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The setting

A continuous group automorphism T : G → G of a compact metric
abelian group is a simple example of a dynamical system in several ways:

I Haar measure m = mG is defined on the Borel σ-algebra B and is
preserved by T , so (G ,B,m,T ) is a measure-preserving dynamical
system.

I G has a metric d , and T is continuous, so (G , d ,T ) is a topological
dynamical system.

It is a special dynamical system in many ways, including:

I the algebraic structure is ‘rigid’;

I perturbation does not make sense;

I the dynamics is as homogeneous as possible (it locally looks the
same everywhere).



More generally, if Γ is a discrete group with a homomorphism to
the group of continuous automorphisms of G , then we can think of
the action of Γ as a measurable (or topological) Γ-action T denote
Tγ : G → G for each γ ∈ Γ.

Warnings: 1) These systems are very different to the systems
found in ‘homogeneous dynamics’ (rotations on quotients of Lie
groups by lattices) even in the case of a uniform lattice.

2) To avoid degeneracies, we always assume the action is ‘ergodic’
(there are no invariant L2 functions ≡ the dual automorphism is
aperiodic ≡ no iterate of T looks like the identity on part of the
space).



The general problem

Let G denote the collection of all pairs (G ,T ), with G a compact
metric abelian group and T a continuous automorphism (Z-action)
or a continuous Γ action.

Let ∼ be a dynamically meaningful notion of equivalence...

Describe the space G/∼.



Three natural equivalences

If (G1,T1) and (G2,T2) are two systems, then one notion of an
equivalence between them is a commutative diagram

G1
T1−−−−→ G1

φ

y yφ
G2 −−−−→

T2

G2

where...

φ is a continuous isomorphism of groups (algebraic isomorphism),

φ is a homeomorphism (topological conjugacy), or

φ is an almost-everywhere defined isomorphism of the measure
spaces (measurable isomorphism).

Clearly algebraic isomorphism =⇒ topological conjugacy.

Less clearly, topological conjugacy =⇒ measurable isomorphism.



Algebraic isomorphism

Part of this is not really dynamical at all: it is about classifying
compact groups up to isomorphism, and understanding conjugacy
classes in the automorphism group.

Example: Fix G = T2, the 2-torus. An automorphism corresponds
to an element of GL2(Z). Now A,B ∈ GL2(Z) are conjugate only
if they share determinant and trace, but that is not sufficient.

For instance, it is easy to check that(
3 10
1 3

)
is not conjugate to (

3 5
2 3

)
.



A third invariant is needed, and this may be described in several
ways:

I as an element of the ideal class group of the splitting field of
the characteristic polynomial (Latimer & MacDuffee, 1933;
extends to d-torus);

I as intersection information on images of closed curves ≡
binary quadratic forms (Adler, Tresser, Worfolk, 1997; specific
to 2-torus);

I as a rotation number (Adler, Tresser, Worfolk, 1997; specific
to 2-torus).

This equivalence also has a local version (Baake, Roberts, Weiss,
2008) specific to the 2-torus.



Topological conjugacy

Example: Let G and H be finite groups, and consider the shift
automorphisms on the compact groups GZ and HZ.

Then topological conjugacy ⇐⇒ |G | = |H|.
That is, all structure of the alphabet group is lost under
topological conjugacy.

So on zero-dimensional groups, topological conjugacy has large
equivalence classes.



On connected groups, the opposite happens: the topological
structure is ‘rigid’.

Example: Assume that we have a topological conjugacy of toral
automorphisms,

Td A−−−−→ Td

φ

y yφ
Te −−−−→

B
Te

We must have d = e as dimension is a topological invariant, but
much more is true.



Apply π1(·) to linearize

Zd A−−−−→ Zd

π1(φ)

y yπ1(φ)
Zd −−−−→

B
Zd

This means that A and B must be conjugate in the group GLd(Z)
– algebraic isomorphism.



More is true: using Čech homology with coefficients in T gives the
same result for automorphisms of solenoids (projective limits of
tori).

In fact much more is true: the conjugacy φ itself must be a linear
automorphism composed with rotation by a fixed point (Adler &
Palais, 1965 for tori; Clark & Fokkink for solenoids).



The topological structure is surprisingly subtle. An obvious
topological invariant to use is the dynamical zeta function,

ζT (z) = exp
∑
n>1

zn

n
|{g ∈ G | T ng = g}|.

On zero-dimensional groups we again discern very little from this
topological invariant. For the shift automorphism S on GZ, we
have ζS(z) = 1

1−|G |z .

On connected groups we expect to do better, but life is not so
simple.

Example: There are uncountably many topologically distinct
1-dimensional solenoidal automorphisms with zeta function 1−z

1−2z
(Miles).

The point is that Q has many different subgroups.



Measurable isomorphism
This is an opaque equivalence because only the measurable
structure is preserved – and any infinite compact abelian metric
group is measurably isomorphic to T.

Theorem: If T is ergodic, then T is measurably isomorphic to a
Bernoulli shift (Katznelson, Lind, Miles & Thomas, Aoki).

That is, there is a countable partition ξ of G into measurable
subsets so that:

1. ξ generates under T (the smallest T -invariant σ-algebra
containing ξ is B);and

2. ξ is independent under T : for any n1 < n2 < · · · < nk+1 we
have

T n1ξ ∨ · · · ∨ T nk ξ ⊥ T nk+1ξ.

Equivalently, T is measurably the same as a fair coin toss, or the
shift map S on AZ where A is the index set of ξ, with measure
being the IID measure given on each coordinate by the probability
vector (m(Ba))a∈A, where ξ = {Ba | a ∈ A}.



A deep fact is that the Bernoulli shifts are classified in terms of
their entropy:

h(S) = −
∑
a∈A

m(Ba) logm(Ba).

Theorem: Two Bernoulli shifts of the same entropy are
measurably isomorphic (Ornstein).

Unfortunately this does not help as much as we might expect – it
tells us that G/∼ for measurable isomorphism embeds into R>0,
but it does not tell us more than that.

There is a Bernoulli shift for any given positive entropy – but is
there a group automorphism?

Definition: The entropy of a group automorphism T is the rate of
decay of volume of a Bowen-Dinaburg ball:

h(T ) = lim
ε↘0

lim
n→∞

−1

n
logm

(
n−1⋂
i=0

T−iBε(0)

)
.

This coincides with the entropy of the Bernoulli shift it is
isomorphic to.



Yuvinzkii’s formula

Imagine a toral automorphism has eigenvalues λi with

|λ1| 6 · · · 6 |λs | 6 1 < |λs+1| 6 · · · 6 |λd |.

Then we think
⋂n−1

i=0 Bε(0) will have Haar volume

Cεd

(
d∏

i=s+1

|λi |

)−(n−1)
.

So we expect

h(T ) =
d∑

i=s+1

log |λi | =
d∑

i=1

log+ |λi |



... which can be written

h(T ) =

∫ 1

0
log |f (e2πit)|dt

(by Jensen’s theorem), the Mahler measure m(f ) of f , the
characteristic polynomial.

This is really a localization or linearization, and adeles can be used
to make a similar calculation for solenoids.

Theorem: In general, h(T ) = log k + A, where k ∈ N ∪ {∞} and
A lies in the closure of the set {m(f ) | m(f ) > 0} (Yuzvinskii).

Lehmer’s problem: Is

inf{m(f ) | m(f ) > 0} > 0?

If the answer is yes, then G/∼ is countable.

If the answer is no, then entropy defines a bijection G/∼−→ R>0.



Seeking continua...

Perturbations don’t exist, Lehmer’s problem is difficult, so are
there continua at all? Or is G inherently granular (discrete)?

Theorem: For any C ∈ [0,∞] there is a compact group
automorphism T : X → X with

1

n
log |{x ∈ X | T nx = x}| → C

as n→∞.

So the invariant ‘logarithmic growth rate of periodic points if it
exists’ has [0,∞] as a fibre.

But: the examples are zero-dimensional (not too bad), non-ergodic
(this is really cheating), and quite baffling (the construction uses
Linnik’s theorem on appearance of primes in arithmetic
progressions).



We don’t understand if the exponential growth rate of periodic
points on connected groups exhibits a continuum, and this is
probably a disguised form of Lehmer’s problem.

With more smoothing we can do better. Let

MT (N) =
∑
|τ |6N

1

eh|τ |
,

where |τ | denotes length of a closed orbit τ , and h is topological
entropy.



Paradigm: For T : x 7→ 2x mod 1 (not quite an automorphism,
but a handy example), we have:

I 2n − 1 points fixed by T n and topological entropy log 2;

I hence 2n/n + O(2n/2) closed orbits of length n;

I hence MT (N) is more or less
∑

n6N
2n/n
2n ∼ logN.



It turns out that many group automorphisms have

MT (N) ∼ κ logN

(and in some cases more refined asymptotics are also known).
Baier, Jaidee, Stephens, Ward find some continua.

Theorem: For any κ ∈ (0, 1) there is an ergodic compact
connected group automorphism T : X → X
with MT (N) ∼ κ logN.

Theorem: For any r ∈ N and κ > 0 there is an ergodic compact
connected group automorphism T : X → X
with MT (N) ∼ κ(log logN)r .

Theorem: For any δ ∈ (0, 1) and k > 0 there is an ergodic
compact connected group automorphism T : X → X
with MT (N) ∼ k(logN)δ.



Constructions in 1-solenoids

The simplest connected groups are the one-dimensional solenoids,
which are in 1-to-1 correspondence with subgroups of Q. These
are easy to describe (unlike the subgroups of Q2).

The simplest of these are the subrings: take S a set of primes, and
(say) the map x 7→ 2x on

{r = a
b | p|b =⇒ p ∈ S}.

Dualizing gives a group endomorphism with

|{x ∈ X | T nx = x}| = (2n − 1)
∏
p∈S
|2n − 1|p.

So the construction boils down to statements about sets of primes.



The wider picture

Replacing a single automorphism with a Γ action T produces even
more rigid systems because the conjugacies are having to
intertwine more maps.

Entirely new phenomena emerge, for example abelian measurable
rigidity.



Theorem: For d > 2, any measurable isomorphism between
expansive, mixing, irreducible (closed invariant sets are finite)
Zd -actions by automorphisms is an affine map (Kitchens &
Schmidt; Katok & Spatzier).

Example: There exist mixing Z8-actions by automorphisms that do
not exhibit this rigidity (Bhattacharya). (They are not irreducible)

Some old phenomena survive, for example topological rigidity.

Theorem: For Zd -actions by automorphisms (d > 1) of compact
connected groups which are mixing and satisfy a descending chain
condition on closed invariant subgroups, any equivariant
continuous map must be affine (topological rigidity) if and only if
the entropy of the target system is finite.


