Exam 2 solutions

Math 116: Finashin, Pamuk, Pierce, Solak

Tuesday, May 3, 2011

Instructions: Please, be accurate and show clearly the logic of your solutions. Only the answers are not enough: indicate your calculations and arguments.

Problem 1. ($\mathbf{9} \mathbf{p t s)}$ Of the set $\{1,2,3,4,5,6,7,9\}$, let $\sigma \in S_{9}$ be the permutation

$$
\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 4 & 1 & 6 & 8 & 2 & 9 & 5
\end{array}\right] .
$$

(a) Write σ as a product of disjoint cycles.

Solution. $\sigma=(134)(27)(5689)$.
(b) Find σ^{100}. (Hint: find the order of σ).

Solution. The length of σ is the least common multiple of the length of the disjoint cycles. Hence $|\sigma|=\operatorname{lcm}(3,2,4)=12$. Thus

$$
\sigma^{100}=\sigma^{96} \sigma^{4}=\sigma^{4}=(134)
$$

(c) Determine whether permutation σ is even or odd.

Solution. Since we can write $\sigma=(14)(13)(27)(59)(58)(56)$ as a product of even number of transpositions, σ is an even permutation.

Problem 2. (6 pts) Consider transpositions $\alpha=(12), \beta=(23), \gamma=(34)$ in S_{4}.
(a) Find the product $\alpha \beta \gamma$.

Solution. $\alpha \beta \gamma=(12)(23)(34)=(1234)$.
(b) Find $g \in S_{4}$ such that $\beta=g \alpha g^{-1}$.

Solution. Note that g is not unique. Since $g(1)=2$ and $g(2)=3$ we may write g as

$$
g=(12)(23)=(123)
$$

Problem 3. (8 pts)

(a) Find the number of cosets for subgroups $3 \mathbb{Z} \subset \mathbb{Z}$ and $\mathbb{Z} \subset \mathbb{Q}$. In the first case, give an explicit list of these cosets.

Solution. The cosets of $3 \mathbb{Z}$ in \mathbb{Z} are $3 \mathbb{Z}, 1+3 \mathbb{Z}$, and $2+3 \mathbb{Z}$: there are three of them.
\mathbb{Z} has infinitely many cosets in \mathbb{Q} [since if a and b are distinct elements of \mathbb{Q} between 0 and 1 , then $a+\mathbb{Z}$ and $b+\mathbb{Z}$ are distinct cosets].
(b) Find the group multiplication table of $\mathbb{Z} / 3 \mathbb{Z}$ (pay attention that the group operation is addition).

Solution.

	$3 \mathbb{Z}$	$1+3 \mathbb{Z}$	$2+3 \mathbb{Z}$
$3 \mathbb{Z}$	$3 \mathbb{Z}$	$1+3 \mathbb{Z}$	$2+3 \mathbb{Z}$
$1+3 \mathbb{Z}$	$1+3 \mathbb{Z}$	$2+3 \mathbb{Z}$	$3 \mathbb{Z}$
$2+3 \mathbb{Z}$	$2+3 \mathbb{Z}$	$3 \mathbb{Z}$	$1+3 \mathbb{Z}$

(c) Prove that every element of \mathbb{Q} / \mathbb{Z} has finite order.

Solution. Every element of \mathbb{Q} / \mathbb{Z} is $k / n+\mathbb{Z}$ for some k and n in \mathbb{Z} such that $n>0$. Then $n(k / n+\mathbb{Z})=k+\mathbb{Z}=\mathbb{Z}$, the identity in \mathbb{Q} / Z. Thus the order of $k / n+\mathbb{Z}$ is less than or equal to n : in particular, it is finite.

Problem 4. ($7 \mathbf{p t s}$) Assume that G is a group of prime order p.
(a) What can be the order of an element $g \in G$? (Explain!)

Solution. By the Lagrange Theorem, the order of an element divides the order of a group. In particular, the order of an element of G divides p; so the order is 0 or 1.
(b) Prove that G is a cyclic group.

Solution. The only element of G of order 1 is the identity, e. If $a \in G \backslash\{e\}$, then the order of a is p, by part (a). So the cyclic subgroup $\langle a\rangle$ of G has the same order as G itself; so that cyclic subgroup is G.

Problem 5. (10 pts) Suppose that H and N are subgroups of a group G. Assume that subgroup N is normal, and let $K=H \cap N$.
(a) Prove that K is a normal subgroup of H.

Solution. Since H, N are subgroups of G then $e \in H$ and $e \in N$, so $e \in H \cap N=K$ i.e. K is non-empty. Let $a, b \in K$ consider $a b^{-1}$, since $a, b \in H$ and $a, b \in N$ and they are subgroups of G then $a b^{-1} \in H$ and $a b^{-1} \in N$, so $a b^{-1} \in K$. Therefore, K is a subgroup of H.
Let $h \in H$ and $a \in K$, then $a \in H$ and $a \in N$, so $h a h^{-1} \in H$ and since N is normal $h a h^{-1}=n$ for some $n \in N$ which means $h a h^{-1} \in N$, therefore $h a h^{-1} \in H \cap N=K$. Hence, K is a normal subgroup of H.(OR: $h a=b h$ for some $b \in N$ since N is normal, but $b=h a h^{-1}$ which is in H as well, so $b \in K$, hence $h K=K h$ for all $h \in H$.)
(b) Let $A=\{x \in G: x K=K x\}$. Prove that $H \subseteq A$.

Solution. By part (a) K is normal in H, so we know that $h K=K h$ for all $h \in H$, but then $h \in A$ for all $h \in H$. Hence $H \subseteq A$.
(c) Prove that A is a subgroup of G.

Solution. (i) Since $e K=K=K e$, we have $e \in A$.
(ii) If $x \in A$, so that $x K=K x$, then $K=x^{-1} x K=x^{-1} K x$, so $K x^{-1}=$ $x^{-1} K x x^{-1}=x^{-1} K$, and so $x^{-1} \in A$.
(iii) If $x, y \in A$, then $x K=K x$ and $y K=K y$, so $x y K=x K y=K x y$, hence $x y \in A$.

Problem 6. (5 pts) Let H and K be normal subgroups of G such that G / H has order 5, and G / K has order 3. Prove that for any $g \in G, g^{15} \in K \cap H$.

Solution. Let $g \in G$, consider the element $g H \in G / H$. Since G / H has order 5 then by Lagrange Thm. $o(g H) \mid 5$ by problem $4($ a) $o(g H)=5$ or $o(g H)=1$.
If $o(g H)=1$ then $g H=e H=H \Rightarrow g \in H \Rightarrow g^{5} \in H$. If $o(g H)=5$ then since H is a normal subgroup of G

$$
e H=(g H)^{5}=g H g H g H g H g H=g H g H g H g g H=\cdots=g^{5} H
$$

which means $g^{5} \in H$.
Similarly, $o(g K) \mid 3$ then $o(g K)=3$ or $o(g K)=1$. If $o(g K)=1$ then $g^{3} \in K$. If $o(g K)=3$ then since K is a normal subgroup of $G e K=(g K)^{3}=g^{3} K$ which means $g^{3} \in K$.

Now, since $g^{1} 5=\left(g^{5}\right)^{3} \in H$ and $g^{1} 5=\left(g^{3}\right)^{5} \in K$ then $g^{1} 5 \in K \cap H$.

Problem 7. (6 pts) Consider subsets $4 \mathbb{Z} \subset \mathbb{Z},\{0\} \subset \mathbb{Z}, \varnothing \subset \mathbb{Z}, \mathbb{Z} \subset \mathbb{Q},(0, \infty) \subset \mathbb{R}$, $\{[0],[1],[2],[4]\} \subset \mathbb{Z}_{6}, M_{2}(\mathbb{Z}) \subset M_{2}(\mathbb{R})$.
(a) Which of the above examples are NOT subrings? Why they are not subrings ?

Solution. $\varnothing \subset \mathbb{Z}$, because a subring should be non-empty,
$(0, \infty) \subset \mathbb{R}$, because for number $x \in(0, \infty)$ its opposite, $-x$, does not belong to $(0, \infty)$,
$\{[0],[1],[2],[4]\} \subset \mathbb{Z}_{6}$, because $[1]+[2]=[3] \notin\{[0],[1],[2],[4]\}$.
(b) Which ones are NOT ideals? Why not?

Solution. An ideal is a subring, thus, the three examples in part (a) which are not rings are also not ideals. There are two more examples:
$\mathbb{Z} \subset \mathbb{Q}$ (the product of a rational and an integers may be NOT an integer), and
$M_{2}(\mathbb{Z}) \subset M_{2}(\mathbb{R})$ (the product of an integer matrix with a real matrix may be NOT an integer matrix).
(So, the only examples of ideals here are $4 \mathbb{Z} \subset \mathbb{Z}$, and $\{0\} \subset \mathbb{Z}$.)
Problem 8. ($9 \mathbf{p t s}$) In each of the following two subrings of \mathbb{Z}_{12}, find a unity or show that there is no unity (multiplicative identity).
(a) $2 \mathbb{Z}_{12}=\{[0],[2],[4],[6],[8],[10]\}$

Solution. If $[2 n]$ is the unity, then $[2][2 n]=[2]$, that is $4 n=2 \bmod 12$. But $4 n-2$ is not divisible by 4 , and thus, by 12 . So, there is no unity in $2 \mathbb{Z}_{12}$.
(b) $3 \mathbb{Z}_{12}=\{[0],[3],[6],[9]\}$

Solution. [9] is the unity in $2 \mathbb{Z}_{12}$, because $[9][0]=[0],[9][3]=[27]=[3],[9][6]=$ $[54]=[6],[9][9]=[81]=[9]$.
(c) Find all the zero divisors in the $\operatorname{ring} \mathbb{Z}_{12}$.

Solution. The zero divisors are $[2],[3],[4],[6],[8],[9],[10]$, because in \mathbb{Z}_{12}, we have $[2][6]=[3][4]=[8][9]=[10][6]=[0]$.

