Revisions for Sets and Classes, 2007.03.02 ed.

David Pierce

April 2, 2007

Some corrections and changes.

1 General

• A list of symbols should be provided.

• The relation symbolized by \in and called **containment** on p. 34 would be better called **membership** (as on p. 19).

2 Significant changes

• p. 10, ¶ 1.1.2. The latter part of this paragraph needs to be rethought. Set and class are not the most 'generally applicable' collective nouns; they are the most abstract. For us, set will be the name of something whose members are other sets.

• P. 11: expand ¶ 1.2.2: say more about this 'correspondence' between \cup and \vee .

• P. 21, \P 2.2.4, after the list: the comment 'depending on the axioms' makes the truth-value of $a \in a$ sound arbitrary. The Foundation Axiom will say that the sentence is false; but \P 8.3.5 shows that this axiom can be understood merely as a *definition* of the sets that we choose to study.

• ¶ 2.2.5: The sets that we study can be called *pure* sets (Moschovakis) or *hereditary* sets (Kunen).

• P. 22, ¶ 2.2.9: The alternative formulation of **V** should also use the 'official' language: so make it $\{x: x \in x \Rightarrow x \in x \Rightarrow x \in x\}$.

• P. 25: Not all of our theorems will have formal deductions even in principle: In \P 8.3.5, it will be noted that **WF** is a model of ZF. This conclusion can be formulated as an infinite list of sentences in the official language, each with a formal proof. We conclude that ZF is consistent: this can be formulated (as Gödel showed) as a single sentence of the official language; but it has no formal proof.

- Exercises might be added to Ch. 2.
- P. 32, bottom: the definition of field is not really needed.
- P. 34, \P 3.5.6 (ii): the reference should be to \P 3.5.5.
- P. 35, ¶ 3.5.7: a least element is also a minimum element.

• P. 36, ¶ 3.6.2: Instead of 'virtual class' here, we might speak of a **family** of classes. Then a class C and a binary relation R determine the families $\{xR: x \in C\}$ and $\{Rx: x \in C\}$. In particular, if $E \subseteq C \times C$ and is an equivalence-relation on C, then C/E is the family $\{xE: x \in C\}$.

• P. 37, ¶ 3.6.4: item (v) should be item (ii); also, in (vi), the notation π_0 and π_1 that will be used in ¶ 5.4.2 (Recursion with Parameter) can be introduced.

• P. 46: replace ¶ 4.2.4 with:

1. Suppose (C, F, i) is a recursive structure. Then C can be denoted suggestively by

 $\{i, \boldsymbol{F}(i), \boldsymbol{F}(\boldsymbol{F}(i)), \dots\}.$

Some possibilities are depicted in Fig. 4.1. Note well that possibly F is not injective, and possibly $i \in F[C]$. (However, these possibilities seem to be mutually exclusive.)

{par:rec}

2. Suppose again (C, F, i) is a recursive structure, and (D, G, j) is another iterative structure (not necessarily recursive). There may be a function H from C to D such that

(i) $\boldsymbol{H}(i) = j$,

(ii) $a \in C \Rightarrow H(F(a)) = G(H(a))$, that is, $H \circ F = G \circ H$ on C.

The first rule says what H(i) is; the second says how to obtain H(F(a)) from H(a). By induction, H is uniquely determined by these rules: see Corollary 5 below. In this case, we say that H is **recursively defined** by the given rules.

{par:rec2}

3. Note first another possible kind of recursive definition: (C, F, i) is recursive, $E \subseteq D$, and $G: D \to D$, then perhaps there is a sub-class R of $C \times D$ such that (in the notation of \P 3.6.2)

(i) $i\mathbf{R} = \mathbf{E}$,

(ii) $a \in \boldsymbol{C} \Rightarrow \boldsymbol{F}(a)\boldsymbol{R} = \boldsymbol{G}[a\boldsymbol{R}].$

Then R too is uniquely determined by these rules, so it too is recursively defined:

{thm:rec-uni}

4 Theorem. Suppose (C, F, i) is recursive, $G : D \to D$, and $E \subseteq D$. Then there is at most one relation R as in \P_3 .

Proof. Suppose \mathbf{R}_0 and \mathbf{R}_1 are two such relations. Let

$$C_1 = \{x \colon x \in C \& xR_0 = xR_1\}.$$

Since $i\mathbf{R}_0 = \mathbf{E} = i\mathbf{R}_1$, we have $i \in \mathbf{C}_1$. Suppose $a \in \mathbf{C}_1$, so $a\mathbf{R}_0 = a\mathbf{R}_1$. Then

$$\boldsymbol{F}(a)\boldsymbol{R}_0 = \boldsymbol{G}[a\boldsymbol{R}_0] = \boldsymbol{G}[a\boldsymbol{R}_1] = \boldsymbol{F}(a)\boldsymbol{R}_1,$$

so $F(a) \in C_1$. By induction (and Lemma 4.2.3), $C_1 = C$. Since dom $(R_0) \subseteq C$ and dom $(R_1) \subseteq C$, we conclude that $R_0 = R_1$.

5 Corollary. Suppose (C, F, i) is recursive, and (D, G, j) is iterative. Then there is at most one function H as in \P_3 .

Proof. The function H (if it exists) is a relation, namely a sub-class R of $C \times D$. Let $E = \{H(i)\}$. Then

(i) $i\mathbf{R} = \{\mathbf{H}(i)\} = \mathbf{E};$

(ii)
$$a \in \mathbf{C} \Rightarrow \mathbf{F}(a)\mathbf{R} = \{\mathbf{H}(\mathbf{F}(a))\} = \{\mathbf{G}(\mathbf{H}(a))\} = \mathbf{G}[\{\mathbf{H}(a)\}] = \mathbf{G}[a\mathbf{R}].$$

By the theorem, \boldsymbol{R} is unique, so \boldsymbol{H} is unique.

• P. 48, ¶ 4.3.5: The Recursion Theorem should be given more generally:

6 Theorem (Recursion). Suppose (C, F, i) is an arithmetic structure, $G: D \to D$, and $E \subseteq D$. Then there is (uniquely, by Theorem 4) a sub-class R of $C \times D$ such that

(i) $i\mathbf{R} = \mathbf{E}$,

(ii)
$$a \in \mathbf{C} \Rightarrow \mathbf{F}(a)\mathbf{R} = \mathbf{G}[a\mathbf{R}].$$

Proof. Let \boldsymbol{B} be the sub-class

$$\left\{ x \colon \forall y \left(y \in x \Rightarrow \exists z \left(z \in \boldsymbol{E} \otimes y = (i, z) \right) \lor \\ \lor \exists u \exists v \left((u, v) \in \boldsymbol{C} \times \boldsymbol{D} \cap x \otimes y = (\boldsymbol{F}(u), \boldsymbol{G}(v)) \right) \right) \right\}$$

of $\mathcal{P}(\mathbf{C} \times \mathbf{D})$, and let $\mathbf{R} = \bigcup \mathbf{B}$, so $\mathbf{R} \subseteq \mathbf{C} \times \mathbf{D}$. If $a \in \mathbf{E}$, then $\{(i, a)\}$ is a set (by the Pairing Axiom), so it belongs to \mathbf{B} , and hence $i \ \mathbf{R} a$. Suppose $b \ \mathbf{R} c$. Then $(b, c) \in d$ for some d in \mathbf{B} , so $d \cup \{(\mathbf{F}(b), \mathbf{G}(c))\}$ is a set (by the Weak Union Axiom), and this set belongs to \mathbf{B} , so $\mathbf{F}(b) \ \mathbf{R} \ \mathbf{G}(c)$. We now have the following characterization of \mathbf{R} :

$$a \mathbf{R} b \Leftrightarrow ((a = i \otimes b \in \mathbf{E}) \lor \exists u \exists v (u \mathbf{R} v \otimes a = \mathbf{F}(u) \otimes b = \mathbf{G}(v))).$$

Since $i \notin \mathbf{F}[\mathbf{C}]$, we have $i \mathbf{R} a \Leftrightarrow a \in \mathbf{E}$, so $i\mathbf{R} = \mathbf{E}$. Since \mathbf{F} is injective, if $a \in \mathbf{C}$, we have $\mathbf{F}(a) \mathbf{R} b \Leftrightarrow b \in \mathbf{G}[a\mathbf{R}]$, so $\mathbf{F}(a)\mathbf{R} = \mathbf{G}[a\mathbf{R}]$.

{cor:rec}

7 Corollary. Suppose (C, F, i) is an arithmetic structure and (D, G, j) is an iterative structure. Then there is (uniquely, by Corollary 5) a function H from C to D such that

{cor:rec-uni}

{thm:rec}

(i)
$$H(i) = j$$
,
(ii) $a \in C \Rightarrow H(F(a)) = G(H(a))$, that is, $H \circ F = G \circ H$.

Proof. Exercise.

• P. 51, end of § 4.4: 'We seem to have this if $i = \emptyset$, and F and G are both $x \mapsto x \cup \{x\}$.'

• P. 52, proof of 4.5.4, part (i): 'Then $b \neq \alpha$, since α is well-ordered by containment, and such orderings are by definition strict'.

• P. 53, ¶ 4.5.8 should begin: 'The structure $(\mathbf{ON}, x \mapsto x', \emptyset)$ satisfies the hypothesis of Theorem 4.4.3 with respect to the ordering \in ; hence there is a class $\{\emptyset, \emptyset', \emptyset''\} \dots$ '.

• $\P\P$ 5.2.1–2 can be replaced with the following:

8. We shall define the binary operation of addition on \mathbb{N} so that

- (i) m + 0 = m,
- (ii) $m + n^+ = (m + n)^+$.

These rules tell how to add 0, and they tell how to add n^+ , provided one can add n. The rules *will* determine a unique operation, by a variant of the Recursion Theorem (¶ 6). Moreover, suppose $(\boldsymbol{A}, \boldsymbol{S}, i)$ is a recursive structure. (This will be so throughout this section.) Then we shall be able to define addition on \boldsymbol{A} by the rules

- (i) a + i = a,
- (ii) $a + \mathbf{S}(b) = \mathbf{S}(a+b),$

even though the Recursion Theorem does not apply generally to all recursive structures.

{lem:+}

9 Lemma. Suppose $F: B \to C$ and $G: C \to C$. Then there is a unique function H from $B \times \mathbb{N}$ to C such that

- (i) $a \mathbf{H} 0 = \mathbf{F}(a),$
- (*ii*) $a \mathbf{H} n^+ = \mathbf{G}(a \mathbf{H} n).$

Proof. By the Recursion Theorem, there is a unique sub-class R of $\mathbb{N} \times (B \times C)$ such that

(i) $0\boldsymbol{R} = \boldsymbol{F}$,

(ii)
$$n \in \mathbb{N} \Rightarrow n^+ \mathbf{R} = ((x, y) \mapsto (x, \mathbf{G}(y))[n\mathbf{R}] = \{(x, \mathbf{G}(y)) : n \mathbf{R} (x, y)\}$$

By induction, if $n \in \mathbb{N}$, then $n\mathbf{R}$ is a function from \mathbf{B} to \mathbf{C} . Indeed, $0\mathbf{R}$ is such a function (namely \mathbf{F}), and if $n\mathbf{R}$ is such a function, then $n^+\mathbf{R}$ is its composition with \mathbf{G} . Let the function $n\mathbf{R}$ be denoted by \mathbf{K}_n ; then $\mathbf{K}_{n^+} = \mathbf{G} \circ \mathbf{K}_n$. We can now define the binary function \mathbf{H} as $(x, y) \mapsto \mathbf{K}_y(x)$ on $\mathbf{A} \times \mathbb{N}$. Then

- (i) $a \boldsymbol{H} 0 = \boldsymbol{K}_0(a) = \boldsymbol{F}(a),$
- (ii) $a H n^+ = K_{n^+}(a) = G(K_n(a)) = G(a H n).$

So H is as desired. To see that H is unique, note that R determines H, and conversely. Indeed,

Since R uniquely satisfies the given conditions, so does H.

{thm:+}

10 Theorem and Definition. Suppose (A, S, i) is recursive. Then there is a unique binary operation of addition on A given by

- $(i) \ a+i=a,$
- (*ii*) a + S(b) = S(a + b).

Proof. By the lemma, there is a unique function H from $A \times \mathbb{N}$ to A such that

- (i) a H 0 = a,
- (ii) $a \mathbf{H} n^+ = \mathbf{S}(a \mathbf{H} n).$

So H is recursively defined in its second argument. We shall show that it is also recursively definable in its first argument. First, let F be the function $x \mapsto i H x$ from \mathbb{N} into A. Then

$$oldsymbol{F}(0)=i,$$

 $oldsymbol{F}(n^+)=oldsymbol{S}(oldsymbol{F}(n)).$ (1) {eqn:+i}

(So F is the unique homomorphism from $(\mathbb{N}, ^+, 0)$ into (A, S, i) guaranteed by Corollary 7.) By induction, $\operatorname{rng}(F) = A$; indeed, $i \in \operatorname{rng}(F)$, and $a \in \operatorname{rng}(F) \Rightarrow$ $S(a) \in \operatorname{rng}(F)$. The equation

$$\boldsymbol{S}(a) \boldsymbol{H} n = \boldsymbol{S}(a \boldsymbol{H} n) \tag{2} \quad \{\texttt{eqn:+n}\}$$

holds when n = 0, since S(a) H 0 = S(a) = S(a H 0). Suppose (2) holds for some n in \mathbb{N} . Then

$\boldsymbol{S}(a) \boldsymbol{H} n^+ = \boldsymbol{S}(\boldsymbol{S}(a) \boldsymbol{H} n)$	[by definition of H]
$= \boldsymbol{S}(\boldsymbol{S}(a\boldsymbol{H}n))$	[by inductive hypothesis]
$= \boldsymbol{S}(a \boldsymbol{H} n^+).$	[by definition of H]

So (2) holds for all n in \mathbb{N} . Therefore each of the operations $x \mapsto x \mathbf{H} n$ is the operation \mathbf{G}_n recursively defined by

- (i) $\boldsymbol{G}_n(i) = \boldsymbol{F}(n),$
- (ii) $\boldsymbol{G}_n(\boldsymbol{S}(a)) = \boldsymbol{S}(\boldsymbol{G}_n(a)).$

In particular,

$$\boldsymbol{G}_m = \boldsymbol{G}_n \Leftrightarrow \boldsymbol{F}(m) = \boldsymbol{F}(n)$$

Now we can define addition on \boldsymbol{A} by

$$a + b = c \Leftrightarrow \exists x \ (\mathbf{F}(x) = b \otimes \mathbf{G}_x(a) = c).$$

Then $a + i = \mathbf{G}_0(a) = a \mathbf{H} 0 = a$. Also, if $b = \mathbf{F}(n)$, so that $\mathbf{S}(b) = \mathbf{F}(n^+)$, then

$$a + \mathbf{S}(b) = \mathbf{G}_{n^+}(a) = a \mathbf{H} n^+ = \mathbf{S}(a \mathbf{H} n) = \mathbf{S}(\mathbf{G}_n(a)) = \mathbf{S}(a + b).$$

Thus + is as desired; it is unique by Theorem 4.

• \P 5.2.3 should have a reference to Landau. \P 5.2.4 can be slightly rewritten:

11. Suppose (a, s, i) is a recursive *set*, so that all operations on *a* are sets. Then we can establish addition on *a* as follows. By Corollary 5, for each *b* in *a*, there is at most one singulary operation f_b on *a* such that

- (i) $f_b(i) = b$,
- (ii) $f_b \circ s = s \circ f_b$.

Let a_0 be the subset of a comprising those b such that f_b does exist; note well how this definition of a_0 requires f_b to be a set. Then f_i exists and is id_a , so $i \in a_0$. If $b \in a_0$, then $f_{s(b)}$ exists and is $s \circ f_b$. By induction, $a_0 = a$. Now we can define $b + c = f_b(c)$.

• At the beginning of § 5.2 should be inserted the following:

{lem:.}

12 Lemma. Suppose $F: B \to C$ and $G: C \times B \to C$. Then there is a unique function H from $B \times \mathbb{N}$ to C such that

- (i) $a \mathbf{H} 0 = \mathbf{F}(a),$
- (*ii*) $a \mathbf{H} n^+ = (a \mathbf{H} n) \mathbf{G} a$.

Proof. By the Recursion Theorem, there is a unique sub-class R of $\mathbb{N} \times (B \times C)$ such that

(i) $0\mathbf{R} = \mathbf{F}$,

(ii)
$$n \in \mathbb{N} \Rightarrow n^+ \mathbf{R} = ((x, y) \mapsto (x, y \mathbf{G} x))[n\mathbf{R}] = \{(x, y \mathbf{G} x)): n \mathbf{R} (x, y)\}.$$

By induction, if $n \in \mathbb{N}$, then $n\mathbf{R}$ is a function \mathbf{K}_n from \mathbf{B} to \mathbf{C} . Indeed, $0\mathbf{R}$ is such a function, namely \mathbf{F} ; this then is \mathbf{K}_0 . If $n\mathbf{R}$ is such a function, as \mathbf{K}_n , then $n^+\mathbf{R}$ is $x \mapsto \mathbf{H}_n(x) \mathbf{G} x$; this then is \mathbf{K}_{n^+} . We can now define the binary function \mathbf{H} as $(x, y) \mapsto \mathbf{K}_y(x)$ on $\mathbf{A} \times \mathbb{N}$. Then

(i) $a \boldsymbol{H} 0 = \boldsymbol{K}_0(a) = \boldsymbol{F}(a),$

(ii)
$$a H n^+ = K_{n^+}(a) = K_n(a) G a = (a H n) G a$$

So H is as desired; its uniqueness is as in Lemma 9.

• The proof of Theorem 5.3.2 can be supplied as follows:

Proof. We follow the pattern of the proof of Theorem 10. By the lemma, there is a unique function H from $A \times \mathbb{N}$ into A such that

- (i) a H 0 = i,
- (ii) $a \mathbf{H} n^+ = a \mathbf{H} n + a$.

By induction, $i \mathbf{H} n = i$ for all n in \mathbb{N} ; indeed, this is given when n = 0, and if it holds when n = m, then $i \mathbf{H} m^+ = i \mathbf{H} m + i = i \mathbf{H} m = i$. Let \mathbf{F} be the unique homomorphism from $(\mathbb{N}, {}^+, 0)$ into $(\mathbf{A}, \mathbf{S}, i)$. The equation

$$\boldsymbol{S}(a) \boldsymbol{H} n = a \boldsymbol{H} n + \boldsymbol{F}(n) \tag{3} \{\texttt{eqn:.n}\}$$

holds when n = 0, since S(a) H 0 = i = i + i = a H 0 + F(0). Suppose (3) holds for some n in N. Then

$$\begin{split} \boldsymbol{S}(a) \, \boldsymbol{H} \, n^+ &= \boldsymbol{S}(a) \, \boldsymbol{H} \, n + \boldsymbol{S}(a) & \text{[by definition of } \boldsymbol{H}] \\ &= (a \, \boldsymbol{H} \, n + \boldsymbol{F}(n)) + \boldsymbol{S}(a) & \text{[by inductive hypothesis]} \\ &= a \, \boldsymbol{H} \, n + (\boldsymbol{F}(n) + \boldsymbol{S}(a)) & \text{[by associativity of } +] \\ &= a \, \boldsymbol{H} \, n + \boldsymbol{S}(\boldsymbol{F}(n) + a) & \text{[by definition of } +] \\ &= a \, \boldsymbol{H} \, n + (\boldsymbol{S}(\boldsymbol{F}(n)) + a) & \text{[by Lemma 5.2.5]} \\ &= a \, \boldsymbol{H} \, n + (\boldsymbol{F}(n^+) + a) & \text{[because } \boldsymbol{F} \text{ is a homomorphism]} \\ &= a \, \boldsymbol{H} \, n + (a + \boldsymbol{F}(n^+)) & \text{[by commutativity of } +] \\ &= (a \, \boldsymbol{H} \, n + a) + \boldsymbol{F}(n^+) & \text{[by associativity of } +] \\ &= a \, \boldsymbol{H} \, n^+ + \boldsymbol{F}(n^+). & \text{[by definition of } \boldsymbol{H}] \end{split}$$

So (3) holds for all n in \mathbb{N} . Therefore each of the operations $x \mapsto x H n$ is the operation G_n recursively defined by

(i) $G_n(i) = i$,

(ii)
$$\boldsymbol{G}_n(\boldsymbol{S}(a)) = \boldsymbol{G}_n(a) + \boldsymbol{F}(n).$$

In particular,

$$G_m = G_n \Leftrightarrow F(m) = F(n).$$

Now we can define multiplication on \boldsymbol{A} by

$$a \cdot b = c \Leftrightarrow \exists x \ (\mathbf{F}(x) = b \& \mathbf{G}_x(a) = c).$$

Then $a \cdot i = \mathbf{G}_0(a) = a \mathbf{H} 0 = i$. Also, if $b = \mathbf{F}(n)$, so that $\mathbf{S}(b) = \mathbf{F}(n^+)$, then

$$a \cdot S(b) = G_{n^+}(a) = a H n^+ = a H n + a = G_n(a) + a = a \cdot b + a.$$

Thus \cdot is as desired; it is unique by Theorem 4.

• The proof of Theorem 5.3.5 can be replaced with a reference to Lemma 12.

Trivial changes

- \P 4.4.3: it can be noted that the last part of the proof is by contradiction.
- P. 4, item (i), after 'V in these notes': insert reference to ¶ 2.2.7.
- P. 8: include Table 2.1 on p. 18 (best done by changing the Table to a Figure).

• P. 9: capitalize the letters after the hyphens in 'Replacement-scheme' and 'Power-set'.

• P. 10: transpose \P 1.1.1 to read:

A set is a thing that **contains** other things. Those other things are called **members** or **elements** of the set. The set cannot be separated from its elements the way a box can be emptied of its contents: the set **comprises** its members, and the members **compose** the set. A set *is* its elements, considered as one thing. It is a multitude that is also a unity.

• P. 15, caption to Table 1.1: Replace sentence 'A terminal ω ...' with The vowels α , η , and ω may have an iota subscript (α , η , ω).

 \bullet P. 16, after the first list of 3 items: Delete repeated 'recursively' (and add to index).

- After the second list of 3 items: change 'is' to 'of'; don't capitalize 'Parts'.
- P. 20, n. 4: 'The latter sequence that gives...': delete 'that'.
- P. 21, ¶ 2.2.4, item (iii): 'Then $\exists x \varphi is$ true...'
- P. 23, ¶ 2.3.5, item (iii): '(where a is allowed to appear in σ)': change σ to φ .
- P. 23, ¶ 2.3.5: 'this rule allows us to obtain the sentence τ ...'
- P. 24: allow Fig. 2.2 to float to the top of a page?

• P. 30, ¶ 3.2.3: replace 'However, $\bigcup a$ is a set' with 'However, the union of a set is a set'.

• ¶ 3.5.9: the meaning of greater than should perhaps have been given explicitly in ¶ 3.5.5.

• P. 36, \P 3.6.3: In the formula displayed over two lines, the terminal & on the first line should be repeated on the second (as this is the convention I use elsewhere).

- In the following line, replace to with (in)to.
- \bullet Pp. 38 f., \P 3.7.1: change \pmb{E} to $\pmb{C}.$
- P. 40: Exercise (3) should follow (5).
- P. 45, \P 4.1.8: slant *chain* as a technical term.
- Last line of text, but two: '... will be (in \P 5.1.3) another example...'
- \P 4.2.2 can be broken into 3 paragraphs.

• ¶ 4.3.1: 'This means by ¶ 4.2.1...'; in item (ii): delete from C; afterwards: 'The five numbered conditions here for being an arithmetic structure are sometimes...'

• ¶ 4.4.1, last line but one: C should be D.

• p. 55, ¶ 5.1.1, just before (5.1): 'Meanwhile we have'. In (5.2) and (5.3), the functions F are really sets and should be written that way. (Actually they are variables...)

- ¶ 5.1.3 (iv): change C to a (both times).
- \P 5.1.5: Give the numerical reference (4.3.5) for the Recursion Theorem.
- ¶ 5.3.7: Add: 'For all a and b in A, and all m and n in \mathbb{N} '; in (ii), replace $x \mapsto x^a$ with $x \mapsto x^m$.