MAT482: Cebirde Seçme Konular II Hazırlayan: Ayşe Berkman

Alıştırmalar II

1. Let $T: \mathbb{R}[x]_2 \to \mathbb{R}^{2 \times 2}$ be the linear transformation defined by

$$T(p(x)) = \begin{pmatrix} p(2) - p(1) - p(0) & 0\\ p(1) - p(2) & p(0) \end{pmatrix}$$

for $p(x) \in \mathbb{R}[x]_2$.

(a) Find a basis for Ker(T).

- (b) Find a basis for Im(T). Justify.
- 2. Let U and W be subspaces of \mathbb{R}^5 such that

$$U = \langle (1, 1, 0, 1, 1), (0, 2, 2, 0, 0), (1, -1, -3, 1, 1), (1, 1, 1, 1, 1) \rangle$$

and

$$W = (-1, 1, 2, -1, -1), (2, 0, -2, 2, 2), (1, 1, 0, 0, 0) \rangle.$$

- (a) Find a basis for U + W.
- (b) Find the dimension of $U \cap W$. Justify your steps.
- (c) Find a basis for $U/\langle (1, -1, -3, 1, 1), (1, 1, 1, 1, 1) \rangle$.
- 3. Let $\varphi: V \to W$ be linear. Prove that for every $w \in W$, $\varphi^{-1}[w]$ has 0, 1 or infinitely many elements. Illustrate each case by an example.
- 4. Show that there is no linear transformation $\varphi : V \to W$ such that $\varphi^{-1}[v_1]$ has one element and $\varphi^{-1}[v_2]$ has infinitely many elements, for some $v_1, v_2 \in V$.
- 5. Let $T: V \to V$ be linear, U a subspace of V such that $T(U) \subseteq U$ and $V = U \oplus \text{Im}(T)$. Then
 - (a) Show that $U \subseteq \text{Ker}(T)$.
 - (b) Conclude that $\operatorname{Ker}(T) = U$.
 - (c) Give an example of such a transformation T.
- 6. State whether the following statements are **true or false**. If true, give a brief proof; if false, write a counter-example. Below V and W are finite-dimensional vector spaces over \mathbb{R} .
 - (a) If $V = A \oplus B = A \oplus C$ for some subspaces A, B, C of V, then B = C.
 - (b) There exits a linear transformation $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\operatorname{Ker}(\alpha) = \operatorname{Im}(\alpha)$.
 - (c) There exits a linear transformation $\beta : \mathbb{R}^3 \to \mathbb{R}^3$ such that $\operatorname{Ker}(\beta) = \operatorname{Im}(\beta)$.

- (d) If two linear transformations $V \to W$ have the same kernel and image, then they are identical on V.
- (e) If two linear transformations $V \to W$ agree on a basis of V, then they are identical on V.
- (f) There exist infinitely many distinct isomorphisms from $\mathbb{R}[x]_{261}$ onto \mathbb{R}^{262} .
- (g) If $|S| = \dim V$, then S is linearly independent iff S spans V.
- (h) Let \mathbf{v} and \mathbf{w} be two linearly independent column vectors (matrices) in $\mathbb{R}^{2\times 1}$, and let A be an invertible 2×2 matrix. Then the vectors $A\mathbf{v}$ and $A\mathbf{w}$ are linearly independent.
- (i) If $\{v_1, v_2, \dots, v_n\}$ is a basis for V, and $w = a_1v_1 + a_2v_2 + \dots + a_kv_k$. Then

$$\{v_1, v_2, \cdots, v_{k-1}, w, v_{k+1}, \cdots, v_n\}$$

is a basis for V iff $a_k \neq 0$

- (j) If $\{v_1, v_2, \dots, v_n\}$ is a basis for V, then $\{v_1 + v_2, v_2 + v_3, \dots, v_{n-1} + v_n, v_n v_1\}$ is a basis for V, for all $n \ge 2$.
- (k) If $\{v_1, v_2, \dots, v_n\}$ is a basis for V, then $\{v_1 + v_2, v_2 + v_3, \dots, v_{n-1} + v_n, v_n + v_1\}$ is a basis for V, for all $n \ge 2$.
- (l) If $\{v_1, v_2, \dots, v_n\}$ generates V then each $v \in V$ is a unique linear combination of the vectors in this set.
- (m) Any subset of $V = \mathbb{R}[x]_n$ which has exactly n+1 polynomials of different degrees is a basis of V.
- (n) If a vector $v \in \mathbb{R}^n$ has no zero entires in its coordinate matrix with respect to the standard basis of \mathbb{R}^n , then v has no zero entires in its coordinate matrix with respect to any basis of \mathbb{R}^n .
- (o) If $\dim(V) < \dim(W)$, then there is no surjective linear transformation from V into W.