Revisions for Sets and Classes, 2007.03.02 ed.

David Pierce

April 2, 2007

Some corrections and changes.

1 General

e A list of symbols should be provided.

e The relation symbolized by € and called containment on p. 34 would be
better called membership (as on p. 19).

2 Significant changes

e p. 10, § 1.1.2. The latter part of this paragraph needs to be rethought. Set
and class are not the most ‘generally applicable’ collective nouns; they are the
most abstract. For us, set will be the name of something whose members are
other sets.

e P. 11: expand ¢ 1.2.2: say more about this ‘correspondence’ between U and V.

o P. 21, § 2.2.4, after the list: the comment ‘depending on the axioms’ makes the
truth-value of a € a sound arbitrary. The Foundation Axiom will say that the
sentence is false; but 9 8.3.5 shows that this axiom can be understood merely
as a definition of the sets that we choose to study.

e § 2.2.5: The sets that we study can be called pure sets (Moschovakis) or
hereditary sets (Kunen).

o P. 22, § 2.2.9: The alternative formulation of V should also use the ‘official’
language: so make it {z: x € x =z € x = v € z}.

e P. 25: Not all of our theorems will have formal deductions even in principle:
In 9 8.3.5, it will be noted that WF is a model of ZF. This conclusion can be
formulated as an infinite list of sentences in the official language, each with a
formal proof. We conclude that ZF is consistent: this can be formulated (as
Godel showed) as a single sentence of the official language; but it has no formal
proof.



{par:rec}

{par:rec2}

{thm:rec-uni}

e Exercises might be added to Ch. 2.

e P. 32, bottom: the definition of field is not really needed.

e P. 34, § 3.5.6 (ii): the reference should be to § 3.5.5.

o P. 35, 9 3.5.7: a least element is also a minimum element.

e P. 36, § 3.6.2: Instead of ‘virtual class’ here, we might speak of a family
of classes. Then a class C' and a binary relation R determine the families
{zR: z € C} and {Rx: z € C}. In particular, if E C C x C and is an
equivalence-relation on C, then C/E is the family {zE: x € C}.

e P. 37, 9 3.6.4: item (v) should be item (ii); also, in (vi), the notation 7y and
1 that will be used in q 5.4.2 (Recursion with Parameter) can be introduced.

o P. 46: replace § 4.2.4 with:

1. Suppose (C, F,i) is a recursive structure. Then C' can be denoted sugges-
tively by

{i,F(i), F(F(3)),...}.

Some possibilities are depicted in Fig. 4.1. Note well that possibly F' is not
injective, and possibly i« € F[C]. (However, these possibilities seem to be
mutually exclusive.)

2. Suppose again (C, F,i) is a recursive structure, and (D, G, j) is another
iterative structure (not necessarily recursive). There may be a function H from

C to D such that
(i) H(i)=j,
(ii) a € C = H(F(a)) = G(H(a)), that is, Ho F = Go H on C.

The first rule says what H (7) is; the second says how to obtain H(F(a)) from
H (a). By induction, H is uniquely determined by these rules: see Corollary 5
below. In this case, we say that H is recursively defined by the given rules.

3. Note first another possible kind of recursive definition: (C, F, 1) is recursive,
E C D, and G : D — D, then perhaps there is a sub-class R of C x D such
that (in the notation of § 3.6.2)

(i) iR=FE,
(ii) e € C = F(a)R = GlaR)].

Then R too is uniquely determined by these rules, so it too is recursively
defined:

4 Theorem. Suppose (C, F,i) is recursive, G : D — D, and E C D. Then
there is at most one relation R as in § 3.



Proof. Suppose Ry and R; are two such relations. Let
Ci={z:zeC&zRy=zR:}.
Since iRy = E = iR, we have i € Cy. Suppose a € C7, so aRy = aR,. Then
F(a)Ry = GlaRy]| = G[aR,| = F(a)Ry,

so F(a) € C;. By induction (and Lemma 4.2.3), Cy = C. Since dom(Ry) C C
and dom(R;) C C, we conclude that Ry = R;. O

5 Corollary. Suppose (C, F,i) is recursive, and (D,G,j) is iterative. Then
there is at most one function H as in § 3.

Proof. The function H (if it exists) is a relation, namely a sub-class R of C'x D.
Let E = {H(i)}. Then

(i) iR = {H(i)} = B:
(i) a€ C = F(a)R = {H(F(a))} = {G(H(a))} = G[{H(a)}] = G[aR).

By the theorem, R is unique, so H is unique. O

e P. 48, 9 4.3.5: The Recursion Theorem should be given more generally:

6 Theorem (Recursion). Suppose (C, F,1i) is an arithmetic structure, G: D —
D, and E C D. Then there is (uniquely, by Theorem 4) a sub-class R of C x D
such that

(i) iR = E,
(ii)) a € C = F(a)R = G[aR)].
Proof. Let B be the sub-class

{a::Vy(yExﬁﬂz(zeE&y:(i,z))\/

VIuIv ((u,v) eCxDNa &y = (F(u),G(v))))}

of P(C x D), and let R=|JB,so RCC x D. Ifa € E, then {(i,a)} is a set
(by the Pairing Axiom), so it belongs to B, and hence i R a. Suppose b R c.
Then (b,c) € d for some d in B, so dU {(F(b),G(c))} is a set (by the Weak
Union Axiom), and this set belongs to B, so F(b) R G(c). We now have the
following characterization of R:

aRbs ((a=i&be E)VIuv(uRv &a=F(u)&b=G(v))).

Since i ¢ F[C'], we have i R a < a € E, so iR = E. Since F is injective, if
a € C, we have F(a) Rb< b e G[aR], so F(a)R = G[aR]. O

7 Corollary. Suppose (C, F,i) is an arithmetic structure and (D, G, j) is an
iterative structure. Then there is (uniquely, by Corollary 5) a function H from
C to D such that

{cor:rec-uni}

{thm:rec}

{cor:rec}



{lem:+}

(1) H(i) = j,
(ii) a € C = H(F(a)) = G(H(a)), that is, Ho F = G o H.
Proof. Exercise. O

o P. 51, end of § 4.4: “We seem to have this if i = @, and F and G are both
x—xU{x}’

e P. 52, proof of 4.5.4, part (i): “Then b # «, since « is well-ordered by contain-
ment, and such orderings are by definition strict’.

e P. 53, 9 4.5.8 should begin: ‘The structure (ON,z — z’, &) satisfies the
hypothesis of Theorem 4.4.3 with respect to the ordering €; hence there is a
class {@, 2", 2"}...0.
e 99 5.2.1—=2 can be replaced with the following:
8. We shall define the binary operation of addition on N so that

(i) m+0=m,

(ii) m+nt =(m+n)*.

These rules tell how to add 0, and they tell how to add n', provided one can add
n. The rules will determine a unique operation, by a variant of the Recursion
Theorem (9 6). Moreover, suppose (A, S, 1) is a recursive structure. (This will
be so throughout this section.) Then we shall be able to define addition on A
by the rules

(i) a+i=a,
(ii) a+ S(b) = S(a+1),

even though the Recursion Theorem does not apply generally to all recursive
structures.

9 Lemma. Suppose F: B — C and G: C — C. Then there is a unique
function H from B x N to C such that

(1) a HO = F(a),

(ii) a Hnt = G(a Hn).
Proof. By the Recursion Theorem, there is a unique sub-class R of N x (B x C)
such that

(i) OR=F,

(i) n e N=n*R=((z,9) = (v, G(y)) [nR] = {(z,G(y)): n R (z,y)}.

By induction, if n € N, then nR is a function from B to C. Indeed, OR is such a
function (namely F'), and if nR is such a function, then n™ R is its composition
with G. Let the function nR be denoted by K,,; then K,+ = G o K,,. We can
now define the binary function H as (z,y) — K,(z) on A x N. Then



(i) a HO = Ko(a) = F(a),
(i) aHn" = K, +(a) = G(K,(a)) = G(a Hn).

So H is as desired. To see that H is unique, note that R determines H, and
conversely. Indeed,

H = {((‘Tvy)vz): y R (I,Z)},
R={(y.(x,2)): 2 Hy=2).

Since R uniquely satisfies the given conditions, so does H. O

10 Theorem and Definition. Suppose (A, S,i) is recursive. Then there is a
unique binary operation of addition on A given by

(i) a+i=a,
(ii) a+ S(b) = S(a+Db).
Proof. By the lemma, there is a unique function H from A x N to A such that
(i) aHO=aq,
(i) a Hn' = S(a Hn).

So H is recursively defined in its second argument. We shall show that it is also
recursively definable in its first argument. First, let F' be the function z — i H x
from N into A. Then

(1)

(So F is the unique homomorphism from (N, *,0) into (A, S,i) guaranteed by
Corollary 7.) By induction, rng(F') = A; indeed, ¢ € rng(F'), and a € rng(F) =
S(a) € rng(F'). The equation

S(a) Hn = S(aHn) (2)

holds when n = 0, since S(a) HO0 = S(a) = S(a HO0). Suppose (2) holds for
some 7 in N. Then

S(a) Hn" = S(S(a) Hn) [by definition of H]|
= S(S(aHn)) [by inductive hypothesis|
=S(aHn"). [by definition of H]|

So (2) holds for all » in N. Therefore each of the operations © — = H n is the
operation G, recursively defined by

{thm:+}

{eqn:+i}

{eqn:+n}



{lem:.}

In particular,
G, =G, < F(m)=F(n).

Now we can define addition on A by
a+b=ce Jx (F(z)=b& Gy(a) =c).

Then a +i = Go(a) = a HO = a. Also, if b = F(n), so that S(b) = F(n™),
then

a+8S(0b)=G,i(a)=aHn"=8S(aHn)=S(G,(a)) = S(a+b).

Thus + is as desired; it is unique by Theorem 4. O

e § 5.2.3 should have a reference to Landau. 9 5.2.4 can be slightly rewritten:

11. Suppose (a, s,1) is a recursive set, so that all operations on a are sets. Then
we can establish addition on a as follows. By Corollary 5, for each b in a, there
is at most one singulary operation f, on a such that

(i) fo(i) =0,
(ii) fros=s0 fp

Let ag be the subset of a comprising those b such that f, does exist; note well
how this definition of ag requires f;, to be a set. Then f; exists and is id,, so
i € ag. If b € ag, then f,) exists and is s o f. By induction, ap = a. Now we
can define b+ ¢ = fy(c).

e At the beginning of § 5.2 should be inserted the following:

12 Lemma. Suppose F: B — C and G: C x B — C'. Then there is a unique
function H from B x N to C such that

(1) a HO = F(a),
(i) aHn" = (a Hn) Ga.

Proof. By the Recursion Theorem, there is a unique sub-class R of N x (B x C)
such that

(i) OR = F,
(i) neN=nTR=((z,9) — (z,yG2))[nR] = {(z,yGz)): n R (z,y)}.

By induction, if n € N, then nR is a function K,, from B to C. Indeed, OR is
such a function, namely F'; this then is K. If nR is such a function, as K,
then n™ R is © — H,(z) G x; this then is K,+. We can now define the binary
function H as (z,y) — K,(z) on A x N. Then

(i) a HO = Ko(a) = F(a),
(i) aHn" = K+ (a) = K,(a) Ga= (e Hn) G a.

So H is as desired; its uniqueness is as in Lemma g. O



e The proof of Theorem 5.3.2 can be supplied as follows:

Proof. We follow the pattern of the proof of Theorem 10. By the lemma, there
is a unique function H from A x N into A such that

(i) a HO =1,
(i) e Hn™ =a Hn + a.

By induction, i Hn = i for all n in N; indeed, this is given when n = 0, and
if it holds when n = m, then i Hm*™ =i Hm +i = i Hm = i. Let F be the
unique homomorphism from (N, ,0) into (A, S,4). The equation

S(a)Hn=aHn+ F(n) (3) {eqn:.n}

holds when n = 0, since S(a) HO =i =i+ =a H 0+ F(0). Suppose (3) holds
for some n in N. Then

S(a)Hn" = S(a) Hn + S(a)
= (@eHn+ F(n)) + S(a)
=aHn+ (F(n)+ S(a)) [by associativity of +]
aHn+ S(F(n)+a) by definition of +|

[by definition of H|

[

[

a [

aHn+ (S(F(n))+a) [by Lemma 5.2.5]
a [

[

[

[

by inductive hypothesis]

=aHn+ (F(n")+a)
=aHn+ (a+ F(n™))
=(aHn+a)+ F(n")
=aHn" +F(n").

because F is a homomorphism)]
by commutativity of +]

by associativity of +]

by definition of H]|

So (3) holds for all n in N. Therefore each of the operations = — = H n is the
operation G, recursively defined by

(i) Gnli) =1,
(ii) Gn(S(a)) = Gn(a) + F(n).

In particular,
G, =G, < F(m) = F(n).

Now we can define multiplication on A by
a-b=ce Jx (F(z)=b& G,(a) =c).
Then a-i = Go(a) =a HO0 =i. Also, if b = F(n), so that S(b) = F(n™), then
a-8Sb)=G,+(a)=aHn"=aHn+a=G,(a) +a=a-b+a.

Thus - is as desired; it is unique by Theorem 4. O

e The proof of Theorem 5.3.5 can be replaced with a reference to Lemma 12.



Trivial changes

e 9 4.4.3: it can be noted that the last part of the proof is by contradiction.

e P. 4, item (i), after “V in these notes’: insert reference to q 2.2.7.

e P. 8: include Table 2.1 on p. 18 (best done by changing the Table to a Figure).
e P. 9: capitalize the letters after the hyphens in ‘Replacement-scheme’ and
‘Power-set’.

e P. 10: transpose 9 1.1.1 to read:

A set is a thing that contains other things. Those other things are
called members or elements of the set. The set cannot be sepa-
rated from its elements the way a box can be emptied of its contents:
the set comprises its members, and the members compose the set.
A set is its elements, considered as one thing. It is a multitude that
is also a unity.

e P. 15, caption to Table 1.1: Replace sentence ‘A terminal ...’ with

The vowels a, 1, and w may have an iota subscript (o, 1, ©).

e P. 16, after the first list of 3 items: Delete repeated ‘recursively’ (and add to
index).

e After the second list of g items: change ‘is’ to ‘of’; don’t capitalize ‘Parts’.
e P. 20, n. 4: ‘The latter sequence that gives...’: delete ‘that’.
o P. 21, § 2.2.4, item (iii): ‘Then 3z ¢ is true...’

e P. 23, 9 2.3.5, item (iii): ‘(where a is allowed to appear in 0)’: change o to .

o P. 23, € 2.3.5: ‘this rule allows us to obtain the sentence 7...’
e P. 24: allow Fig. 2.2 to float to the top of a page?

e P. 30, § 3.2.3: replace ‘However, | Ja is a set’ with ‘However, the union of a
set is a set’.

e 9 3.5.9: the meaning of greater than should perhaps have been given explicitly
in 9 3.5.5.

o P. 36, 9 3.6.3: In the formula displayed over two lines, the terminal & on
the first line should be repeated on the second (as this is the convention I use
elsewhere).



e In the following line, replace to with (in)to.
e Pp. 38 f., § 3.7.1: change E to C.
e P. 40: Exercise (3) should follow (5).

e P. 45, 9 4.1.8: slant chain as a technical term.

¢

e Last line of text, but two: ‘... will be (in  5.1.3) another example. ..’

e § 4.2.2 can be broken into 3 paragraphs.

7

e § 4.3.1: ‘This means by § 4.2.1...7; in item (ii): delete from C; afterwards:
‘The five numbered conditions here for being an arithmetic structure are some-
times. ..’

e 9 4.4.1, last line but one: C should be D.

e p. 55, ¥ 5.1.1, just before (5.1): ‘Meanwhile we have’. In (5.2) and (5.3), the
functions F' are really sets and should be written that way. (Actually they are
variables. . .)

e 9 5.1.3 (iv): change C to a (both times).

e 9 5.1.5: Give the numerical reference (4.3.5) for the Recursion Theorem.

e § 5.3.7: Add: ‘For all ¢ and b in A, and all m and n in N’; in (ii), replace

T +— x® with z — ™.



