
so Σ is inconsistent. �

The converse of the lemma may fail, even if the proof system is required to be tauto-
logically complete (exercise).

.. Deductive completeness

Let a proof system S be called deductively complete if Σ `S σ ⇒ τ whenever
Σ ∪ {σ} `S τ .

Lemma ... A tautologically and deductively complete proof system in which every
consistent set has a model is complete.

Proof. Suppose S is such a system, and Σ ∪ {¬σ} is inconsistent in S. Then Σ ∪
{¬σ} `S σ by Lemma .., so Σ `S ¬σ ⇒ σ by deductive completeness. But (¬σ ⇒
σ) ⇒ σ is a tautology, so Σ `S σ by tautological completeness.

Therefore, if Σ 0S σ, then Σ ∪ {¬σ} is consistent, so it has a model by assumption;
this shows Σ 2 σ. �

Lemma ... A tautologically complete proof system whose only rule of inference is
Detachment is deductively complete. �

Lemma ... Suppose Σ is consistent in a tautologically and deductively complete
proof system. The following are equivalent:

() If Σ ⊆ Γ ⊆ SnL and Γ is consistent, then Γ = Σ.
() ¬σ ∈ Σ ⇐⇒ σ /∈ Σ for all σ in SnL. �

A set Σ meeting one of the conditions in the lemma can be called maximally con-
sistent.

.. Completeness

By Lemma .., we know of one tautologically complete proof system, namely, the
system whose axioms are the tautologies, and whose rule of inference is Detachment. Let
S be this system. Then S is deductively complete, by Lemma .., and is sound, by
Lemma ... Moreover, soundness and deductive completeness are preserved if we add
new valid axioms to S. Now we shall see which valid axioms we can add in order to
ensure that every consistent set has a model; then we shall have a complete system by
Lemma ...



.. COMPLETENESS 

Assuming S ′ is obtained from S by adding valid axioms, we try to follow the proof of
the Compactness Theorem, replacing ‘finitely satisfiable’ with ‘consistent in S ′.’ Assume
that L is countable. Suppose Σ is a consistent subset of SnL. We introduce a countably
infinite set C of new constants and enumerate SnL∪C as {σn : n ∈ ω}. We construct a
chain

Σ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · ·

where

Σ2n+1 =

{
Σ2n ∪ {σn}, if this is consistent;

Σ2n, otherwise.

If σn is ∃x ϕ, and this is in Σ2n+1, then we want to define Σ2n+2 as

Σ2n+1 ∪ {ϕx
c},

where c is a constant not used in Σ2n+1. But we need to know that this set is consistent.
For this, we assume that S ′ has, as axioms, the sentences

((ϕ)x
c ⇒ ψ) ⇒ ∃x ϕ⇒ ψ, (∗)

where c is a constant not appearing in ψ. Note that these axioms are valid. We now
have:

Lemma ... If Γ is consistent in S ′ and contains ∃x ϕ, and c does not appear in Γ,
then Γ ∪ {(ϕ)x

c} is consistent in S ′.

Proof. Suppose it’s not. Then

{ψ0, . . . , ψk−1} ∪ {(ϕ)x
c} `S′ ⊥

for some ψi in Γ. By deductive completeness,

`S′ (ϕ)x
c ⇒ ψ0 ⇒ · · · ⇒ ψk−1 ⇒ ⊥.

From (∗) and Detachment we have

`S′ ∃x ϕ⇒ ψ0 ⇒ · · · ⇒ ψk−1 ⇒ ⊥.

Then k + 1 applications of Detachment show

Γ `S′ ⊥,

which contradicts the assumption that Γ is consistent. �

So now, given a consistent subset Σ of SnL, we can construct a consistent subset Σ∗

of SnL∪C such that

() Σ ⊆ Σ∗;
() Σ∗ is maximally consistent;
() if (∃x ϕ) ∈ Σ, then (ϕ)x

c ∈ Σ for some c in C, that is, Σ∗ has witnessess.

As in the proof of Compactness, we want to use Σ∗ to define a model A of itself. For the
sake of defining the universe of A, we assume now that S ′ also has the axioms

c = c, (†)

c = c′ ⇒ d = d′ ⇒ c = d⇒ c′ = d′, (‡)

where c, c′, d and d′ range over C. Let E be the relation

{(c, d) ∈ C2 : (c = d) ∈ Σ∗}.

Lemma ... The relation E is an equivalence-relation.



 . COMPLETENESS

Proof. We first show

`S′ c = c, (§)

`S′ c = d⇒ d = c, (¶)

`S′ c = d⇒ d = e⇒ c = e (‖)

for all constants c, d and e in C. We have (§) trivially by (†). An instance of (‡) is

c = d⇒ c = c⇒ c = c⇒ d = c;

then (¶) follows by tautological completeness. Another instance of (‡) is

c = c⇒ d = e⇒ c = d⇒ c = e;

then (‖) follows by tautological completeness. By its maximal consistency then, Σ∗

contains c = c; and if Σ∗ contains c = d and d = e, then it contains d = c and c = e. �

We define A to be C/E. We now define RA (for each n-ary predicate R in L) as the
set

{([c0], · · · , [cn−1]) ∈ An : (Rc0 · · · cn−1) ∈ Σ∗}.

Then we have
(Rc0 · · · cn−1) ∈ Σ∗ =⇒ ([c0], · · · , [cn−1]) ∈ RA,

but perhaps not the converse. Possibly then both Rc0 · · · cn−1 and ¬Rc′0 · · · c
′
n−1 are in

Σ∗, although (ck = c′k) ∈ Σ∗ in each case. To prevent this, as as axioms of S ′ we assume

c0 = c′0 ⇒ · · · ⇒ cn−1 = c′n−1 ⇒ Rc0 · · · cn−1 ⇒ Rc′0 · · · c
′
n−1.

We now have:

Lemma ... ([c0], · · · , [cn−1]) ∈ RA ⇐⇒ (Rc0 · · · cn−1) ∈ Σ∗. �

Finally, suppose f is an n-ary function-symbol (where possibly n = 0, in which case
f is a constant.) We want to be able to define fA. (If c ∈ C, then cA = [c]; but there
might be constants of L as well.) To define fA, we first need some lemmas, which are
based on another axiom:

ϕx
t ⇒ ∃x ϕ, (∗∗)

where fv(ϕ) ⊆ {x} and t is a constant term. Let us assume that this is also an axiom of
S ′. Then we have:

Lemma .. (Substitution). If fv(ϕ) ⊆ {x}, and the constant c does not appear in
ϕ, then

`S′ (ϕ)x
c ⇒ (ϕ)x

t

for all constant terms t.

Proof. We have

`S′ (¬ϕ)x
t ⇒ ∃x ¬ϕ, [by (∗∗)]

`S′ ¬∃x ¬ϕ⇒ (ϕ)x
t , [by tautological completeness]

`S′ ((¬ϕ)x
c ⇒ ⊥) ⇒ ∃x ¬ϕ⇒ ⊥, [by (∗)]

`S′ (ϕ)x
c ⇒ ¬∃x ¬ϕ, [by tautological completeness]

and hence `S′ (ϕ)x
c ⇒ (ϕ)x

t by tautological completeness. �

Lemma ... `S′ t = t for all constant terms t.



.. COMPLETENESS 

Proof. We have

`S′ c = c, [by (†)]

`S′ c = c⇒ t = t, [by the Substitution Lemma]

and hence `S′ t = t by tautological completeness. �

Lemma ... `S′ ∃x fc0 · · · cn−1 = x.

Proof. We have

`S′ fc0 · · · cn−1 = fc0 · · · cn−1, [by the last lemma]

`S′ fc0 · · · cn−1 = fc0 · · · cn−1 ⇒ ∃x fc0 · · · cn−1 = x, [by (∗∗)]

hence `S′ ∃x fc0 · · · cn−1 = x by tautological completeness. �

Finally, we assume as axioms of S ′ the sentences

c0 = c′0 ⇒ · · · ⇒ cn−1 = c′n−1 ⇒ fc0 · · · cn−1 = fc′0 · · · c
′
n−1. (††)

This enables us to define fA:

Lemma ... For each n-ary function-symbol f , there is an n-ary operation fA on
A given by

fA([c0], . . . , [cn−1]) = [d] ⇐⇒ (fc0 · · · cn−1 = d) ∈ Σ∗.

Proof. Since Σ∗ is maximally consistent, we now have

(∃x fc0 · · · cn−1 = x) ∈ Σ∗.

Since Σ∗ has witnesses, we have (fc0 · · · cn−1 = d) ∈ Σ∗ for some constant d. This gives
us a value for fA([c0], · · · , [cn−1]); we have to show that this value is unique. For this, it
is enough to show

`S′ c0 = c′0 ⇒ · · · ⇒ cn−1 = c′n−1 ⇒ d = d′ ⇒ fc0 · · · cn−1 = d⇒ fc′0 · · · c
′
n−1 = d′

for all ck and c′k and d and d′ in C. By (††) and tautological completeness, it is enough
to show

`S′ fc0 · · · cn−1 = fc′0 · · · c
′
n−1 ⇒ d = d′ ⇒ fc0 · · · cn−1 = d⇒ fc′0 · · · c

′
n−1 = d′.

In the axiom (‡), we may assume that c is not one of the variables c′, d or d′. Then by
the Substitution Lemma, we have

`S′ fc0 · · · cn−1 = c′ ⇒ d = d′ ⇒ fc0 · · · cn−1 = d⇒ c′ = d′.

We may also assume that c′ is not one of the variables ck, d or d′. Applying the Substi-
tution Lemma again gives what we want. �

The structure A is now determined and is a model of Σ, by the proof of the Com-
pactness Theorem. In sum, what we have shown is:
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Theorem .. (Completeness). That proof system for SnL is complete whose only
rule of inference is Detachment, and whose axioms are the following:

() the tautologies;
() ((ϕ)x

c ⇒ ψ) ⇒ ∃x ϕ⇒ ψ, where c does not appear in ψ;
() c = c;
() c = c′ ⇒ d = d′ ⇒ c = d⇒ c′ = d′;
() c0 = c′0 ⇒ . . . cn−1 = c′n−1 ⇒ Rc0 · · · cn−1 ⇒ Rc′0 · · · c

′
n−1;

() ϕx
t ⇒ ∃x ϕ;

() c0 = c′0 ⇒ · · · ⇒ cn−1 = c′n−1 ⇒ fc0 · · · cn−1 = fc′0 · · · c
′
n−1.

Here the notation is as follows:
• x is a variable;
• ϕ is a formula such that fv(ϕ) ⊆ {x};
• ψ is a sentence;
• t is a constant term;
• c, c′, ck, c′k, d and d′ are constants;
• n ∈ ω;
• R is an n-ary predicate if n > 0; and
• f is an n-ary function-symbol (or a constant, if n = 0).

Exercises

Exercise .. Prove Lemma ...

Exercise .. Show that the proof system in which all tautologies are axioms and
Detachment is the only rule of inference cannot be used to prove the validity ∃x x = x.

Exercise .. Prove Lemma ...

Exercise .. Let the axioms of a proof system S be the tautologies, and let the
rules of inference be Detachment, along with the rule that ⊥ can be inferred from every
finite set that has no model. (Note however that this is not really a syntactical rule.)
Show that, in S, all consistent sets have models, although the validity ∃x x = x is not
deducible in S.

Exercise .. Prove Lemma ...

Exercise .. Prove Lemma ...

Exercise .. Prove lemma ...

Exercise .. Prove the Compactness Theorem from the Completeness Theorem.
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Numbers of countable models

Our ultimate aim is to show that

I(T,ω) 6= 2 (‡‡)

whenever T is a countable, complete theory. The proof will require several interesting
general results.

Note that proving (‡‡) requires T to be complete. For example, Let P be a singulary
predicate, and in the signature {L}, let T be axiomatized by

∀x ∀y (Px N Py ⇒ x = y).

Then T has non-isomorphic countably infinite models (ω,∅) and (ω, {0}), and every
countably infinite model is isomorphic to one of these.

.. Three models

In the signature {<} ∪ {cn : n ∈ ω}, let T3 be the theory axiomatized by

TO∗ ∪ {cn+1 < cn : n ∈ ω}.

We shall see that T3 is complete, and I(T3,ω) = 3. Let

A0 = {x ∈ Q : 0 < x} = Q ∩ (0,∞),

A1 = Q r {0},

A2 = Q.

Then each Ak is the universe of a model Ak of T3, where <Ak is the usual ordering <, and

cn
Ak =

1

2n
.

Then the set {cn : n ∈ ω} of elements has

() no lower bound, in A0;
() a lower bound, but no infimum, in A1;
() an infimum, in A2.

����������

����������

�����������

��

��

A0

A1

A2

Hence the three structures are not isomorphic. However, we shall be able to show:

() if B � T3 and is countable, then B ∼= Ak for some k in 3;
() T3 is complete.


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The proof of the first claim will be by the back-and-forth method. The following gives
the prototypical example:

Theorem .. (Cantor []). TO∗ is ω-categorical.

Proof. Suppose A,B � TO∗ and |A| = ω = |B|. We shall show A ∼= B. We can
enumerate the universes:

A = {an : n ∈ ω}, B = {bn : n ∈ ω}.

We shall recursively define an order-preserving bijection h from A to B. In particular, h
will be

⋃
{hn : n ∈ ω}, where, notationally, we shall have

hn = {(ak, b
′
k) : k < n} ∪ {(a′k, bk) : k < n}.

We let h0 = ∅. Suppose we have hn so that the tuples

(a0, a
′
0, . . . , an−1, a

′
n−1), and (b′0, b0, . . . , b

′
n−1, bn−1)

have the same order-type. This means that, if we write these tuples as (c0, . . . , c2n−1)
and (c′0, . . . , c

′
2n−1) respectively, then

ci < cj ⇐⇒ c′i < c′j

for all i and j in 2n. Since B is a dense total order without endpoints, we can chose b′n
so that

(a0, a
′
0, . . . , an−1, a

′
n−1, an) and (b′0, b0, . . . , b

′
n−1, bn−1, b

′
n)

have the same order-type. Likewise, we can choose a′n so that

(a0, a
′
0, . . . , an, a

′
n), and (b′0, b0, . . . , b

′
n, bn)

have the same order-type. Now let hn+1 = hn ∪ {(an, b
′
n), (a′n, bn)}. �

Corollary. I(T3,ω) = 3.

Proof. Suppose B is a countable model of T3. The interpretation in B of each
formula

cn+1 < x N x < cn

is (when equipped with the ordering induced from B) a countable model of TO∗. The
same is true for the formula c0 < x. Finally, the set

⋂

n∈ω

{b ∈ B : b < cn}

is one of the following:

() empty;
() a countable model of TO∗;
() a countable dense total order with a greatest point, but no least point.

Then the previous theorem allows us to construct an isomorphism between B and A0,
A1 or A2 respectively. �

The following is really a corollary of Theorem ..:

Theorem ... T3 admits elimination of quantifiers.
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Proof. Any formula ϕ(~x ) of {<, c0, c1, . . . } can be considered as

θ(~x , c0, . . . , cn−1)

for some formula θ of {<}. By quantifier-elimination in TO∗, there is an open formula α
of {<} such that

TO∗ � ∀~x ∀~y (θ(~x , ~y ) N

∧

i<n

yi+1 < yi ⇔ α(~x , ~y )).

But T3 � ci+1 < ci, and T3 � TO∗; so

T3 � ∀~x (θ(~x ,~c ) ⇔ α(~x ,~c )).

Thus T3 admits quantifier-elimination. �

Corollary. T3 is complete.

Proof. The three countable models Ak form a chain:

A0 ⊆ A1 ⊆ A2.

By the Diagram Lemma, the chain is elementary:

A0 4 A1 4 A2.

In particular, the three structures are elementarily equivalent. Now, if B is an arbitrary
model of T3, then it is infinite, so B ≡ C for some countably infinite structure C by the
Downward Löwenheim–Skolem Theorem (..). But C ∼= Ak for some k, by the corollary
to Cantor’s Theorem. Hence B ≡ A0. Thus

T3 � Th(A0);

so T3 is complete. �

.. Omitting types

Since there is a sound, complete proof system for first-order logic, we may say that a
set of sentences is consistent if it has a model. An n-type of a signature L is a set of
n-ary formulas of L. An n-type Φ of L is realized by ~a in an L-structure A if

A � ϕ(~a )

for all ϕ in Φ. A type not realized in a structure is omitted by the structure. If
a consistent theory T of L is specified, then an n-type of T is an n-type Φ that is
consistent with T : This means that Φ is realized in some model of T . Equivalently, it
means that, if ~c is an n-tuple of new constants, then the set

T ∪ {ϕ(~c ) : ϕ ∈ Φ}

is consistent. By Compactness, for Φ to be consistent with T , it is sufficient that

T ∪ {∃~x
∧

Φ0}

be consistent for all finite subsets Φ0 of Φ. By Compactness also, for any collection of
types consistent with T , there is a model of T in which all of the types are realized. An
n-type Φ of T is isolated in T by an n-ary formula ψ if:

() T ∪ {∃~x ψ} is consistent;
() T � ∀~x (ψ ⇒ ϕ) for all ϕ in Φ.
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Hence, if ψ is satisfied by ~a in a model of T , then ~a realizes Φ. Also, if T is complete,
then T � ∃~x ψ, so Φ is realized in every model of T .

A theory is countable if, in its signature, only countably many formulas are inequiv-
alent in T . It turns out that, in a countable theory, being isolated is the only barrier to
being omitted by some model:

Theorem .. (Omitting Types). Suppose T is a countable theory, and Φ is a non-
isolated 1-type of T . Then Φ is omitted by some countable model of T .

Proof. We adjust our proof of the Compactness Theorem. As there, we introduce
a set C of new constants cn (where n ∈ ω). We enumerate SnL∪C as {σn : n ∈ ω}. We
construct a chain

T = Σ0 ⊆ Σ1 ⊆ · · ·

as follows. Assume Σ3n is consistent. Then let

Σ3n+1 =

{
Σ3n ∪ {σn}, if this is consistent;

Σ3n, otherwise.

Now let

Σ3n+2 = Σ3n+1 ∪ {ϕ(ck)},

where k is minimal such that ck does not appear in Σ3n+1, if σn ∈ Σ3n+1 and σn is ∃x ϕ;
otherwise, Σ3n+2 = Σ3n+1. Finally, let

Σ3n+3 = Σ3n+2 ∪ {¬ψ(cn)},

where ψ is an element of Φ such that Σ3n+2 ∪ {¬ψ(cn)} is consistent. But we have to
check that there is such a formula ψ in Φ. If there is, then we can let

Σ∗ =
⋃

n∈ω

Σn.

Then Σ∗ has a countable model A (as in the proof of Compactness) such that every
element of A is cA for some c in C. But by construction, no such element can realize Φ;
so A omits Φ.

Now, in the definition of Σ3n+3, the formula ψ exists as desired because the set Σ3n+2r

T can be assumed to be finite. In particular, the formulas in this set use only finitely

many constants from C. We may assume that these constants form a tuple (cn, ~d ). Then
we can write

∧
Σ3n+2 r T as a sentence

ϕ(cn, ~d ),

where ϕ is a certain formula of L. Now, if

Σ3n+2 � ψ(cn)

for some formula ψ, then (exercise)

T � ϕ(cn, ~d ) ⇒ ψ(cn),

and hence (exercise)

T � ∀x (∃~y ϕ(x, ~y ) ⇒ ψ(x)).

Since Φ is not isolated in T , it is not isolated by ∃~y ϕ. Therefore the set Σ3n+2∪{¬ψ(cn)}
must be consistent for some ψ in Φ. �
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In the proof, it is essential that Σn r T is finite; the proof can’t be generalized to the
case where T is uncountable. But the proof can be generalized to yield the following:

Porism. Suppose T is a countable theory, and Φk is an n-type of T for some n
(depending on k), for each k in ω. Then T has a countable model omitting each Φk.

An n-type Φ of a theory T is called complete if

ϕ /∈ Φ ⇐⇒ ¬ϕ ∈ Φ

for all n-ary formulas ϕ of L. Any n-tuple ~a of elements of a model A of T determines a
complete n-type of T , namely

{ϕ : A � ϕ(~a )};

this is the (complete) type of ~a in A and can be denoted by

tpA(~a ).

If Φ is an arbitrary n-type of T , then some ~a from some model A of T realizes Φ, and
therefore

Φ ⊆ tpA(~a ).

In particular, every type of T is included in a complete type of T .
The set of complete n-types of T can be denoted by

Sn(T );

then we can let
⋃

n∈ω
Sn(T ) be denoted by

S(T ).

So the Omitting Types Theorem gives us that, if T is countable and |S(T )| 6 ω, then T
has a countable model that omits all non-isolated types of T .

A structure that realizes no non-isolated types of its is called atomic. For example,
the iterative structure (ω, 0, ′) is atomic, because each of its elements k is the interpre-
tation of the term 0(k), so that the complete type of any tuple (k0, . . . , kn−1) is isolated
by x0 = 0(k0) N · · · N xn−1 = 0(kn−1).

The order (ω, <) is atomic, because, for each element k, there is a formula ϕk such
that ϕk

(ω,<) = {k} (exercise).

Theorem ... If h : A
≡
→ B, and ~a ∈ An, then

tpB(h(~a )) = tpA(~a );

thus B realizes all types realized in A.

Proof. Let Φ = tpA(~a ). Then Φ is a complete type, and {ϕ(~a ) : ϕ ∈ Φ} ⊆ Th(AA),
so h(~a ) realizes Φ in B by the Diagram Lemma. �

Hence for example if h is an automorphism of A, then ~a and h(~a ) have the same
complete type. For any two elements a and b of an infinite set, there is an automorphism
that takes a to b. Therefore the infinite set is atomic (exercise).

However, the theory in signature {Pn : n ∈ ω} in §. has no atomic models. Indeed,
for every formula ϕ in this signature, there is a predicate Pk that does not appear in ϕ.
Then both ϕ N Pkx0 and ϕ N ¬Pkx0 are consistent (exercise), so ϕ does not isolate a
complete type.
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.. Prime structures

A structure is prime if it embeds elementarily in every model of its theory; if that
theory is T , then the structure is a prime model of T . (Note then that only complete
theories can have prime models, simply because a prime model is elementarily equivalent
to all other models.)

If T admits quantifier-elimination, then by the Diagram Lemma, all embeddings of
models of T are elementary embeddings. Hence, for example, a countably infinite set is
a prime model of the theory of infinite sets. Also, (Q, <) embeds in every model of TO∗,
so it is a prime model.

By the Downward Löwenheim–Skolem Theorem, a model of a countable theory T is
prime, provided it embeds elementarily in all countable models of T . In particular then,
if T is ω-categorical, then its countable model is prime.

Theorem .. (Vaught). Suppose T is a countable complete theory. Then the prime
models of T are precisely the countable atomic models of T .

Proof. Suppose A � T .
(⇒) If A is not countable, then A cannot embed in countable models of T (which

must exist, by the Upward Löwenheim–Skolem Theorem, ..), so A cannot be prime.
If A is not atomic, then A realizes some non-isolated type Φ of T . But by the

Omitting-Types Theorem, T has a countable model B that omits Φ. Then A cannot
embed elementarily in B, by Theorem ...

(⇐) Suppose A is countable and atomic, and B � T . We construct an elementary
embedding of A in B by the back-and-forth method, except that the construction is in
only one direction. Write A as {an : n ∈ ω}. Then each tpA(a0, . . . , an−1) is isolated in
T by some formula ϕn. Then we have

() T � ∃x0 · · · ∃xn−1 ϕn;
() T � ∀x0 · · · ∀xn−1 (ϕn ⇒ ∃xn ϕn+1).

Hence we can recursively find bk in B so that

B � ϕn(b0, . . . , bn−1)

for all n in ω. Now, every sentence in Th(AA) is θ(a0, . . . , an−1) for some formula θ of L.
Then

T � ∀~x (ϕn ⇒ θ),

so B � θ(~b ). Therefore the function ak 7→ bk from A to B is an elementary embedding
of A in B. �

Porism. All prime models of a countable complete theory are isomorphic.

Proof. In the proof that A embeds elementarily in B, if we assume also that B is
countable and atomic, then the full back-and-forth method gives an isomorphism between
the structures. �

Theorem ... Let T be a countable complete theory.

() If I(T,ω) 6 ω, then |S(T )| 6 ω.
() If |S(T )| 6 ω, then T has a prime model.

Proof. Suppose |S(T )| > ω. Since there are only countably many formulas, there
are only countably many isolated complete types; hence there are uncountably many
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non-isolated complete types. Let C be an infinite set of such types. For every subset D
of C, there is a countable model of T that realizes every type in D, but no type in CrD.
There are uncountably many choices for D, but different choices yield non-isomorphic
countable models of T . Thus I(T,ω) > ω. (In fact, I(T,ω) = |2ω|.)

If |S(T )| 6 ω, then T has a countable atomic model by Omitting Types, hence a
prime model by Theorem ... �

Note however that (ω, 0, ′, <) is a prime model of its theory T , but I(T,ω) = |2ω|.

.. Saturated structures

A saturated structure is the opposite of an atomic structure. Atomic structures
realize as few types as possible. Saturated structures realize as many types as possible;
moreover, these types are allowed to have parameters from the structure.

To be precise, let M be an infinite L-structure, and let A ⊆ M . In this context, the
set Sn(Th(MA)) can be denoted by

Sn(A).

Consider the special case where A is M itself. The set S1(M), for example, contains types
that include the type

{x 6= a : a ∈M}.

These types cannot be realized in M. So we say that M is saturated, provided that,
whenever A ⊆ M and |A| < |M |, each type in S(A) is realized in M. (In particular, if
M is countable here, then the sets A should be finite.)

We can construct saturated models by means of chains, namely, sequences (An : n ∈
ω) of structures such that An ⊆ An+1. Since ⊆ is transitive, we may write the chain as

A0 ⊆ A1 ⊆ A2 ⊆ · · · .

If each inclusion is elementary, then the chain is called elementary; since the relation
4 is transitive (exercise), we may write the elementary chain as

A0 4 A1 4 A2 4 · · · .

The union of a chain is a structure of which all the links in the chain are substructures.

Theorem .. (Tarski–Vaught). The union of an elementary chain is an elementary
extension of all of the links. �

Theorem ... Suppose T is countable and complete, and |S(T )| 6 ω. Then T has
a countable saturated model.

Proof. Suppose M is a countable model of T . If A is a finite subset {ak : k < n} of
M , then each element of Sm(A) is

{ϕ(x0, . . . , xm−1, a0, . . . , an−1) : ϕ ∈ p}

for some p in Sm+n(T ). Hence |S(A)| is countable. Therefore the set
⋃

{S(A) : A is a finite subset of M}

is countable. So all of the types in this set are realized in a countable elementary extension
M′ of M. Thus, if M0 is a countable model of T , then we can form an elementary chain

M0 4 M1 4 M2 4 · · ·
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where Mn+1 = Mn
′. Every finite subset of N is a subset of some Mn, and so the types

of S(A) are realized in Mn+1, hence in N. So N is saturated. �

If A is a finite subset {ak : k < n} of M , and ~a is (a0, . . . , an−1), we can denote MA

by

(M,~a ).

If M is countable, then M is called homogeneous if

tpM(~a ) = tpM(~b ) =⇒ (M,~a ) ∼= (M,~b )

for all n-tuples ~a and ~b from M , for all n in ω.

Theorem ... Countable saturated structures are homogeneous.

Proof. The back-and-forth method. �

.. One model

For the sake of stating and proving the following theorem more easily, we can use the
following notation. Suppose T is a theory of L. Then equivalence in T is an equivalence-
relation on the set of n-ary formulas of L. Let the set of corresponding equivalence-classes
be denoted by

Bn(T ).

Theorem .. (Ryll-Nardzewski). Suppose T is a countable complete theory. The
following statements are equivalent:

() I(T,ω) = 1.
() All types of T are isolated.
() Each set Bn(T ) is finite.
() Each set Sn(T ) is finite.

Proof. ()⇒(): If S(T ) contains a non-isolated type, then it is realized in some,
but not all, countable models of T , so I(T,ω) > 1.

()⇒(): If all types of T are isolated, then all models of T are atomic, so all countable
models of T are prime and therefore isomorphic.

()⇒(): Immediate.
()⇒()&(): Suppose Sn(T ) = {p0, . . . , pm−1}. For each i and j in m, if i 6= j, then

there is a formula ϕij in pi r pj. Let ψi be the formula
∧

j∈mr{i}

ϕij.

Then ψi is in pj if and only if j = i. If A � T , and ~a is an n-tuple from A, then A realizes
some unique pi, and then A � ψi(~a ). Conversely, if A � ψi(~a ), then ~a must realize pi.
Therefore ψi isolates pi.

If χ is an arbitrary n-ary formula, let I = {i ∈ m : χ ∈ pi}. Then

T � ∀~x (χ⇔
∨

i∈I

ψi).

There are only finitely many possibilities for I, so Bn(T ) is finite.
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()⇒(): Suppose infinitely many complete n-types are isolated in T . Since T is
countable, there must be countably many such types. Say they compose the set {pk : k ∈
ω}, and each pk is isolated by ϕk. Then the type

{¬ϕk : k ∈ ω}

is consistent with T . It is not included in any of the pk, so it must be included in a
non-isolated type. �

Corollary. If A is a structure in a countable signature, and ~a is a tuple from A,
and Th(A,~a ) is ω-categorical, then so is Th(A). �

.. Not two models

Theorem .. (Vaught). If T is a countable complete theory, then I(T,ω) 6= 2.

Proof. Suppose 2 6 I(T,ω) 6 ω. Then T has a prime model A by Theorem ..,

and a saturated model B, by Theorem ..; moreover, some ~b in B must have a non-
isolated complete type. Suppose (C,~c ) ≡ (B,~b ). If C ∼= B, then (C,~c ) ∼= (B,~a ) for some

~a . But then the types of ~a , ~c , and ~b are the same, so (B,~a ) ∼= (B,~b ) by Theorem ..,

and therefore (C,~c ) ∼= (B,~b ). Since Th(B,~b ) is not ω-categorical by the corollary to

Ryll-Nardzewski’s Theorem, we conclude that it has a countable model (D, ~d ) such that

D � B. Also D � A, since D realizes tpB(~b ). Thus I(T,ω) > 3. �

Exercises

Exercise .. For each finite n greater than 2, find a theory T such that I(T,ω) = n.

Exercise .. Supply the missing details in the proof of the Omitting Types Theo-
rem.

Exercise .. Show that, for each k in ω, there is a formula ϕk such that ϕk
(ω,<) =

{k}.

Exercise .. Verify that an infinite set is atomic.

Exercise .. Let T be the theory in signature {Pn : n ∈ ω} given in §.. Suppose
Pk does not appear in the formula ϕ in this signature. Show that both ϕ N Pkx0 and
ϕ N ¬Pkx0 are consistent with T .

Exercise .. Prove the Tarski–Vaught Theorem on unions of elementary chains.

Exercise .. Prove the corollary to Ryll-Nardzewski’s Theorem.

Exercise .. Prove the theorem of Chang [] and Łoś and Suszko [] that a theory
has ∀∃ axioms (that is, axioms ∀~x ∃~y ϕ, where ϕ is open) if and only if, for all chains of
models of the theory, the union is also a model. Conclude for example that the union of
a chain of fields is a field.



APPENDIX A

The German script

Writing in , Wilfrid Hodges [, Ch. , p. ] observes

Until about a dozen years ago, most model theorists named structures
in horrible Fraktur lettering. Recent writers sometimes adopt a notation
according to which all structures are named M , M ′, M∗, M̄ , M0, Mi or
occasionally N .

For Hodges, structures are A, B, C, and so forth; he refers to their universes as domains
and denotes these by dom(A) and so forth. This practice is convenient if one is using a
typewriter (as in the preparation of another of Hodges’s books [], from ). In ,
David Marker [] uses ‘calligraphic’ letters for structures, so that M is the universe
of M. I still prefer the Fraktur letters:

A B C D E F G
H I J K L M N
O P Q R S T U

V W X Y Z

a b c d e f g
h i j k l m n
o p q r s t u

v w x y z

A way to write these by hand is seen in a textbook of German from  []:


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The Greek alphabet

capital minuscule transliteration name
Α α a alpha
Β β b beta
Γ γ g gamma
∆ δ d delta
Ε ε e epsilon
Ζ ζ z zeta
Η η ê eta
Θ θ th theta
Ι ι i iota
Κ κ k kappa
Λ λ l lambda
Μ µ m mu
Ν ν n nu
Ξ ξ x xi
Ο ο o omicron
Π π p pi
Ρ ρ r rho
Σ σ, ς s sigma
Τ τ t tau
Υ υ y, u upsilon
Φ φ ph phi
Χ χ ch chi
Ψ ψ ps psi
Ω ω ô omega

The following remarks pertain to ancient Greek. The vowels are

α, ε, η, ι, ο, υ, ω,

where η is a long ε, and ω is a long ο; the other vowels (α, ι, υ) can be long or short. Some
vowels may be given tonal accents (ά, ©, ¦). An initial vowel takes either a rough-breathing
mark (as in ¡) or a smooth-breathing mark (¢): the former mark is transliterated by a
preceding h; the latter can be ignored:

Øπερβολή hyperbolê hyperbola; Ñρθογώνιον orthogônion rectangle.
Likewise, · is transliterated as rh:

·όµβος rhombos rhombus.
A long vowel may have an iota subscript, as in Î quâ (see p. ). Of the two forms of
minuscule sigma, the ς appears at the ends of words; elsewhere, σ appears:

βάσις basis base.





APPENDIX C

The natural numbers

Definition (Addition). For each m in N, the operation x 7→ m + x on N is the
unique homomorphism from (N, 1, s) to (N, ms, s) guaranteed by the Recursion Theorem
(..). That is,

m + 1 = ms,

m+ ns = (m+ n)s.
(∗)

Lemma C..

() 1 + n = ns;
() ms + n = (m + n)s. �

Theorem C..

() n +m = m + n;
() (n +m) + k = n + (m+ k). �

Addition exists with the foregoing properties in every inductive structure (in the sense
of §.). Edmund Landau [] shows this implicitly. See Leon Henkin [] and Alexandre
Borovik [] for explicit discussion.

Theorem C.. In any inductive structure there is an operation of addition satisfy-
ing (∗) and hence the lemma and theorem.

Proof. LetM be the set ofm in the structure for which there is a singulary operation
x 7→ m + x as desired. Then 1 ∈M , since if we define 1 + x as xs, then

1 + 1 = 1s,

1 + ns = nss = (1 + n)s.

Suppose k ∈M . If we define ks + x as (k + x)s, then

ks + 1 = (k + 1)s = kss,

ks + ns = (k + ns)s = (k + n)ss = (ks + n)s,

so ks ∈M . By induction, all m are in M . The earlier lemma and theorem are also proved
by induction alone. �

Definition (Multiplication). For each m in N, the operation x 7→ m · x on N is the
unique homomorphism from (N, 1, s) to (N, m, x 7→ x+m) guaranteed by the Recursion
Theorem (..). That is,

m · 1 = m,

m · (n+ 1) = m · n+m.
(†)

Lemma C..

() 1 · n = n;
() (m + 1) · n = m · n+ n. �


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Theorem C.. For all n, m, and k in N,

() n ·m = m · n;
() n · (m + k) = n ·m + n · k;
() (n ·m) · k = n · (m · k); �

As before, only induction has been required so far.

Theorem C.. In any inductive structure (in the sense of §.) there is an operation
of multiplication satisfying (†) and hence the lemma and theorem. �

The next theorem does need recursion.

Theorem C. (Cancellation).

() if n+ k = m+ k, then n = m;
() if n ·m = 1, then n = 1 and m = 1;
() if n · k = m · k, then n = m. �

Definition (Exponentiation). For each m in N, the operation x 7→ mx on N is the
unique homomorphism from (N, 1, s) to (N, m, x 7→ x ·m) guaranteed by the Recursion
Theorem (..). That is,

m1 = m,

mn+1 = mn ·m.
(‡)

Theorem C..

() 1n = 1;
() nm+k = nm · nk;
() (n ·m)k = nk ·mk;
() (nm)k = nm·k. �

Exponentiation requires more than induction, because of the following theorem. (See
Don Zagier [] for a different formulation.)

Theorem C.. Let n ∈ N. On the cyclic group Z/nZ there is an operation of expo-
nentiation satisfying (‡) if and only if n ∈ {1, 2, 6, 42, 1806}.

Proof. The proof is an exercise in number theory, but it involves an interesting
recursive definition. We always have exponentiation as a function from Z/nZ × N to
Z/nZ. We want to find those n such that

xn+1 ≡ x (mod n) (§)

for all integers x, or just all x in {1, . . . , n}. If p2 | n for some prime p, and x = n/p, then
xk ≡ 0 (mod n) when k > 1, so (§) fails. So we may assume n is squarefree. It is now
equivalent to ensure

xn+1 ≡ x (mod p)

for all prime factors p of n. We have this when p | x; and in the other case, it is equivalent
to ensure

xn ≡ 1 (mod p).

Since x can be chosen as a primitive root of p, it is equivalent to ensure

p− 1 | n
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for all prime factors p of n. Then also q − 1 | n for all prime factors q of p − 1, and so
forth. Keeping in mind that n must be squarefree, let us refer to a prime p as good if
p − 1 is squarefree and all prime factors of p − 1 are good. Then all prime factors of n
must be good. We obtain the good primes recursively. Trivially, 2 is good. For every
other good prime p, we must have 2 as a factor of p− 1. Since 2 + 1 = 3, which is prime,
3 is good. And 2 ·3+1 is 7, which is prime and therefore good. But 2 ·7+1 is not prime.
However, 2 · 3 · 7 + 1 = 43, a good prime. But there are no more possibilities:

2 · 3 · 43 + 1 = 259 = 7 · 37;

2 · 7 · 43 + 1 = 603 = 32 · 67;

2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139.

So the set of good primes is {2, 3, 7, 43}. In this set, we have

p < q ⇐⇒ p | q − 1

Hence the set of desired n is {1, 2, 2 · 3, 2 · 3 · 7, 2 · 3 · 7 · 43}, which is as claimed. �

Definition (Factorial). The operation x 7→ x! on N is such that

1! = 1,

(n+ 1)! = (n + 1) · n!.

Its uniqueness is guaranteed by the corollary to the Recursion Theorem. Indeed, the
function x 7→ (x, x!) is the unique homomorphism from (N, 1, s) into

(N × N, (1, 1), (x, y) 7→ (x+ 1, (x+ 1) · y).

In §. we obtain the strict total ordering <, by which N is well-ordered.

Theorem C..

() m < n ⇐⇒ ∃x m+ x = n.
() m < n ⇐⇒ m + k < n + k.
() m < n ⇐⇒ n · k < n · k. �

Hence if m+ k = n, then k is unique and can be denoted by n−m.



APPENDIX D

Syntax and semantics

The Greek etymon for syntax, namely ¹ σύνταξις, -εως, refers originally to an arrang-
ing, a putting together in order, especially of soldiers. In one passage of Plato’s Republic
[, d], it is wealth that may be arranged. In that passage, the character of Socrates
describes the wise man:

ΟÙκοàν, ε�πον, κα� τ¾ν �ν τÍ τîν χρηµάτων κτήσει σύνταξίν τε κα� συµ-
φωνίαν; κα� τÕν Ôγκον τοà πλήθους οÙκ �κπληττόµενος ØπÕ τοà τîν πολλîν
µακαρισµοà ¥πειρον αÙξήσει, ¢πέραντα κακ¦ �χων;

And will it not also be so, I said, with the arranging and harmonizing
of his possessions? He will not let himself be dazzled by the felicitations
of the multitude and pile up the mass of his wealth without measure,
involving himself in measureless ills, will he?

The arranging implied by σύνταξις can also be grammatical, a putting together of words.
The source of semantics is the Greek adjective σηµαντικός, -ή, -όν, meaning significant

or meaningful. Related words include the verb σηµαίνω (signify) and the noun τÕ σηµε�ον
(sign). In On Interpretation [, a, b], Aristotle defines nouns and verbs:

�Ονοµα µ�ν οâν �στ� φων¾ σηµαντικ¾ κατ¦ συνθήκην ¥νευ χρόνου, Âς µηδ�ν

µέρος �στ� σηµαντικÕν κεχωρισµένον·
`ΡÁµα δέ �στι τÕ προσσηµα�νον χρόνον, οá µέρος οÙδ�ν σηµαίνει χωρίς,

κα� �στιν ¢ε� τîν καθ' �τέρου λεγοµένων σηµε�ον.

A noun is a sound, meaningful by convention, without [grammatical]
tense, of which no part separately is meaningful.

A verb is [a sound] signifying a tense besides; no part of it is mean-
ingful separately; it is always a sign of things said of something.

The more basic τÕ σÁµα, -ατος, meaning sign, mark, token, appears in Homer (Iliad,
X.–):

�Ως «ρ' �φώνησεν, κα� ¢πÕ �θεν Øψόσ' ¢είρας
θÁκεν ¢ν¦ µυρίκην· δέελον δ΄ �π� σÁµά τ' �θηκε
συµµάρψας δόνακας µυρίκης τ' �ριθηλέας Ôζους,
µ¾ λάθοι αâτις �όντε θο¾ν δι¦ νύκτα µέλαιναν.

With these words, he took the spoils and set them upon a tamarisk
tree, and they make a mark at the place by pulling up reeds and gather-
ing boughs of tamarisk, that they might not miss it as they came back
through the fleeting hours of darkness.

Found with the help of the Liddell–Scott lexicon [].
The translation is adapted from Shorey’s [].
Text and Samuel Butler’s translation are from http://www.perseus.tufts.edu.


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Syntactic entailment

What we call syntactic entailment in §. seems to have its origin in the Begriffsschrift
[] of Gottlob Frege, published in . (The title can be rendered as ‘ideography’
or ‘concept writing’). In Frege’s work, what we call formulas appear not as strings,
but as two-dimensional figures. For example, our three axioms correspond to Frege’s
Judgments (), (), and—almost—(); he writes them as follows:

F
G
F

H
F
G
F
H
G
F

F
G
G
F

This style of writing formulas never caught on, except in the following sense: To assert a
judgment whose content is A, Frege writes

A

The vertical bar here is the judgment stroke, while the horizontal is merely the content
stroke. Frege’s notation appears to be the origin of our own symbol `.


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Galois correspondences

For an arbitrary set Ω, a singulary operation X 7→ cl(X) on P(Ω) is a closure-
operator, or just a closure, on Ω if it is:

() increasing: A ⊆ cl(A);
() monotone: cl(A) ⊆ cl(B) whenever A ⊆ B; and
() idempotent: cl(cl(A)) = cl(A).

The closure X 7→ cl(X) is called finitary if

cl(A) =
⋃

X⊆fA

cl(X)

for all A in P(Ω). (Here X ⊆f A means X is a finite subset of A, as on p. .) Examples
include the following.

() On any set, the identity-function X 7→ X is trivially a finitary closure.
() On PF, the function F 7→ Con(F) is a closure, by Theorem ..; it is finitary,

by the corollary to the Compactness Theorem (..).
() If G is a group, the function X 7→ 〈X〉 taking a subset of G to the group that it

generates is a finitary closure on G.
() If Ω is a topological space, the function taking a subset of Ω to its topological

closure is a closure on Ω (usually not finitary).

Closures can arise from a Galois correspondence between two sets. Suppose A and B
are sets, and R is a relation from A to B. If C ⊆ A, and D ⊆ B, let

C ′ =
⋂

x∈C

{y ∈ B : x R y} = {y ∈ B : ∀x (x ∈ C ⇒ x R y)}

D′ =
⋂

y∈D

{x ∈ A : x R y} = {x ∈ A : ∀y (y ∈ D ⇒ x R y)}.

So we have functions X 7→ X ′ from P(A) to P(B) and from P(B) to P(A). These
functions are inclusion-reversing; so the operations X 7→ X ′′ on P(A) and P(B) are
inclusion-preserving (monotone). Moreover,

C ′′ = {x ∈ A : ∀y (y ∈ C ′ ⇒ x R y)}

= {x ∈ A : ∀y (∀z (z ∈ C ⇒ z R y) ⇒ x R y)},

so
C ⊆ C ′′; (¶)

similarly,
D ⊆ D′′. (‖)

Thus the X 7→ X ′′ are increasing. Replacing C with D′ in (¶), we get D′ ⊆ D′′′; but (‖)
implies D′′′ ⊆ D′; therefore

D′ = D′′′.





 F. GALOIS CORRESPONDENCES

Likewise, C ′ = C ′′′. Hence C ′′ = C ′′′′ and D′′ = D′′′′, so the X 7→ X ′′ are idempotent and
are therefore closures. Moreover, the functions X 7→ X ′ give bijections, not (necessarily)
between P(A) and P(B), but between {X ′ : X ⊆ B} and {X ′ : X ⊆ A}. In short, there
is a Galois correspondence between these two sets.

The closures in the examples above are X 7→ X ′′ on P(A) when

() A is a set, B is the same set, and R is 6=;
() A is PF, B is BV , and R is the converse of �;
() A is G, B is the set of subgroups of G, and R is ∈;
() A is the space, B is the topology (namely, the set of closed subsets), and R is ∈.

In field-theory arises the original Galois correspondence. If L/K is a finite normal
separable extension of fields, then the fields F such that K ⊆ F ⊆ L are in bijection with
the subgroups of Aut(L/K). This correspondence arises as above in case A is L, and B
is Aut(L/K), and

R = {(x, σ) ∈ L× Aut(L/K) : xσ = x}.



APPENDIX G

Definable sets

To define the interpretations of formulas in a structure recursively, we start out as
in §. with the interpretations of atomic formulas. We define the interpretations of
negations and conjunctions as in §.. To deal with the existential quantifier, we might
proceed as follows.

If I is a finite subset of ω, and if {i : xi ∈ fv(ϕ)} ⊆ I, let us say that ϕ is I-ary. In
this case, suppose the interpretation ϕA has been defined as a subset of AI . If j ∈ ω, let
πI

j be the function
(xi : i ∈ I) 7−→ (xi : i ∈ I r {j})

from AI to AIr{j}. Then we can define

∃xj ϕ
A = (πI

j )[ϕ
A].

Suppose J is another finite subset of ω, disjoint from I. Then ϕ is also I ∪ J-ary, and
the interpretation of ϕ as such is

ϕA × AJ ,

which can be understood as the set of functions h on I ∪ J such that h � I ∈ ϕI and
h � J ∈ AJ .

Without the requirement that I and J be disjoint, suppose α : J → I. We obtain the
function α∗ from AI to AJ , namely

(xi : i ∈ I) 7−→ (xα(j) : j ∈ J).

In particular, if J = I r {j}, and α is the inclusion of this in I, then α∗ = πI
j .

Now suppose again that I and J are disjoint. If I = {i0, . . . , im−1}, and J =
{j0, . . . , jn−1}, then α∗[ϕA] is the interpretation of the formula

∃xi0 · · · ∃xim−1
(ϕ N xj0 = xα(j0) N · · · N xjn−1

= xα(jn−1)),

written more simply as

∃(xi : i ∈ I) (ϕ N

∧

j∈J

xj = xα(j)).

If ψ is J-ary, then (α∗)−1[ψA] is the interpretation of

∃(xj : j ∈ J) (ψ N

∧

j∈J

xj = xα(j)). (∗∗)

If I and J are not disjoint, then there is still some K, disjoint from each of them, for
which there are β from J to K, and γ from K to I, such that α = γ◦β. Then α∗ = β∗◦γ∗,
so α∗[ϕA] and (α∗)−1[ψA] are still definable sets.

Note that (∗∗) might be written more simply as

ϕ(xα(j) : j ∈ J).

But this is not necessarily the result of substituting xα(j) for xj.


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“You’re just being logical,” Teddy said to him impassively.
“I’m just being what?” Nicholson asked, with a little excess of politeness.
“Logical. You’re just giving me a regular, intelligent answer,” Teddy

said. “I was trying to help you. You asked me how I get out of the finite
dimensions when I feel like it. I certainly don’t use logic when I do it.
Logic’s the first thing you have to get rid of.”

Nicholson removed a flake of tobacco from his tongue with his fingers.
“You know Adam?” Teddy asked him.
“Do I know who?”
“Adam. In the Bible.”
Nicholson smiled. “Not personally,” he said drily.
Teddy hesitated. “Don’t be angry with me,” he said. “You asked me a

question, and I’m—”
“I’m not angry with you, for heaven’s sake.”
“Okay,” Teddy said. He was sitting back in his chair, but his head was

turned toward Nicholson. “You know that apple Adam ate in the Garden
of Eden, referred to in the Bible?” he asked. “You know what was in that
apple? Logic. Logic and intellectual stuff. That was all that was in it.
So—this is my point—what you have to do is vomit it up if you want to see
things as they really are. I mean if you vomit it up, then you won’t have
any more trouble with blocks of wood and stuff. You won’t see everything
stopping off all the time. And you’ll know what your arm really is, if you’re
interested. Do you know what I mean? Do you follow me?”

—J. D. Salinger, “Teddy” [, pp. f.]


