Exam 2 solutions

Math 116: Finashin, Pamuk, Pierce, Solak

Tuesday, May 3, 2011

Instructions: Please, be accurate and show clearly the logic of your solutions. Only the answers are not enough: indicate your calculations and arguments.

Problem 1. (9 pts) Of the set $\{1, 2, 3, 4, 5, 6, 7, 9\}$, let $\sigma \in S_9$ be the permutation

[1	2	3	4	5	6	7	8	9]	
3	7	4	1	6	8	2	9	5	•

(a) Write σ as a product of disjoint cycles.

Solution. $\sigma = (134)(27)(5689).$

(b) Find σ^{100} . (Hint: find the order of σ).

Solution. The length of σ is the least common multiple of the length of the disjoint cycles. Hence $|\sigma| = \text{lcm}(3, 2, 4) = 12$. Thus

$$\sigma^{100} = \sigma^{96} \sigma^4 = \sigma^4 = (134).$$

(c) Determine whether permutation σ is even or odd.

Solution. Since we can write $\sigma = (14)(13)(27)(59)(58)(56)$ as a product of even number of transpositions, σ is an even permutation.

Problem 2. (6 pts) Consider transpositions $\alpha = (12), \beta = (23), \gamma = (34)$ in S_4 .

(a) Find the product $\alpha\beta\gamma$.

.

Solution. $\alpha\beta\gamma = (12)(23)(34) = (1234).$

(b) Find $g \in S_4$ such that $\beta = g\alpha g^{-1}$.

Solution. Note that g is not unique. Since g(1) = 2 and g(2) = 3 we may write g as

$$g = (12)(23) = (123)$$

Problem 3. (8 pts)

(a) Find the number of cosets for subgroups $3\mathbb{Z} \subset \mathbb{Z}$ and $\mathbb{Z} \subset \mathbb{Q}$. In the first case, give an explicit list of these cosets.

Solution. The cosets of $3\mathbb{Z}$ in \mathbb{Z} are $3\mathbb{Z}$, $1 + 3\mathbb{Z}$, and $2 + 3\mathbb{Z}$: there are three of them.

 \mathbb{Z} has infinitely many cosets in \mathbb{Q} [since if a and b are distinct elements of \mathbb{Q} between 0 and 1, then $a + \mathbb{Z}$ and $b + \mathbb{Z}$ are distinct cosets].

(b) Find the group multiplication table of Z/3Z (pay attention that the group operation is addition).

Solution.		$3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
	$3\mathbb{Z}$	$3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
	$1+3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$	$3\mathbb{Z}$
	$2+3\mathbb{Z}$	$2+3\mathbb{Z}$	$3\mathbb{Z}$	$1+3\mathbb{Z}$

(c) Prove that every element of \mathbb{Q}/\mathbb{Z} has finite order.

Solution. Every element of \mathbb{Q}/\mathbb{Z} is $k/n+\mathbb{Z}$ for some k and n in \mathbb{Z} such that n > 0. Then $n(k/n + \mathbb{Z}) = k + \mathbb{Z} = \mathbb{Z}$, the identity in \mathbb{Q}/\mathbb{Z} . Thus the order of $k/n + \mathbb{Z}$ is less than or equal to n: in particular, it is finite.

Problem 4. (7 pts) Assume that G is a group of prime order p.

(a) What can be the order of an element $g \in G$? (Explain !)

Solution. By the Lagrange Theorem, the order of an element divides the order of a group. In particular, the order of an element of G divides p; so the order is 0 or 1.

(b) Prove that G is a cyclic group.

Solution. The only element of G of order 1 is the identity, e. If $a \in G \setminus \{e\}$, then the order of a is p, by part (a). So the cyclic subgroup $\langle a \rangle$ of G has the same order as G itself; so that cyclic subgroup is G.

Problem 5. (10 pts) Suppose that H and N are subgroups of a group G. Assume that subgroup N is normal, and let $K = H \cap N$.

(a) Prove that K is a normal subgroup of H.

Solution. Since H, N are subgroups of G then $e \in H$ and $e \in N$, so $e \in H \cap N = K$ i.e. K is non-empty. Let $a, b \in K$ consider ab^{-1} , since $a, b \in H$ and $a, b \in N$ and they are subgroups of G then $ab^{-1} \in H$ and $ab^{-1} \in N$, so $ab^{-1} \in K$. Therefore, K is a subgroup of H.

Let $h \in H$ and $a \in K$, then $a \in H$ and $a \in N$, so $hah^{-1} \in H$ and since N is normal $hah^{-1} = n$ for some $n \in N$ which means $hah^{-1} \in N$, therefore $hah^{-1} \in H \cap N = K$. Hence, K is a normal subgroup of H.(OR: ha = bh for some $b \in N$ since N is normal, but $b = hah^{-1}$ which is in H as well, so $b \in K$, hence hK = Kh for all $h \in H.$)

(b) Let $A = \{x \in G : xK = Kx\}$. Prove that $H \subseteq A$.

Solution. By part (a) K is normal in H, so we know that hK = Kh for all $h \in H$, but then $h \in A$ for all $h \in H$. Hence $H \subseteq A$.

(c) Prove that A is a subgroup of G.

Solution. (i) Since eK = K = Ke, we have $e \in A$.

- (ii) If $x \in A$, so that xK = Kx, then $K = x^{-1}xK = x^{-1}Kx$, so $Kx^{-1} = x^{-1}Kxx^{-1} = x^{-1}K$, and so $x^{-1} \in A$.
- (iii) If $x, y \in A$, then xK = Kx and yK = Ky, so xyK = xKy = Kxy, hence $xy \in A$.

Problem 6. (5 pts) Let H and K be normal subgroups of G such that G/H has order 5, and G/K has order 3. Prove that for any $g \in G$, $g^{15} \in K \cap H$.

Solution. Let $g \in G$, consider the element $gH \in G/H$. Since G/H has order 5 then by Lagrange Thm. $o(gH)|_5$ by problem 4(a) o(gH) = 5 or o(gH) = 1. If o(gH) = 1 then $gH = eH = H \Rightarrow g \in H \Rightarrow g^5 \in H$. If o(gH) = 5 then since H is a normal subgroup of G

$$eH = (gH)^5 = gHgHgHgHgH = gHgHgHggH = \dots = g^5H$$

which means $g^5 \in H$.

Similarly, o(gK)|3 then o(gK) = 3 or o(gK) = 1. If o(gK) = 1 then $g^3 \in K$. If o(gK) = 3 then since K is a normal subgroup of $G \ eK = (gK)^3 = g^3K$ which means $g^3 \in K$.

Now, since $g^{1}5 = (g^{5})^{3} \in H$ and $g^{1}5 = (g^{3})^{5} \in K$ then $g^{1}5 \in K \cap H$.

Problem 7. (6 pts) Consider subsets $4\mathbb{Z} \subset \mathbb{Z}$, $\{0\} \subset \mathbb{Z}$, $\emptyset \subset \mathbb{Z}$, $\mathbb{Z} \subset \mathbb{Q}$, $(0,\infty) \subset \mathbb{R}$, $\{[0], [1], [2], [4]\} \subset \mathbb{Z}_6$, $M_2(\mathbb{Z}) \subset M_2(\mathbb{R})$.

(a) Which of the above examples are NOT subrings? Why they are not subrings?

Solution. $\emptyset \subset \mathbb{Z}$, because a subring should be non-empty,

 $(0,\infty) \subset \mathbb{R}$, because for number $x \in (0,\infty)$ its opposite, -x, does not belong to $(0,\infty)$,

 $\{[0], [1], [2], [4]\} \subset \mathbb{Z}_6$, because $[1] + [2] = [3] \notin \{[0], [1], [2], [4]\}$.

(b) Which ones are NOT ideals? Why not ?

Solution. An ideal is a subring, thus, the three examples in part (a) which are not rings are also not ideals. There are two more examples:

 $\mathbb{Z} \subset \mathbb{Q}$ (the product of a rational and an integers may be NOT an integer), and

 $M_2(\mathbb{Z}) \subset M_2(\mathbb{R})$ (the product of an integer matrix with a real matrix may be NOT an integer matrix).

(So, the only examples of ideals here are $4\mathbb{Z} \subset \mathbb{Z}$, and $\{0\} \subset \mathbb{Z}$.)

Problem 8. (9 pts) In each of the following two subrings of \mathbb{Z}_{12} , find a unity or show that there is no unity (multiplicative identity).

(a) $2\mathbb{Z}_{12} = \{[0], [2], [4], [6], [8], [10]\}$

Solution. If [2n] is the unity, then [2][2n] = [2], that is $4n = 2 \mod 12$. But 4n - 2 is not divisible by 4, and thus, by 12. So, there is no unity in $2\mathbb{Z}_{12}$.

(b) $3\mathbb{Z}_{12} = \{[0], [3], [6], [9]\}$

Solution. [9] is the unity in $2\mathbb{Z}_{12}$, because [9][0] = [0], [9][3] = [27] = [3], [9][6] = [54] = [6], [9][9] = [81] = [9].

(c) Find all the zero divisors in the ring \mathbb{Z}_{12} .

Solution. The zero divisors are [2], [3], [4], [6], [8], [9], [10], because in \mathbb{Z}_{12} , we have [2][6] = [3][4] = [8][9] = [10][6] = [0].