
Exam 1 solutions

Math 116: Finashin, Pamuk, Pierce, Solak

Thursday, April 7, 2011

Problem 1. (15 pts)

(a) Find the greatest common divisor d of 453 and 213. Present d in the
form d = 453x+ 213y.

(b) If there is one, find a solution to 213x ≡ 12 (mod 453).

(c) Find the least positive integer in {4530x+ 2139y : x, y ∈ Z}.

Solution. (a) First apply the Euclidean algorithm:

453 = 213 · 2 + 27,
213 = 27 · 7 + 24,
27 = 24 · 1 + 3,
24 = 3 · 8.

So gcd(453, 213) = 3. Also we compute

3 = 27− 24
= 27− (213− 27 · 7)
= 27 · 8− 213
= (453− 213 · 2) · 8− 213
= 453 · 8− 213 · 17.

(b) By (a), we have 3 ≡ 213 · −17 (mod 453), so

213x ≡ 12 ⇐⇒ 213x ≡ 4 · 3 ≡ 213 · −68.

Therefore the congruence is solved when x ≡ −68 ≡ 385 (mod 453).

(c) 4530x+ 2130y = 10(453x+ 213y), so the least positive integer in the
given set is 10 · 3, or 30 .

Remark. 1. There is a reason why the three parts of this problem are
together. One application of the Euclidean algorithm is enough to give the
answers of all three parts. (Some people used the algorithm two or three
times; this was unnecessary.)
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2. The second half of part (a) does not ask you to write “3 = 453x+213y”
and then stop; it asks for a solution to this equation.

3. In part (b), one may observe that 3 divides each of 213, 12, and 453,
so that

213x ≡ 12 (mod 453) ⇐⇒ 71x ≡ 4 (mod 151).

From part (a) we have 1 = 151 · 8 + 71 · −17, so the congruence is solved by

x ≡ 4 · −17 ≡ −68 ≡ 83 (mod 151),
x ≡ 83, 234, 385 (mod 453).

This is the complete solution, but it was not required to find this: the
problem asked just for one solution.

4. In part (c), some people seemed to confuse the least positive integer
in the given set with the least common multiple of 4530 and 2130.

5. Part (c) does not ask for the values of x and y such that 4530x +
2130y is minimized among positive integers; it asks for the minimum possible
positive value of this expression.

Problem 2. (8pts) Let G be the set of even integers and ∗ be the binary
operation on G defined by x ∗ y = x+ y + 4. Determine whether (G, ∗) is a
group or not. Prove your claim.

Solution. Since x, y, are 4 are even, their sum is also even; so G is closed
under ∗. To simplify some computations, we may note also that, since + is
commutative, so is ∗. Let us check for an identity. We claim that −4 is an
identity with respect to ∗. Indeed,

x ∗ (−4) = x− 4 + 4 = x

(and therefore also (−4) ∗ x = x, by commutativity of ∗). So −4 is an
identity. Considering

x ∗ (y ∗ z) = x ∗ (y + z + 4)
= x+ (y + z + 4) + 4
= (x+ y + 4) + z + 4
= (x+ y + 4) ∗ z
= (x ∗ y) ∗ z,

we have that ∗ is associative. Now check for inverses. We claim that −x− 8
is the inverse of x with respect to ∗. We have

x ∗ (−x− 8) = x− x− 8 + 4 = −4

(hence also (−x− 8) ∗ x = −4). Therefore (G, ∗) is a group.
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Problem 3. (7pts) Let a∗ b = a+ b+ 3ab , does ∗ define a binary operation
on the set Q+ of positive rationals ? Is ∗ associative? Explain.

Solution. Since the sum and product of two positive rationals is again a
positive rational, Q+ is closed under ∗. Therefore ∗ is a binary operation on
Q+.

For the associativity, we have

a ∗ (b ∗ c) = a ∗ (b+ c+ 3bc)
= a+ (b+ c+ 3bc) + 3a(b+ c+ 3bc)
= a+ b+ c+ 3bc+ 3ab+ 3ac+ 9abc.

while

(a ∗ b) ∗ c = (a+ b+ 3ab) ∗ c
= (a+ b+ 3ab) + c+ 3(a+ b+ 3ab)c
= a+ b+ 3ab+ c+ 3ac+ 3bc+ 9abc.

So we see that a ∗ (b ∗ c) = (a ∗ b) ∗ c. Hence ∗ is an associative binary
operation on Q+.

Problem 4. (15pts) Let G be the group (Z28,+).

(a) Find all generators of G.

(b) List all the subgroups of G. For each subgroup, different from G, write
down all its elements.

Solution. (a) When 0 ≤ k < 28, we have k = 1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27
if and only if gcd(k, 28) = 1. Therefore the generators of G are [1], [3],
[5], [9], [11], [13], [15], [17], [19], [23], [25], [27].

(b) The subgroups of G are 〈[d]〉, where d | 28; so they are

〈[1]〉, 〈[2]〉, 〈[4]〉, 〈[7]〉, 〈[14]〉, 〈[28]〉.

Moreover,

〈[1]〉 = Z28

〈[2]〉 = {[2], [4], [6], [8], [10], [12], [14], [16], [18], [20], [22], [24], [26], [0]}
〈[4]〉 = {[4], [8], [12], [16], [20], [24], [0]}
〈[7]〉 = {[0], [7], [14], [21]}
〈[14]〉 = {[14], [0]}
〈[28]〉 = 〈[0]〉 = {[0]}
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Problem 5. (5pts) Let G be an abelian group and H = {g ∈ G|g2 = e},
where e is the identity element of G. Show that H is a subgroup of G.

Solution. Since e2 = ee = e, we have e ∈ H: the identity is in H.
Let a, b ∈ H, so that a2 = e and b2 = e. To show that H is closed under

multiplication, consider (ab)2. Since G is abelian, we have

(ab)2 = abab = aabb = a2b2 = ee = e,

so ab ∈ H. Thus H is closed.
Let a ∈ H, so that a2 = e, and let a−1 be the inverse of a. Consider

a−1a−1 = (a−1)2 = (a2)−1 = e−1 = e,

so a−1 ∈ H.
Therefore, H is a subgroup of G.

Problem 6. (10pts)

(a) Let G be a group. For a ∈ G, define a mapping ta : G −→ G by
ta(x) = axa−1 for all x ∈ G. Prove that ta is an isomorphism.

(b) i)Prove that Z2 is not isomorphic to Z3.
ii) Prove that Z6 is not isomorphic to S3, where S3 is the group of
permutations on the set {1, 2, 3}.

Solution. (a) If x, y ∈ G, then

ta(xy) = axya−1 = axa−1aya−1 = ta(x) · ta(y).

So, ta is a homomorphism. Now let x, y ∈ G and ta(x) = ta(y). Then
axa−1 = aya−1. Since G is a group, it allows left and right cancellation.
Therefore x = y. So, ta is one-to-one. Finally, let x ∈ G. We shall show
that there is y in G such that ta(y) = x. Let y = a−1xa. Then

ta(y) = ta(a−1xa) = aa−1xaa−1 = x.

So, ta(x) is onto. Hence, ta(x) is an isomorphism.
(b) i) Since their orders are different, |Z2| = 2 6= 3 = |Z3|, we cannot
find a bijection between the sets, so the groups cannot be isomorphic.

ii) Z6 is an abelian group, but S3 is not. Under an isomorphism being
abelian must be preserved: φ(xy) = φ(yx) since xy = yx, so

φ(x) · φ(y) = φ(xy) = φ(yx) = φ(y) · φ(x).

Remark. In the last part, it would be acceptable to note that Z6 is cyclic,
but S3 is not.

4


