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Some corrections and changes.

 General

• A list of symbols should be provided.

• The relation symbolized by ∈ and called containment on p.  would be
better called membership (as on p. ).

 Significant changes

• p. , ¶ ... The latter part of this paragraph needs to be rethought. Set
and class are not the most ‘generally applicable’ collective nouns; they are the
most abstract. For us, set will be the name of something whose members are
other sets.

• P. : expand ¶ ..: say more about this ‘correspondence’ between ∪ and ∨.

• P. , ¶ .., after the list: the comment ‘depending on the axioms’ makes the
truth-value of a ∈ a sound arbitrary. The Foundation Axiom will say that the
sentence is false; but ¶ .. shows that this axiom can be understood merely
as a definition of the sets that we choose to study.

• ¶ ..: The sets that we study can be called pure sets (Moschovakis) or
hereditary sets (Kunen).

• P. , ¶ ..: The alternative formulation of V should also use the ‘official’
language: so make it {x : x ∈ x ⇒ x ∈ x ⇒ x ∈ x}.

• P. : Not all of our theorems will have formal deductions even in principle:
In ¶ .., it will be noted that WF is a model of ZF. This conclusion can be
formulated as an infinite list of sentences in the official language, each with a
formal proof. We conclude that ZF is consistent: this can be formulated (as
Gödel showed) as a single sentence of the official language; but it has no formal
proof.





• Exercises might be added to Ch. .

• P. , bottom: the definition of field is not really needed.

• P. , ¶ .. (ii): the reference should be to ¶ ...

• P. , ¶ ..: a least element is also a minimum element.

• P. , ¶ ..: Instead of ‘virtual class’ here, we might speak of a family
of classes. Then a class C and a binary relation R determine the families
{xR : x ∈ C} and {Rx : x ∈ C}. In particular, if E ⊆ C × C and is an
equivalence-relation on C, then C/E is the family {xE : x ∈ C}.

• P. , ¶ ..: item (v) should be item (ii); also, in (vi), the notation π0 and
π1 that will be used in ¶ .. (Recursion with Parameter) can be introduced.

• P. : replace ¶ .. with:

. Suppose (C,F , i) is a recursive structure. Then C can be denoted sugges-
tively by

{i,F (i),F (F (i)), . . . }.

Some possibilities are depicted in Fig. .. Note well that possibly F is not
injective, and possibly i ∈ F [C ]. (However, these possibilities seem to be
mutually exclusive.)

{par:rec}
. Suppose again (C,F , i) is a recursive structure, and (D,G, j) is another
iterative structure (not necessarily recursive). There may be a function H from
C to D such that

(i) H(i) = j,

(ii) a ∈ C ⇒ H(F (a)) = G(H(a)), that is, H ◦ F = G ◦H on C.

The first rule says what H(i) is; the second says how to obtain H(F (a)) from
H(a). By induction, H is uniquely determined by these rules: see Corollary 
below. In this case, we say that H is recursively defined by the given rules.

{par:rec}
. Note first another possible kind of recursive definition: (C,F , i) is recursive,
E ⊆ D, and G : D → D, then perhaps there is a sub-class R of C ×D such
that (in the notation of ¶ ..)

(i) iR = E,

(ii) a ∈ C ⇒ F (a)R = G[ aR ].

Then R too is uniquely determined by these rules, so it too is recursively
defined:

{thm:rec-uni}
 Theorem. Suppose (C,F , i) is recursive, G : D → D, and E ⊆ D. Then
there is at most one relation R as in ¶ .





Proof. Suppose R0 and R1 are two such relations. Let

C1 = {x : x ∈ C N xR0 = xR1}.

Since iR0 = E = iR1, we have i ∈ C1. Suppose a ∈ C1, so aR0 = aR1. Then

F (a)R0 = G[ aR0 ] = G[ aR1 ] = F (a)R1,

so F (a) ∈ C1. By induction (and Lemma ..), C1 = C. Since dom(R0) ⊆ C
and dom(R1) ⊆ C, we conclude that R0 = R1.

{cor:rec-uni}
 Corollary. Suppose (C,F , i) is recursive, and (D,G, j) is iterative. Then
there is at most one function H as in ¶ .

Proof. The function H (if it exists) is a relation, namely a sub-class R of C×D.
Let E = {H(i)}. Then

(i) iR = {H(i)} = E;

(ii) a ∈ C ⇒ F (a)R = {H(F (a))} = {G(H(a))} = G[ {H(a)} ] = G[ aR ].

By the theorem, R is unique, so H is unique.

• P. , ¶ ..: The Recursion Theorem should be given more generally:
{thm:rec}

 Theorem (Recursion). Suppose (C,F , i) is an arithmetic structure, G : D →
D, and E ⊆ D. Then there is (uniquely, by Theorem ) a sub-class R of C×D
such that

(i) iR = E,

(ii) a ∈ C ⇒ F (a)R = G[ aR ].

Proof. Let B be the sub-class{
x : ∀y

(
y ∈ x ⇒ ∃z

(
z ∈ E N y = (i, z)

)
∨

∨ ∃u ∃v
(
(u, v) ∈ C ×D ∩ x N y = (F (u),G(v))

))}
of P(C ×D), and let R =

⋃
B, so R ⊆ C ×D. If a ∈ E, then {(i, a)} is a set

(by the Pairing Axiom), so it belongs to B, and hence i R a. Suppose b R c.
Then (b, c) ∈ d for some d in B, so d ∪ {(F (b),G(c))} is a set (by the Weak
Union Axiom), and this set belongs to B, so F (b) R G(c). We now have the
following characterization of R:

a R b ⇔ ((a = i N b ∈ E) ∨ ∃u ∃v (u R v N a = F (u) N b = G(v))).

Since i /∈ F [C ], we have i R a ⇔ a ∈ E, so iR = E. Since F is injective, if
a ∈ C, we have F (a) R b ⇔ b ∈ G[ aR ], so F (a)R = G[ aR ].

{cor:rec}
 Corollary. Suppose (C,F , i) is an arithmetic structure and (D,G, j) is an
iterative structure. Then there is (uniquely, by Corollary ) a function H from
C to D such that





(i) H(i) = j,

(ii) a ∈ C ⇒ H(F (a)) = G(H(a)), that is, H ◦ F = G ◦H.

Proof. Exercise.

• P. , end of § .: ‘We seem to have this if i = ∅, and F and G are both
x 7→ x ∪ {x}.’

• P. , proof of .., part (i): ‘Then b 6= α, since α is well-ordered by contain-
ment, and such orderings are by definition strict’.

• P. , ¶ .. should begin: ‘The structure (ON, x 7→ x′, ∅) satisfies the
hypothesis of Theorem .. with respect to the ordering ∈; hence there is a
class {∅, ∅′, ∅′′} . . . ’.

• ¶¶ ..– can be replaced with the following:

. We shall define the binary operation of addition on N so that

(i) m + 0 = m,

(ii) m + n+ = (m + n)+.

These rules tell how to add 0, and they tell how to add n+, provided one can add
n. The rules will determine a unique operation, by a variant of the Recursion
Theorem (¶ ). Moreover, suppose (A,S, i) is a recursive structure. (This will
be so throughout this section.) Then we shall be able to define addition on A
by the rules

(i) a + i = a,

(ii) a + S(b) = S(a + b),

even though the Recursion Theorem does not apply generally to all recursive
structures.

{lem:+}
 Lemma. Suppose F : B → C and G : C → C. Then there is a unique
function H from B × N to C such that

(i) aH 0 = F (a),

(ii) aH n+ = G(aH n).

Proof. By the Recursion Theorem, there is a unique sub-class R of N× (B×C)
such that

(i) 0R = F ,

(ii) n ∈ N ⇒ n+R =
(
(x, y) 7→ (x,G(y)

)
[nR ] = {(x, G(y)) : n R (x, y)}.

By induction, if n ∈ N, then nR is a function from B to C. Indeed, 0R is such a
function (namely F ), and if nR is such a function, then n+R is its composition
with G. Let the function nR be denoted by Kn; then Kn+ = G ◦Kn. We can
now define the binary function H as (x, y) 7→ Ky(x) on A× N. Then





(i) aH 0 = K0(a) = F (a),

(ii) aH n+ = Kn+(a) = G(Kn(a)) = G(aH n).

So H is as desired. To see that H is unique, note that R determines H, and
conversely. Indeed,

H = {((x, y), z) : y R (x, z)},
R = {(y, (x, z)) : xH y = z}.

Since R uniquely satisfies the given conditions, so does H.
{thm:+}

 Theorem and Definition. Suppose (A,S, i) is recursive. Then there is a
unique binary operation of addition on A given by

(i) a + i = a,

(ii) a + S(b) = S(a + b).

Proof. By the lemma, there is a unique function H from A×N to A such that

(i) aH 0 = a,

(ii) aH n+ = S(aH n).

So H is recursively defined in its second argument. We shall show that it is also
recursively definable in its first argument. First, let F be the function x 7→ iH x
from N into A. Then

F (0) = i,

F (n+) = S(F (n)).
() {eqn:+i}

(So F is the unique homomorphism from (N, +, 0) into (A,S, i) guaranteed by
Corollary .) By induction, rng(F ) = A; indeed, i ∈ rng(F ), and a ∈ rng(F ) ⇒
S(a) ∈ rng(F ). The equation

S(a) H n = S(aH n) () {eqn:+n}

holds when n = 0, since S(a) H 0 = S(a) = S(aH 0). Suppose () holds for
some n in N. Then

S(a)H n+ = S(S(a) H n) [by definition of H]
= S(S(aH n)) [by inductive hypothesis]

= S(aH n+). [by definition of H]

So () holds for all n in N. Therefore each of the operations x 7→ xH n is the
operation Gn recursively defined by

(i) Gn(i) = F (n),

(ii) Gn(S(a)) = S(Gn(a)).





In particular,
Gm = Gn ⇔ F (m) = F (n).

Now we can define addition on A by

a + b = c ⇔ ∃x (F (x) = b N Gx(a) = c).

Then a + i = G0(a) = aH 0 = a. Also, if b = F (n), so that S(b) = F (n+),
then

a + S(b) = Gn+(a) = aH n+ = S(aH n) = S(Gn(a)) = S(a + b).

Thus + is as desired; it is unique by Theorem .

• ¶ .. should have a reference to Landau. ¶ .. can be slightly rewritten:

. Suppose (a, s, i) is a recursive set, so that all operations on a are sets. Then
we can establish addition on a as follows. By Corollary , for each b in a, there
is at most one singulary operation fb on a such that

(i) fb(i) = b,

(ii) fb ◦ s = s ◦ fb.

Let a0 be the subset of a comprising those b such that fb does exist; note well
how this definition of a0 requires fb to be a set. Then fi exists and is ida, so
i ∈ a0. If b ∈ a0, then fs(b) exists and is s ◦ fb. By induction, a0 = a. Now we
can define b + c = fb(c).

• At the beginning of § . should be inserted the following:
{lem:.}

 Lemma. Suppose F : B → C and G : C ×B → C. Then there is a unique
function H from B × N to C such that

(i) aH 0 = F (a),

(ii) aH n+ = (aH n) G a.

Proof. By the Recursion Theorem, there is a unique sub-class R of N× (B×C)
such that

(i) 0R = F ,

(ii) n ∈ N ⇒ n+R =
(
(x, y) 7→ (x, y Gx)

)
[nR ] = {(x, y Gx)) : n R (x, y)}.

By induction, if n ∈ N, then nR is a function Kn from B to C. Indeed, 0R is
such a function, namely F ; this then is K0. If nR is such a function, as Kn,
then n+R is x 7→ Hn(x) Gx; this then is Kn+ . We can now define the binary
function H as (x, y) 7→ Ky(x) on A× N. Then

(i) aH 0 = K0(a) = F (a),

(ii) aH n+ = Kn+(a) = Kn(a) G a = (aH n) G a.

So H is as desired; its uniqueness is as in Lemma .





• The proof of Theorem .. can be supplied as follows:

Proof. We follow the pattern of the proof of Theorem . By the lemma, there
is a unique function H from A× N into A such that

(i) aH 0 = i,

(ii) aH n+ = aH n + a.

By induction, iH n = i for all n in N; indeed, this is given when n = 0, and
if it holds when n = m, then iH m+ = iH m + i = iH m = i. Let F be the
unique homomorphism from (N, +, 0) into (A,S, i). The equation

S(a)H n = aH n + F (n) () {eqn:.n}

holds when n = 0, since S(a) H 0 = i = i+ i = aH 0+F (0). Suppose () holds
for some n in N. Then

S(a)H n+ = S(a) H n + S(a) [by definition of H]
= (aH n + F (n)) + S(a) [by inductive hypothesis]
= aH n + (F (n) + S(a)) [by associativity of +]
= aH n + S(F (n) + a) [by definition of +]
= aH n + (S(F (n)) + a) [by Lemma ..]

= aH n + (F (n+) + a) [because F is a homomorphism]

= aH n + (a + F (n+)) [by commutativity of +]

= (aH n + a) + F (n+) [by associativity of +]

= aH n+ + F (n+). [by definition of H]

So () holds for all n in N. Therefore each of the operations x 7→ xH n is the
operation Gn recursively defined by

(i) Gn(i) = i,

(ii) Gn(S(a)) = Gn(a) + F (n).

In particular,
Gm = Gn ⇔ F (m) = F (n).

Now we can define multiplication on A by

a · b = c ⇔ ∃x (F (x) = b N Gx(a) = c).

Then a · i = G0(a) = aH 0 = i. Also, if b = F (n), so that S(b) = F (n+), then

a · S(b) = Gn+(a) = aH n+ = aH n + a = Gn(a) + a = a · b + a.

Thus · is as desired; it is unique by Theorem .

• The proof of Theorem .. can be replaced with a reference to Lemma .





Trivial changes
• ¶ ..: it can be noted that the last part of the proof is by contradiction.

• P. , item (i), after ‘V in these notes’: insert reference to ¶ ...

• P. : include Table . on p.  (best done by changing the Table to a Figure).

• P. : capitalize the letters after the hyphens in ‘Replacement-scheme’ and
‘Power-set’.

• P. : transpose ¶ .. to read:

A set is a thing that contains other things. Those other things are
called members or elements of the set. The set cannot be sepa-
rated from its elements the way a box can be emptied of its contents:
the set comprises its members, and the members compose the set.
A set is its elements, considered as one thing. It is a multitude that
is also a unity.

• P. , caption to Table .: Replace sentence ‘A terminal ω. . . ’ with

The vowels α, η, and ω may have an iota subscript (ø, ù, ú).

• P. , after the first list of  items: Delete repeated ‘recursively’ (and add to
index).

• After the second list of  items: change ‘is’ to ‘of’; don’t capitalize ‘Parts’.

• P. , n. : ‘The latter sequence that gives. . . ’: delete ‘that’.

• P. , ¶ .., item (iii): ‘Then ∃x ϕ is true. . . ’

• P. , ¶ .., item (iii): ‘(where a is allowed to appear in σ)’: change σ to ϕ.

• P. , ¶ ..: ‘this rule allows us to obtain the sentence τ . . . ’

• P. : allow Fig. . to float to the top of a page?

• P. , ¶ ..: replace ‘However,
⋃

a is a set’ with ‘However, the union of a
set is a set’.

• ¶ ..: the meaning of greater than should perhaps have been given explicitly
in ¶ ...

• P. , ¶ ..: In the formula displayed over two lines, the terminal N on
the first line should be repeated on the second (as this is the convention I use
elsewhere).





• In the following line, replace to with (in)to.

• Pp.  f., ¶ ..: change E to C.

• P. : Exercise () should follow ().

• P. , ¶ ..: slant chain as a technical term.

• Last line of text, but two: ‘. . . will be (in ¶ ..) another example. . . ’

• ¶ .. can be broken into  paragraphs.

• ¶ ..: ‘This means by ¶ ... . . ’; in item (ii): delete from C; afterwards:
‘The five numbered conditions here for being an arithmetic structure are some-
times. . . ’

• ¶ .., last line but one: C should be D.

• p. , ¶ .., just before (.): ‘Meanwhile we have’. In (.) and (.), the
functions F are really sets and should be written that way. (Actually they are
variables. . . )

• ¶ .. (iv): change C to a (both times).

• ¶ ..: Give the numerical reference (..) for the Recursion Theorem.

• ¶ ..: Add: ‘For all a and b in A, and all m and n in N’; in (ii), replace
x 7→ xa with x 7→ xm.




