Model-theory exercises

Math 406

2004.12.30

Problem 1. Suppose $\mathcal{L} = \{P\}$, where P is a singulary predicate. Let \mathfrak{A} be a finite \mathcal{L} -structure, and suppose $\mathfrak{B} \equiv \mathfrak{A}$. Prove $\mathfrak{B} \cong \mathfrak{A}$.

Problem 2. Let $\mathcal{L} = \{P_n : n \in \omega\}$, where each P_n is a singulary predicate. Let T be axiomatized by the sentences

$$\begin{split} &\forall x \; P_0 x, \\ &\forall x \; (P_{n+1} x \to P_n x), \\ &\exists x \; \neg (P_n x \to P_{n+1} x), \\ &\forall x \; \forall y \; (\neg (P_n x \to P_{n+1} x) \to (\neg (P_n y \to P_{n+1} y) \to x = y)), \end{split}$$

where $n \in \omega$. Prove that T is complete.

Problem 3. Let Σ and Σ' be sets of sentences of some \mathcal{L} such that

 $\Sigma \vDash \neg \sigma \implies \Sigma' \nvDash \sigma$

for all sentences σ of \mathcal{L} . Prove that $\Sigma \cup \Sigma'$ has a model.

Problem 4. Suppose Φ and Ψ are 1-types of a consistent theory T. Prove that T has a model in which both Φ and Ψ are realized. (Use only Compactness and the appropriate definitions.)

Problem 5. Assuming T is ω -categorical, prove that T has only countably many complete types.