Revisions for Sets and Classes, 2007.03.02 ed.

David Pierce

April 2, 2007

Some corrections and changes.

1 General

- A list of symbols should be provided.
- The relation symbolized by \in and called containment on p. 34 would be better called membership (as on p. 19).

2 Significant changes

- p. 10, ¢1.1.2. The latter part of this paragraph needs to be rethought. Set and class are not the most 'generally applicable' collective nouns; they are the most abstract. For us, set will be the name of something whose members are other sets.
- P. 11: expand 1 1.2.2: say more about this 'correspondence' between \cup and \vee.
- P. 21, 『2.2.4, after the list: the comment 'depending on the axioms' makes the truth-value of $a \in a$ sound arbitrary. The Foundation Axiom will say that the sentence is false; but $\mathbb{\Phi} 8.3 .5$ shows that this axiom can be understood merely as a definition of the sets that we choose to study.
- ब 2.2.5: The sets that we study can be called pure sets (Moschovakis) or hereditary sets (Kunen).
- P. 22, 【 2.2.9: The alternative formulation of \mathbf{V} should also use the 'official' language: so make it $\{x: x \in x \Rightarrow x \in x \Rightarrow x \in x\}$.
- P. 25: Not all of our theorems will have formal deductions even in principle: In $\mathbb{\$ 1 3 . 5}$, it will be noted that WF is a model of ZF. This conclusion can be formulated as an infinite list of sentences in the official language, each with a formal proof. We conclude that ZF is consistent: this can be formulated (as Gödel showed) as a single sentence of the official language; but it has no formal proof.
- Exercises might be added to Ch. 2.
- P. 32 , bottom: the definition of field is not really needed.
- P. 34 , ब $3 \cdot 5 \cdot 6$ (ii): the reference should be to $\mathbb{}$ I $3 \cdot 5 \cdot 5$.
- P. 35 , ब 3.5.7: a least element is also a minimum element.
- P. 3 6, ब 3.6.2: Instead of 'virtual class' here, we might speak of a family of classes. Then a class \boldsymbol{C} and a binary relation \boldsymbol{R} determine the families $\{x \boldsymbol{R}: x \in \boldsymbol{C}\}$ and $\{\boldsymbol{R} x: x \in \boldsymbol{C}\}$. In particular, if $\boldsymbol{E} \subseteq \boldsymbol{C} \times \boldsymbol{C}$ and is an equivalence-relation on \boldsymbol{C}, then $\boldsymbol{C} / \boldsymbol{E}$ is the family $\{x \boldsymbol{E}: x \in \boldsymbol{C}\}$.
- P. 37 , $\mathbb{1}$ 3.6.4: item (v) should be item (ii); also, in (vi), the notation π_{0} and π_{1} that will be used in $\mathbb{\Phi}$ 5.4.2 (Recursion with Parameter) can be introduced.
- P. 46: replace 【 4.2 .4 with:

1. Suppose $(\boldsymbol{C}, \boldsymbol{F}, i)$ is a recursive structure. Then \boldsymbol{C} can be denoted suggestively by

$$
\{i, \boldsymbol{F}(i), \boldsymbol{F}(\boldsymbol{F}(i)), \ldots\}
$$

Some possibilities are depicted in Fig. 4.1. Note well that possibly \boldsymbol{F} is not injective, and possibly $i \in \boldsymbol{F}[\boldsymbol{C}]$. (However, these possibilities seem to be mutually exclusive.)
2. Suppose again $(\boldsymbol{C}, \boldsymbol{F}, i)$ is a recursive structure, and $(\boldsymbol{D}, \boldsymbol{G}, j)$ is another iterative structure (not necessarily recursive). There may be a function \boldsymbol{H} from \boldsymbol{C} to \boldsymbol{D} such that
(i) $\boldsymbol{H}(i)=j$,
(ii) $a \in \boldsymbol{C} \Rightarrow \boldsymbol{H}(\boldsymbol{F}(a))=\boldsymbol{G}(\boldsymbol{H}(a))$, that is, $\boldsymbol{H} \circ \boldsymbol{F}=\boldsymbol{G} \circ \boldsymbol{H}$ on \boldsymbol{C}.

The first rule says what $\boldsymbol{H}(i)$ is; the second says how to obtain $\boldsymbol{H}(\boldsymbol{F}(a))$ from $\boldsymbol{H}(a)$. By induction, \boldsymbol{H} is uniquely determined by these rules: see Corollary 5 below. In this case, we say that \boldsymbol{H} is recursively defined by the given rules.
3. Note first another possible kind of recursive definition: $(\boldsymbol{C}, \boldsymbol{F}, i)$ is recursive, $\boldsymbol{E} \subseteq \boldsymbol{D}$, and $\boldsymbol{G}: \boldsymbol{D} \rightarrow \boldsymbol{D}$, then perhaps there is a sub-class \boldsymbol{R} of $\boldsymbol{C} \times \boldsymbol{D}$ such that (in the notation of \mathbb{C} 3.6.2)
(i) $i \boldsymbol{R}=\boldsymbol{E}$,
(ii) $a \in \boldsymbol{C} \Rightarrow \boldsymbol{F}(a) \boldsymbol{R}=\boldsymbol{G}[a \boldsymbol{R}]$.

Then \boldsymbol{R} too is uniquely determined by these rules, so it too is recursively defined:

4 Theorem. Suppose $(\boldsymbol{C}, \boldsymbol{F}, i)$ is recursive, $\boldsymbol{G}: \boldsymbol{D} \rightarrow \boldsymbol{D}$, and $\boldsymbol{E} \subseteq \boldsymbol{D}$. Then there is at most one relation \boldsymbol{R} as in $\mathbb{\top} 3$.

Proof. Suppose \boldsymbol{R}_{0} and \boldsymbol{R}_{1} are two such relations. Let

$$
\boldsymbol{C}_{1}=\left\{x: x \in \boldsymbol{C} \& x \boldsymbol{R}_{0}=x \boldsymbol{R}_{1}\right\} .
$$

Since $i \boldsymbol{R}_{0}=\boldsymbol{E}=i \boldsymbol{R}_{1}$, we have $i \in \boldsymbol{C}_{1}$. Suppose $a \in \boldsymbol{C}_{1}$, so $a \boldsymbol{R}_{0}=a \boldsymbol{R}_{1}$. Then

$$
\boldsymbol{F}(a) \boldsymbol{R}_{0}=\boldsymbol{G}\left[a \boldsymbol{R}_{0}\right]=\boldsymbol{G}\left[a \boldsymbol{R}_{1}\right]=\boldsymbol{F}(a) \boldsymbol{R}_{1},
$$

so $\boldsymbol{F}(a) \in \boldsymbol{C}_{1}$. By induction (and Lemma 4.2.3), $\boldsymbol{C}_{1}=\boldsymbol{C}$. Since $\operatorname{dom}\left(\boldsymbol{R}_{0}\right) \subseteq \boldsymbol{C}$ and $\operatorname{dom}\left(\boldsymbol{R}_{1}\right) \subseteq \boldsymbol{C}$, we conclude that $\boldsymbol{R}_{0}=\boldsymbol{R}_{1}$.

5 Corollary. Suppose $(\boldsymbol{C}, \boldsymbol{F}, i)$ is recursive, and $(\boldsymbol{D}, \boldsymbol{G}, j)$ is iterative. Then there is at most one function \boldsymbol{H} as in $\mathbb{\$} 3$.

Proof. The function \boldsymbol{H} (if it exists) is a relation, namely a sub-class \boldsymbol{R} of $\boldsymbol{C} \times \boldsymbol{D}$. Let $\boldsymbol{E}=\{\boldsymbol{H}(i)\}$. Then
(i) $i \boldsymbol{R}=\{\boldsymbol{H}(i)\}=\boldsymbol{E}$;
(ii) $a \in \boldsymbol{C} \Rightarrow \boldsymbol{F}(a) \boldsymbol{R}=\{\boldsymbol{H}(\boldsymbol{F}(a))\}=\{\boldsymbol{G}(\boldsymbol{H}(a))\}=\boldsymbol{G}[\{\boldsymbol{H}(a)\}]=\boldsymbol{G}[a \boldsymbol{R}]$.

By the theorem, \boldsymbol{R} is unique, so \boldsymbol{H} is unique.

- P. 48 , ब 4.3 .5 : The Recursion Theorem should be given more generally:

6 Theorem (Recursion). Suppose $(\boldsymbol{C}, \boldsymbol{F}, i)$ is an arithmetic structure, $\boldsymbol{G}: \boldsymbol{D} \rightarrow$ \boldsymbol{D}, and $\boldsymbol{E} \subseteq \boldsymbol{D}$. Then there is (uniquely, by Theorem 4) a sub-class \boldsymbol{R} of $\boldsymbol{C} \times \boldsymbol{D}$ such that
(i) $i \boldsymbol{R}=\boldsymbol{E}$,
(ii) $a \in \boldsymbol{C} \Rightarrow \boldsymbol{F}(a) \boldsymbol{R}=\boldsymbol{G}[a \boldsymbol{R}]$.

Proof. Let \boldsymbol{B} be the sub-class

$$
\begin{aligned}
\{x: \forall y(y \in x \Rightarrow \exists z(& z \in \boldsymbol{E} \& y=(i, z)) \vee \\
& \vee \exists u \exists v((u, v) \in \boldsymbol{C} \times \boldsymbol{D} \cap x \& y=(\boldsymbol{F}(u), \boldsymbol{G}(v))))\}
\end{aligned}
$$

of $\mathcal{P}(\boldsymbol{C} \times \boldsymbol{D})$, and let $\boldsymbol{R}=\bigcup \boldsymbol{B}$, so $\boldsymbol{R} \subseteq \boldsymbol{C} \times \boldsymbol{D}$. If $a \in \boldsymbol{E}$, then $\{(i, a)\}$ is a set (by the Pairing Axiom), so it belongs to \boldsymbol{B}, and hence $i \boldsymbol{R} a$. Suppose $b \boldsymbol{R} c$. Then $(b, c) \in d$ for some d in \boldsymbol{B}, so $d \cup\{(\boldsymbol{F}(b), \boldsymbol{G}(c))\}$ is a set (by the Weak Union Axiom), and this set belongs to \boldsymbol{B}, so $\boldsymbol{F}(b) \boldsymbol{R} \boldsymbol{G}(c)$. We now have the following characterization of \boldsymbol{R} :

$$
a \boldsymbol{R} b \Leftrightarrow((a=i \& b \in \boldsymbol{E}) \vee \exists u \exists v(u \boldsymbol{R} v \& a=\boldsymbol{F}(u) \& b=\boldsymbol{G}(v))) .
$$

Since $i \notin \boldsymbol{F}[\boldsymbol{C}]$, we have $i \boldsymbol{R} a \Leftrightarrow a \in \boldsymbol{E}$, so $i \boldsymbol{R}=\boldsymbol{E}$. Since \boldsymbol{F} is injective, if $a \in \boldsymbol{C}$, we have $\boldsymbol{F}(a) \boldsymbol{R} b \Leftrightarrow b \in \boldsymbol{G}[a \boldsymbol{R}]$, so $\boldsymbol{F}(a) \boldsymbol{R}=\boldsymbol{G}[a \boldsymbol{R}]$.
7 Corollary. Suppose $(\boldsymbol{C}, \boldsymbol{F}, i)$ is an arithmetic structure and $(\boldsymbol{D}, \boldsymbol{G}, j)$ is an iterative structure. Then there is (uniquely, by Corollary 5) a function \boldsymbol{H} from \boldsymbol{C} to \boldsymbol{D} such that
(i) $\boldsymbol{H}(i)=j$,
(ii) $a \in \boldsymbol{C} \Rightarrow \boldsymbol{H}(\boldsymbol{F}(a))=\boldsymbol{G}(\boldsymbol{H}(a))$, that is, $\boldsymbol{H} \circ \boldsymbol{F}=\boldsymbol{G} \circ \boldsymbol{H}$.

Proof. Exercise.

- P. 51, end of § 4.4: 'We seem to have this if $i=\varnothing$, and \boldsymbol{F} and \boldsymbol{G} are both $x \mapsto x \cup\{x\}$.'
- P. 52, proof of $4 \cdot 5 \cdot 4$, part (i): 'Then $b \neq \alpha$, since α is well-ordered by containment, and such orderings are by definition strict'.
- P. 53 , 4.5 .8 should begin: 'The structure $\left(\mathbf{O N}, x \mapsto x^{\prime}, \varnothing\right)$ satisfies the hypothesis of Theorem $4 \cdot 4 \cdot 3$ with respect to the ordering \in; hence there is a class $\left\{\varnothing, \varnothing^{\prime}, \varnothing^{\prime \prime}\right\} \ldots$.
- \mathbb{T} 5.2.1-2 can be replaced with the following:

8. We shall define the binary operation of addition on \mathbb{N} so that
(i) $m+0=m$,
(ii) $m+n^{+}=(m+n)^{+}$.

These rules tell how to add 0 , and they tell how to add n^{+}, provided one can add n. The rules will determine a unique operation, by a variant of the Recursion Theorem ($\mathbb{\$} 6$). Moreover, suppose $(\boldsymbol{A}, \boldsymbol{S}, i)$ is a recursive structure. (This will be so throughout this section.) Then we shall be able to define addition on \boldsymbol{A} by the rules
(i) $a+i=a$,
(ii) $a+\boldsymbol{S}(b)=\boldsymbol{S}(a+b)$,
even though the Recursion Theorem does not apply generally to all recursive structures.

9 Lemma. Suppose $\boldsymbol{F}: \boldsymbol{B} \rightarrow \boldsymbol{C}$ and $\boldsymbol{G}: \boldsymbol{C} \rightarrow \boldsymbol{C}$. Then there is a unique function \boldsymbol{H} from $\boldsymbol{B} \times \mathbb{N}$ to \boldsymbol{C} such that
(i) $a \boldsymbol{H} 0=\boldsymbol{F}(a)$,
(ii) $a \boldsymbol{H} n^{+}=\boldsymbol{G}(a \boldsymbol{H} n)$.

Proof. By the Recursion Theorem, there is a unique sub-class \boldsymbol{R} of $\mathbb{N} \times(\boldsymbol{B} \times \boldsymbol{C})$ such that
(i) $0 \boldsymbol{R}=\boldsymbol{F}$,
(ii) $n \in \mathbb{N} \Rightarrow n^{+} \boldsymbol{R}=((x, y) \mapsto(x, \boldsymbol{G}(y))[n \boldsymbol{R}]=\{(x, \boldsymbol{G}(y)): n \boldsymbol{R}(x, y)\}$.

By induction, if $n \in \mathbb{N}$, then $n \boldsymbol{R}$ is a function from \boldsymbol{B} to \boldsymbol{C}. Indeed, $0 \boldsymbol{R}$ is such a function (namely \boldsymbol{F}), and if $n \boldsymbol{R}$ is such a function, then $n^{+} \boldsymbol{R}$ is its composition with \boldsymbol{G}. Let the function $n \boldsymbol{R}$ be denoted by \boldsymbol{K}_{n}; then $\boldsymbol{K}_{n^{+}}=\boldsymbol{G} \circ \boldsymbol{K}_{n}$. We can now define the binary function \boldsymbol{H} as $(x, y) \mapsto \boldsymbol{K}_{y}(x)$ on $\boldsymbol{A} \times \mathbb{N}$. Then
(i) $a \boldsymbol{H} 0=\boldsymbol{K}_{0}(a)=\boldsymbol{F}(a)$,
(ii) $a \boldsymbol{H} n^{+}=\boldsymbol{K}_{n^{+}}(a)=\boldsymbol{G}\left(\boldsymbol{K}_{n}(a)\right)=\boldsymbol{G}(a \boldsymbol{H} n)$.

So \boldsymbol{H} is as desired. To see that \boldsymbol{H} is unique, note that \boldsymbol{R} determines \boldsymbol{H}, and conversely. Indeed,

$$
\begin{aligned}
\boldsymbol{H} & =\{((x, y), z): y \boldsymbol{R}(x, z)\} \\
\boldsymbol{R} & =\{(y,(x, z)): x \boldsymbol{H} y=z\} .
\end{aligned}
$$

Since \boldsymbol{R} uniquely satisfies the given conditions, so does \boldsymbol{H}.
10 Theorem and Definition. Suppose $(\boldsymbol{A}, \boldsymbol{S}, i)$ is recursive. Then there is a unique binary operation of addition on \boldsymbol{A} given by
(i) $a+i=a$,
(ii) $a+\boldsymbol{S}(b)=\boldsymbol{S}(a+b)$.

Proof. By the lemma, there is a unique function \boldsymbol{H} from $\boldsymbol{A} \times \mathbb{N}$ to \boldsymbol{A} such that
(i) $a \boldsymbol{H} 0=a$,
(ii) $a \boldsymbol{H} n^{+}=\boldsymbol{S}(a \boldsymbol{H} n)$.

So \boldsymbol{H} is recursively defined in its second argument. We shall show that it is also recursively definable in its first argument. First, let \boldsymbol{F} be the function $x \mapsto i \boldsymbol{H} x$ from \mathbb{N} into \boldsymbol{A}. Then

$$
\begin{aligned}
\boldsymbol{F}(0) & =i \\
\boldsymbol{F}\left(n^{+}\right) & =\boldsymbol{S}(\boldsymbol{F}(n))
\end{aligned}
$$

(1) \{eqn:+i\}
(So \boldsymbol{F} is the unique homomorphism from $\left(\mathbb{N},{ }^{+}, 0\right)$ into $(\boldsymbol{A}, \boldsymbol{S}, i)$ guaranteed by Corollary 7.) By induction, $\operatorname{rng}(\boldsymbol{F})=\boldsymbol{A}$; indeed, $i \in \operatorname{rng}(\boldsymbol{F})$, and $a \in \operatorname{rng}(\boldsymbol{F}) \Rightarrow$ $\boldsymbol{S}(a) \in \operatorname{rng}(\boldsymbol{F})$. The equation

$$
\begin{equation*}
\boldsymbol{S}(a) \boldsymbol{H} n=\boldsymbol{S}(a \boldsymbol{H} n) \tag{2}
\end{equation*}
$$

holds when $n=0$, since $\boldsymbol{S}(a) \boldsymbol{H} 0=\boldsymbol{S}(a)=\boldsymbol{S}(a \boldsymbol{H} 0)$. Suppose (2) holds for some n in \mathbb{N}. Then

$$
\begin{aligned}
\boldsymbol{S}(a) \boldsymbol{H} n^{+} & =\boldsymbol{S}(\boldsymbol{S}(a) \boldsymbol{H} n) & & {[\text { by definition of } \boldsymbol{H}] } \\
& =\boldsymbol{S}(\boldsymbol{S}(a \boldsymbol{H} n)) & & {[\text { by inductive hypothesis }] } \\
& =\boldsymbol{S}\left(a \boldsymbol{H} n^{+}\right) . & & {[\text {by definition of } \boldsymbol{H}] }
\end{aligned}
$$

So (2) holds for all n in \mathbb{N}. Therefore each of the operations $x \mapsto x \boldsymbol{H} n$ is the operation \boldsymbol{G}_{n} recursively defined by
(i) $\boldsymbol{G}_{n}(i)=\boldsymbol{F}(n)$,
(ii) $\boldsymbol{G}_{n}(\boldsymbol{S}(a))=\boldsymbol{S}\left(\boldsymbol{G}_{n}(a)\right)$.

In particular,

$$
\boldsymbol{G}_{m}=\boldsymbol{G}_{n} \Leftrightarrow \boldsymbol{F}(m)=\boldsymbol{F}(n) .
$$

Now we can define addition on \boldsymbol{A} by

$$
a+b=c \Leftrightarrow \exists x\left(\boldsymbol{F}(x)=b \& \boldsymbol{G}_{x}(a)=c\right)
$$

Then $a+i=\boldsymbol{G}_{0}(a)=a \boldsymbol{H} 0=a$. Also, if $b=\boldsymbol{F}(n)$, so that $\boldsymbol{S}(b)=\boldsymbol{F}\left(n^{+}\right)$, then

$$
a+\boldsymbol{S}(b)=\boldsymbol{G}_{n^{+}}(a)=a \boldsymbol{H} n^{+}=\boldsymbol{S}(a \boldsymbol{H} n)=\boldsymbol{S}\left(\boldsymbol{G}_{n}(a)\right)=\boldsymbol{S}(a+b) .
$$

Thus + is as desired; it is unique by Theorem 4 .

- 【 5.2.3 should have a reference to Landau. 【 5.2.4 can be slightly rewritten:

11. Suppose (a, s, i) is a recursive set, so that all operations on a are sets. Then we can establish addition on a as follows. By Corollary 5 , for each b in a, there is at most one singulary operation f_{b} on a such that
(i) $f_{b}(i)=b$,
(ii) $f_{b} \circ s=s \circ f_{b}$.

Let a_{0} be the subset of a comprising those b such that f_{b} does exist; note well how this definition of a_{0} requires f_{b} to be a set. Then f_{i} exists and is id_{a}, so $i \in a_{0}$. If $b \in a_{0}$, then $f_{s(b)}$ exists and is $s \circ f_{b}$. By induction, $a_{0}=a$. Now we can define $b+c=f_{b}(c)$.

- At the beginning of $\S 5.2$ should be inserted the following:

12 Lemma. Suppose $\boldsymbol{F}: \boldsymbol{B} \rightarrow \boldsymbol{C}$ and $\boldsymbol{G}: \boldsymbol{C} \times \boldsymbol{B} \rightarrow \boldsymbol{C}$. Then there is a unique function \boldsymbol{H} from $\boldsymbol{B} \times \mathbb{N}$ to \boldsymbol{C} such that
(i) $a \boldsymbol{H} 0=\boldsymbol{F}(a)$,
(ii) $a \boldsymbol{H} n^{+}=(a \boldsymbol{H} n) \boldsymbol{G} a$.

Proof. By the Recursion Theorem, there is a unique sub-class \boldsymbol{R} of $\mathbb{N} \times(\boldsymbol{B} \times \boldsymbol{C})$ such that
(i) $0 \boldsymbol{R}=\boldsymbol{F}$,
(ii) $\left.n \in \mathbb{N} \Rightarrow n^{+} \boldsymbol{R}=((x, y) \mapsto(x, y \boldsymbol{G} x))[n \boldsymbol{R}]=\{(x, y \boldsymbol{G} x)): n \boldsymbol{R}(x, y)\right\}$.

By induction, if $n \in \mathbb{N}$, then $n \boldsymbol{R}$ is a function \boldsymbol{K}_{n} from \boldsymbol{B} to \boldsymbol{C}. Indeed, $0 \boldsymbol{R}$ is such a function, namely \boldsymbol{F}; this then is \boldsymbol{K}_{0}. If $n \boldsymbol{R}$ is such a function, as \boldsymbol{K}_{n}, then $n^{+} \boldsymbol{R}$ is $x \mapsto \boldsymbol{H}_{n}(x) \boldsymbol{G} x$; this then is \boldsymbol{K}_{n+}. We can now define the binary function \boldsymbol{H} as $(x, y) \mapsto \boldsymbol{K}_{y}(x)$ on $\boldsymbol{A} \times \mathbb{N}$. Then
(i) $a \boldsymbol{H} 0=\boldsymbol{K}_{0}(a)=\boldsymbol{F}(a)$,
(ii) $a \boldsymbol{H} n^{+}=\boldsymbol{K}_{n^{+}}(a)=\boldsymbol{K}_{n}(a) \boldsymbol{G} a=(a \boldsymbol{H} n) \boldsymbol{G} a$.

So \boldsymbol{H} is as desired; its uniqueness is as in Lemma 9.

- The proof of Theorem $5 \cdot 3.2$ can be supplied as follows:

Proof. We follow the pattern of the proof of Theorem 10. By the lemma, there is a unique function \boldsymbol{H} from $\boldsymbol{A} \times \mathbb{N}$ into \boldsymbol{A} such that
(i) $a \boldsymbol{H} 0=i$,
(ii) $a \boldsymbol{H} n^{+}=a \boldsymbol{H} n+a$.

By induction, $i \boldsymbol{H} n=i$ for all n in \mathbb{N}; indeed, this is given when $n=0$, and if it holds when $n=m$, then $i \boldsymbol{H} m^{+}=i \boldsymbol{H} m+i=i \boldsymbol{H} m=i$. Let \boldsymbol{F} be the unique homomorphism from $\left(\mathbb{N},{ }^{+}, 0\right)$ into $(\boldsymbol{A}, \boldsymbol{S}, i)$. The equation

$$
\boldsymbol{S}(a) \boldsymbol{H} n=a \boldsymbol{H} n+\boldsymbol{F}(n)
$$

(3) \{eqn:.n\}
holds when $n=0$, since $\boldsymbol{S}(a) \boldsymbol{H} 0=i=i+i=a \boldsymbol{H} 0+\boldsymbol{F}(0)$. Suppose (3) holds for some n in \mathbb{N}. Then

$$
\begin{aligned}
\boldsymbol{S}(a) \boldsymbol{H} n^{+} & =\boldsymbol{S}(a) \boldsymbol{H} n+\boldsymbol{S}(a) & & \text { [by definition of } \boldsymbol{H}] \\
& =(a \boldsymbol{H} n+\boldsymbol{F}(n))+\boldsymbol{S}(a) & & \text { [by inductive hypothesis] } \\
& =a \boldsymbol{H} n+(\boldsymbol{F}(n)+\boldsymbol{S}(a)) & & {[\text { by associativity of }+ \text {] }} \\
& =a \boldsymbol{H} n+\boldsymbol{S}(\boldsymbol{F}(n)+a) & & {[\text { by definition of }+] } \\
& =a \boldsymbol{H} n+(\boldsymbol{S}(\boldsymbol{F}(n))+a) & & \text { [by Lemma } 5 \cdot 2 \cdot 5] \\
& =a \boldsymbol{H} n+\left(\boldsymbol{F}\left(n^{+}\right)+a\right) & & \text { [because } \boldsymbol{F} \text { is a homomorphism] } \\
& =a \boldsymbol{H} n+\left(a+\boldsymbol{F}\left(n^{+}\right)\right) & & \text {[by commutativity of }+] \\
& =(a \boldsymbol{H} n+a)+\boldsymbol{F}\left(n^{+}\right) & & \text {[by associativity of }+] \\
& =a \boldsymbol{H} n^{+}+\boldsymbol{F}\left(n^{+}\right) . & & {[\text {by definition of } \boldsymbol{H}] }
\end{aligned}
$$

So (3) holds for all n in \mathbb{N}. Therefore each of the operations $x \mapsto x \boldsymbol{H} n$ is the operation \boldsymbol{G}_{n} recursively defined by
(i) $\boldsymbol{G}_{n}(i)=i$,
(ii) $\boldsymbol{G}_{n}(\boldsymbol{S}(a))=\boldsymbol{G}_{n}(a)+\boldsymbol{F}(n)$.

In particular,

$$
\boldsymbol{G}_{m}=\boldsymbol{G}_{n} \Leftrightarrow \boldsymbol{F}(m)=\boldsymbol{F}(n)
$$

Now we can define multiplication on \boldsymbol{A} by

$$
a \cdot b=c \Leftrightarrow \exists x\left(\boldsymbol{F}(x)=b \& \boldsymbol{G}_{x}(a)=c\right) .
$$

Then $a \cdot i=\boldsymbol{G}_{0}(a)=a \boldsymbol{H} 0=i$. Also, if $b=\boldsymbol{F}(n)$, so that $\boldsymbol{S}(b)=\boldsymbol{F}\left(n^{+}\right)$, then

$$
a \cdot \boldsymbol{S}(b)=\boldsymbol{G}_{n^{+}}(a)=a \boldsymbol{H} n^{+}=a \boldsymbol{H} n+a=\boldsymbol{G}_{n}(a)+a=a \cdot b+a .
$$

Thus • is as desired; it is unique by Theorem 4 .

- The proof of Theorem $5 \cdot 3 \cdot 5$ can be replaced with a reference to Lemma 12.

Trivial changes

- 【 $4 \cdot 4 \cdot 3:$ it can be noted that the last part of the proof is by contradiction.
- P. 4 , item (i), after ' \mathbf{V} in these notes': insert reference to $\mathbb{\Phi}$ 2.2.7.
- P. 8: include Table 2.1 on p. 18 (best done by changing the Table to a Figure).
- P. 9: capitalize the letters after the hyphens in 'Replacement-scheme' and 'Power-set'.
- P. 10: transpose $\mathbb{1}$ 1.1.1 to read:

A set is a thing that contains other things. Those other things are called members or elements of the set. The set cannot be separated from its elements the way a box can be emptied of its contents: the set comprises its members, and the members compose the set. A set is its elements, considered as one thing. It is a multitude that is also a unity.

- P. ${ }_{15}$, caption to Table 1.1: Replace sentence 'A terminal $\omega .$. ' with

The vowels α, η, and ω may have an iota subscript (α, η, φ).

- P. 16, after the first list of 3 items: Delete repeated 'recursively' (and add to index).
- After the second list of 3 items: change 'is' to 'of'; don't capitalize 'Parts'.
- P. 20, n. 4: 'The latter sequence that gives...': delete 'that'.
- P. 21, ๆ 2.2.4, item (iii): 'Then $\exists x \varphi$ is true...'
- P. 23, ब2.3.5, item (iii): '(where a is allowed to appear in σ)': change σ to φ.
- P. 23 , § 2.3 .5 : 'this rule allows $u s$ to obtain the sentence $\tau \ldots$,
- P. 24: allow Fig. 2.2 to float to the top of a page?
- P. 30, ब 3.2.3: replace 'However, $\bigcup a$ is a set' with 'However, the union of a set is a set'.
- ब 3.5.9: the meaning of greater than should perhaps have been given explicitly in $\mathbb{T} 3.5 \cdot 5$.
- P. 36 , ${ }^{\text {I }}$ 3.6.3: In the formula displayed over two lines, the terminal \& on the first line should be repeated on the second (as this is the convention I use elsewhere).
- In the following line, replace to with (in)to.
- Pp. 38 f., ब 3.7.1: change \boldsymbol{E} to \boldsymbol{C}.
- P. 40: Exercise (3) should follow (5).
- P. 45 , 4 .1.8: slant chain as a technical term.
- Last line of text, but two: '... will be (in \mathbb{I} 5.1.3) another example...'
- ब 4.2.2 can be broken into 3 paragraphs.
- \mathbb{T} 4.3.1: 'This means by \mathbb{T} 4.2.1...'; in item (ii): delete from \boldsymbol{C}; afterwards: 'The five numbered conditions here for being an arithmetic structure are sometimes...'
- ब 4.4.1, last line but one: \boldsymbol{C} should be \boldsymbol{D}.
- p. 55, 『 5.1.1, just before (5.1): 'Meanwhile we have'. In (5.2) and (5.3), the functions \boldsymbol{F} are really sets and should be written that way. (Actually they are variables...)
- ब 5.1.3 (iv): change \boldsymbol{C} to a (both times).
- I $5 \cdot 1.5$: Give the numerical reference $(4 \cdot 3 \cdot 5)$ for the Recursion Theorem.
- 【 5.3.7: Add: 'For all a and b in \boldsymbol{A}, and all m and n in \mathbb{N} '; in (ii), replace $x \mapsto x^{a}$ with $x \mapsto x^{m}$.

