First-order logic exercises

Math 406

2004.11.02

Problem 1. Letting P and Q be unary predicates, determine, from the definition of \models , whether the following hold:

- (a) $\exists x \ Px \to \exists x \ Qx \models \forall x \ (Px \to Qx);$
- (b) $\forall x \ Px \to \exists x \ Qx \models \exists x \ (Px \to Qx);$
- (c) $\exists x \ (Px \to Qx) \models \forall x \ Px \to \exists x \ Qx.$

Problem 2. Let $\mathcal{L} = \{R\}$, where R is a binary predicate, and let \mathfrak{A} be the \mathcal{L} -structure (\mathbb{Z}, \leq) . Determine $\phi^{\mathfrak{A}}$ if ϕ is:

- (a) $\forall x_1 \ (Rx_1x_0 \rightarrow Rx_0x_1);$
- (b) $\forall x_2 \ (Rx_2x_0 \lor Rx_1x_2).$

Problem 3. Let \mathcal{L} be $\{S, P\}$, where S and P are binary function-symbols. Then $(\mathbb{R}, +, \cdot)$ is an \mathcal{L} -structure. Show that the following sets and relations are definable in this structure:

- (a) $\{0\};$
- (b) {1};
- (c) $\{a \in \mathbb{R} : 0 < a\};$
- (d) $\{(a,b) \in \mathbb{R}^2 : a < b\}.$

Problem 4. Show that the following sets are definable in $(\omega, +, \cdot, \leq, 0, 1)$:

- (a) the set of even numbers;
- (b) the set of prime numbers.