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Affine plane curves

k a perfect field (e.g. Q,R,C,F,...)

k a fixed algebraic closure of k

Let (X, Y) € k[X, Y].

The affine plane curve defined by (X, Y):

Cr:={(x,y) € k x k|f(x,y) =0}

Cr is defined over k.
The set of k-rational points of Cy:

Cf(k) = {(Xay) € k x k‘f(X,y) :0}



An example

FX,Y)=Y2-X-(X—=1)-(X+1).

Cr(R)



Curves in n-space

Can generalize this to curves in higher dimensional space: C C k"
fi,fo, ... foo1 € k[ X1, X, ..., Xa).
Affine curve:

C:={(a1,...,an) € k"|fi(a1,...,an) =0 for i=1,2,...n—1}
The set of k-rational points of C:

C(k) :={(a1,...,an) € k"|fi(a1,...,an) =0 for i=1,2,...n—1}



From now on we assume that C is a
e absolutely irreducible

e smooth

e projective

curve defined over k.




The genus

Invariant
g(C) : a nonnegative integer

C is a line/conic — genus 0

C is an elliptic curve — genus 1

e
6




Curves over Finite Fields

From now on k = [,
C/Fy — C CF," for some n € N

C(Fq) C Fy

So
#C(Fy) is finite

#C(Fq) =7



The Hasse—Weil bound

C — (¢ Zeta function of C
Theorem (Hasse-Weil)
The Riemann hypothesis holds for (.

Corollary (Hasse—Weil bound)
Let C/F be a curve of genus g(C). Then

#C(Fq) < q+1+2,7-g(C).



How good is the Hasse—Weil bound?

Various improvements, but:

If the genus g(C) is small (with respect to g) — Hasse—Weéil
bound is good.

It can be attained, maximal curves, for example over Iqu

yq +y= Xqul‘

Ihara, Manin: The Hasse-Weil bound can be improved if g(C)
is large (with respect to q).



lhara's constant

lhara:

. #C(Fq)
A(q) = |
@)= 162 &)

C runs over all absolutely irreducible, smooth, projective curves
over [F.
Hasse-Weil bound — A(q) <2,/q
Ihara = A(q)
Drinfeld—Vladut = A(q)
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Lower bounds for A(q)

Serre (using class field towers):
A(q) >0
Ihara (modular curves):
If g = ¢? then
Alg)>Vq-1=(-1
In fact A(£%2) =/¢—1.

Zink (Shimura surfaces):
If g = p3, p a prime number, then

2(p* — 1)
p+2

(generalized by Bezerra—Garcia—Stichtenoth to all cubic finite
fields)

A(p*) >



How to obtain lower bounds for A(q)?

Find sequences C;/FF, such that g(C;) — oo and

. #Ci(Fq)
A, g(Ci)

is large.

Many ways to construct good sequences:

e Modular curves (Elliptic, Shimura, Drinfeld) (over [F )
e Class field towers (over prime fields)

e Explicit equations (recursively defined)



Recursively defined towers
fl, f‘é, A fn—l € IFq[Xl,XQ, A ,Xn]

C:={(a1,...,an) € Fy"|fi(a1,...,an) =0 for i=1,2,...n—1}

Recursively defined tower:
Fix F(U, V) e F4[U, V].

Define
fi = F(X1,X2)
fo = F(X2,X3)
fam1 = F(Xn—bXn)
Ch={(a1,...,an) €F|Ai=h=--=Ff_1=0}

F = (Cn)n>1 tower recursively defined by F.



Recursively defined by f(U, V) € Fq[U, V]

Cs = {(a1, a2, a3,a4)|F (a1, a2) = F(az,a3) = F(a3,as) =0} C F,

i -3

G = {(a1, a2,a3)|F(a1,a2) =0, F(az,a3) =0} C Fq

|

Co = {(a1, a2)|F (a1, a2) = 0} C F,°



Limit of a tower

Limit of the tower F = (Cp)n>1 over Iy

i #Co(F)

exists

<Alg) <vq-1

A(F) = 0 — asymptotically bad
A(F) > 0 — asymptotically good



Example

Garcia—Stichtenoth, 1996, Norm-Trace tower F;
q=10

p Ué+1
Vig v =
Ry
AMF1)=vaq-1

Attains the Drinfeld—Vladut bound.
Genus computation is difficult (wild ramification)
Why many rational points?



(41
g=0r Vitv= u

Ut+u
041 041 041
X X
XA Xn = o XX = o, XX =
T X+ X XX T X e X

Xi=a € Fq s.t. TrFq/FZ(al) ;ﬁ 0
(¢? — ¢ choices)

/41
Xo = ap with a + ap = 2 ¢ F,\{0}
+ a1

7
a

¢ choices with ax € Fg, Try_/r,(22) # 0)

/+1
X3 = a3 with a5 + a3 = a2+ e F,\ {0}

ag an

¢ choices with a3 € Fg, Trg_/r,(33) # 0)
------ s0 #Cn(Fq) > (02 — £)en—1



Towers over cubic finite fields

o van der Geer—-van der Vlugt, ¢ =23=8,%/F,
VP4V =U+1+1/U

Attains Zink's bound for p = 2.
o Bezerra—Garcia—Stichtenoth, q = (3, F3/F,
1-V _ U'+U+1
Ve U
Generalizes Zink's bound.
o B.—Garcia-Stichtenoth, q = (3, F4/F,

2(0%2 - 1)
NF) = =5

— -y 2(02 —1)

4 -1 —
(V' =Wl = gy



A new family of towers over all non-prime fields
B.—Beelen—Garcia—Stichtenoth
Fs over Fyn, n > 2:
Notation: Tr,(t) = t + t* + - + " Nn(t) = L

Na(V)+1  Nup(U)+1
Vﬁn71 - U .
Splitting: Np(a) = —1

MNFs) > 2

1 1
1t i

e n=2: {—1 — Drinfeld-Vladut bound
2(£2—1)

T Zink's bound

e n=23:




Fo/Fq, q=10", n=2k+1>3

Tr(V) — 1 (Tr(U) — 1)*"

(Trera (V) — 1) (Trega(U) — 1)

Ve —v o (1/U)" - (1/U)
ng - ng+1




Fo/Fq, q=1", n=2k+1

2 2001 —1
AFe) > — : _(g : )
EI:I'+'W;T:T +1+e
with
_E—l
Tk
Note:

(1> AR > 2

T
215 (23)5 (25)3
q = 2k k large,

A(Fs)

~ 94%
\/5—1



Elliptic Curves

E/k, char(k) # 2,3
E: Y2=X34+A-X+B,

where 4A3 +27B? #£ 0.



Elliptic Curves over C

A= wlZ ©® W2Z.

C/A

topologically a torus

inherits a complex structure from C.
Complex manifold — E(C)



The group law

Points in E inherit a group structure from C:

~
%




The group law

Points in E inherit a group structure from C:

identity

~
N




The group law

Points in E inherit a group structure from C:

identity

N




The group law

Points in E inherit a group structure from C:

P identity

N

P+Q+R=0




The group law

Points in E inherit a group structure from C:

P identity

N

P+Q+R=0

P+Q




Isogenies

A morphism ¢ : E; — E5, which is a group homomorphism is
called an isogeny.
Example: E elliptic curve, N € N

[N]: E — E
P - P+P+...P
——_— ———

N times

#ker(ip) is finite.
#ker(p) = N — ¢ is an N-isogeny — ker(p) C ker([N]).



Torsion

ker([N]) = {P € E|N - P =0} =: E[N] — N-torsion points
if char(k)t N E[N]|=Z/nZ x Z]/nZ
{0} — supersingular
if char(k) =p E[p] = or
Z/pZ — ordinary



Isomorphism classes of elliptic curves

C/A1 and C/A;y are isomorphic
<~

A1 and A; are homothetic, i.e. Ay = aly,a € C*.

Let
H = {7 € C|Im(T) > 0}.

Every lattice is homothetic to a lattice of the form
Ne=7Z+ 7t

with 7 € H.
When are A, and A, the same lattice?



When are A, and A the same lattice?

SL2(Z) acts on H by fractional linear transformations:

a b _ar+b
cd) T ar+xd

A: and A,/ are the same lattice

—

7 and 7’ are in the same orbit under the action of SLy(Z).



Isomorphism classes of elliptic curves

Elliptic curves / isomorphism «— lattices in C / homothety
— H/SLy(Z) — X(1)




The j-Function

There exists a holomorphic function
jiH-C,
which is invariant under SL(Z).
Jj H/SLy(Z) — C

is a bijection!



=l 0 T |

— J-line
[E] — j-invariant

Fact: E supersingular — j(E) € Fp,
where p is the characteristic.

.. j-line parametrizes isomorphism classes of Elliptic curves
— has designated [ »-rational points.



Enhanced Elliptic Curves

Elliptic curves with some additional structure

(E,C)

E: Elliptic Curve
C: cyclic subgroup of order N / N-isogeny

(E,C) ~ (E',C") isomorphism takes C — C'.

Xo(N) modular curve parametrizing (E, C).



Xo(N) A C Xo(N)(F,2)

l forget l

X(1) D supersingular C X(1)(FF,2)



(/V,'),‘zo with N,- — 00, pJ( N,-.

Cn; = (Xo(N;) (mod p))

o #Cp;(FF2) is large (supersingular points)
e g(Cp;) can be estimated

#Cn,(F2)
g(Cn;)
Elkies: Xy(¢") recursive.

’) — /p?—1=p—1 (Drinfeld-Vladut bound)



Drinfeld Modular Varieties

Coo
C K
R R
Q Fo(T)
Z Fq[T]

Z-lattices inside C — rank 1 or 2
Fg[T]-lattices inside C  — arbitrary high rank possible



Drinfeld Modular Curves

A =T,[T], P a prime of A,
Fp=A/<P>=Fu

where d = deg P.
Fg): The unique quadratic extension of Fp.
For N € Fy[T] we have

Xo(N)

an algebraic curve defined over Fy(T), Drinfeld modular curve,
parametrizing rank 2 Drinfeld modules together with an N-isogeny.
Xo(N) has good reduction at all primes P { .

Xo(N)/Fp



Many points on Drinfeld modular curves

Xo(N)/Fp has many rational points over F = F 24, where
d = deg P. Asymptotically:
Theorem (Gekeler)
P € Fy[T] prime of degree d
(Nk)k>0: sequence of polynomials in Fy[T] with
o Pt Ng
o deg Ny — o0

Then the sequence of curves
Xo(Nk)/Fp

attains the Drinfeld—Vladut bound over Iﬁ‘g) = Fpaa.



Elkies: Xo(Q") recursive.
Norm trace tower is related to (degree ¢ — 1 cover of)

Xo(T")/Fr_1



Many points over non-quadratic fields

Many points come from the supersingular points
— defined over IE‘(Pz).
In general:

Theorem (Gekeler)

Any supersingular Drinfeld module ¢ of rank r and characteristic P
is isomorphic to one defined over L, where L is an extension of Fp
of degree r.

Idea: Look at space parametrizing rank r Drinfeld modules
Problem: The corresponding space is higher dimensional

((r — 1)-dimensional), not a curve!

Idea’: Look at curves on those spaces, passing through the many
Fyr-rational points



(B.—Beelen—Garcia—Stichtenoth)

Th(V)—1  (Tn(U) = 1)*"

(T (V) = 1) (Tnga(U) — 1)
F/Fq, q=10", n=2k+1

k+1 _
2 A 1)

Alq) =2 M(F) =

gt gy T lte

with
{—1
€E = ——

tk—1°



joint work (in progress) with Beelen, Garcia, Stichtenoth
Let ¢ be a rank n Drinfeld Module of characteristic T — 1.

dr=T"+ @ "+ g+ 1
Let A : ¢ — 1 be an isogeny of the form
T—u

whose kernel is annihilated by T.
Ju=1"14 a2+ ...+ a,_17+ apn, s.t.

poA=oT



Then
Np(u)+ g1 Np—1(u) + g2 Np—o(u) + -+ -+ go—1- N1(u) +1=0

. oot pk—2 4 pk—1
Notation: Nj(x) = x1Her+677+¢



Equations for the isogenous Drinfeld module

Arp =9

1

Qf)T:Tn—I—hl'Tn_ —|—---+hn,1-7'—|—1

Isogeny: A-¢p =1 - A

V4
hp—1u” = gpn—1u

2 l
hn72ue —hp_1 = 8n—2U— 81

n—1
hu” —hy = giu— g

u’ —h=u—gf



hy kS ey
1+N,(W)|1l+ ——~+—2— 4+ -+ "= _| =0.
O F) " () (@)

g1 =8 == gn—1 = 0 — supersingular (will split).
Find curve passing through this point and invariant under g; — h;.

Considergp=---=g_1=0=>hy=---=h,_1=0



 Na(1/u)+1
O

Letting vo = 1/u



No(V)+1  Np(U)+1
V£"—1 — |

U

(O @ (=»

«E»

v




