Alıştırmalar II

1. Let $T: \mathbb{R}[x]_{2} \rightarrow \mathbb{R}^{2 \times 2}$ be the linear transformation defined by

$$
T(p(x))=\left(\begin{array}{cc}
p(2)-p(1)-p(0) & 0 \\
p(1)-p(2) & p(0)
\end{array}\right)
$$

for $p(x) \in \mathbb{R}[x]_{2}$.
(a) Find a basis for $\operatorname{Ker}(T)$.
(b) Find a basis for $\operatorname{Im}(T)$. Justify.
2. Let U and W be subspaces of \mathbb{R}^{5} such that

$$
U=\langle(1,1,0,1,1),(0,2,2,0,0),(1,-1,-3,1,1),(1,1,1,1,1)\rangle
$$

and

$$
W=(-1,1,2,-1,-1),(2,0,-2,2,2),(1,1,0,0,0)\rangle .
$$

(a) Find a basis for $U+W$.
(b) Find the dimension of $U \cap W$. Justify your steps.
(c) Find a basis for $U /\langle(1,-1,-3,1,1),(1,1,1,1,1)\rangle$.
3. Let $\varphi: V \rightarrow W$ be linear. Prove that for every $w \in W, \varphi^{-1}[w]$ has 0,1 or infinitely many elements. Illustrate each case by an example.
4. Show that there is no linear transformation $\varphi: V \rightarrow W$ such that $\varphi^{-1}\left[v_{1}\right]$ has one element and $\varphi^{-1}\left[v_{2}\right]$ has infinitely many elements, for some $v_{1}, v_{2} \in V$.
5. Let $T: V \rightarrow V$ be linear, U a subspace of V such that $T(U) \subseteq U$ and $V=U \oplus \operatorname{Im}(T)$. Then
(a) Show that $U \subseteq \operatorname{Ker}(T)$.
(b) Conclude that $\operatorname{Ker}(T)=U$.
(c) Give an example of such a transformation T.
6. State whether the following statements are true or false. If true, give a brief proof; if false, write a counter-example. Below V and W are finite-dimensional vector spaces over \mathbb{R}.
(a) If $V=A \oplus B=A \oplus C$ for some subspaces A, B, C of V, then $B=C$.
(b) There exits a linear transformation $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\operatorname{Ker}(\alpha)=\operatorname{Im}(\alpha)$.
(c) There exits a linear transformation $\beta: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{Ker}(\beta)=\operatorname{Im}(\beta)$.
(d) If two linear transformations $V \rightarrow W$ have the same kernel and image, then they are identical on V.
(e) If two linear transformations $V \rightarrow W$ agree on a basis of V, then they are identical on V.
(f) There exist infinitely many distinct isomorphisms from $\mathbb{R}[x]_{261}$ onto \mathbb{R}^{262}.
(g) If $|S|=\operatorname{dim} V$, then S is linearly independent iff S spans V.
(h) Let \mathbf{v} and \mathbf{w} be two linearly independent column vectors (matrices) in $\mathbb{R}^{2 \times 1}$, and let A be an invertible 2×2 matrix. Then the vectors $A \mathbf{v}$ and $A \mathbf{w}$ are linearly independent.
(i) If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for V, and $w=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}$. Then

$$
\left\{v_{1}, v_{2}, \cdots, v_{k-1}, w, v_{k+1}, \cdots, v_{n}\right\}
$$

is a basis for V iff $a_{k} \neq 0$
(j) If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for V, then $\left\{v_{1}+v_{2}, v_{2}+v_{3}, \cdots, v_{n-1}+v_{n}, v_{n}-v_{1}\right\}$ is a basis for V, for all $n \geqslant 2$.
(k) If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for V, then $\left\{v_{1}+v_{2}, v_{2}+v_{3}, \cdots, v_{n-1}+v_{n}, v_{n}+v_{1}\right\}$ is a basis for V, for all $n \geqslant 2$.
(l) If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ generates V then each $v \in V$ is a unique linear combination of the vectors in this set.
(m) Any subset of $V=\mathbb{R}[x]_{n}$ which has exactly $n+1$ polynomials of different degrees is a basis of V.
(n) If a vector $v \in \mathbb{R}^{n}$ has no zero entires in its coordinate matrix with respect to the standard basis of \mathbb{R}^{n}, then v has no zero entires in its coordinate matrix with respect to any basis of \mathbb{R}^{n}.
(o) If $\operatorname{dim}(V)<\operatorname{dim}(W)$, then there is no surjective linear transformation from V into W.

