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Standard Borel Spaces

Definition

A topological space (X , τ) is called a Polish space if it is separable and
completely metrizable.

A measurable space (X ,Ω) is called a standard Borel space if Ω is the Borel
σ-algebra B(τ) of some Polish topology τ on X .

E.g. R, [0, 1], 2ω, ωω,[0, 1]ω

Definition
Let X ,Y be standard Borel spaces.

A map ϕ : X → Y is called Borel if it is measurable, i.e. f −1[B] is Borel for
all Borel subsets B ⊆ Y .

Equivalently, ϕ : X → Y is Borel if graph(ϕ) is a Borel subset of X × Y
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Polish Spaces vs. Standard Borel Spaces

Theorem
A subspace S of a Polish space X is Polish if and only if it is a Gδ subset of X .

This means that we cannot pass to some arbitrary subspace if we want to keep
the induced topology same and Polish. On the other hand:

Theorem

Let (X , τ) be a Polish space and S ⊆ X be any Borel subset. Then there exists a
Polish topology τS ⊇ τ on X such that B(τS) = B(τ) and S is clopen in τS .

Corollary

If (X ,B) is a standard Borel space and Y ∈ B, then (Y ,B � Y ) is a standard
Borel space.
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The Borel Isomorphism Theorem

Definition

Two standard Borel spaces (X ,Ω1) and (Y ,Ω2) are called isomorphic if there
exists a bimeasurable bijection between X and Y .

A bimeasurable version of Schroder-Bernstein theorem holds for standard Borel
spaces. For any uncountable standard Borel space X , by embedding 2ω into X , X
into [0, 1]ω and [0, 1]ω into 2ω in a bimeasurable way, we have:

Theorem (Kuratowski)

Any two uncountable standard Borel spaces are isomorphic.
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Coding countably infinite first-order structures into Polish
spaces

Let L = {Ri : i ∈ I} be a countable language where Ri is an ni -ary relation symbol
and let XL =

∏
i∈I 2ω

ni . Then XL is a Polish space elements of which code
L-structures with universe ω as follows. For any x = (xi )i∈I ∈ XL, the structure

Mx = (ω, {Rx
i }i∈I )

represented by x is defined by:

Rx
i (k1, ..., kni )⇔ xi (k1, ..., kni ) = 1

Example

If we let L consist of a single binary relation E , then the Polish space 2ω×ω codes
the space of countable graphs with underlying set ω. For any such ”graph”
x ∈ 2ω×ω, there is an edge between the vertices i and j if and only if x(i , j) = 1
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Coding countably infinite first-order structures into Polish
spaces

Remark

If we consider the infinite symmetric group Sym(ω) as a subspace of the Baire
space ωω, it becomes a Polish group with a natural Borel action on XL. Then
x , y ∈ XL are in the same Sym(ω)-orbit if and only if Mx

∼= My .

Given any Lω1,ω sentence ψ, the class of all structures with underlying set ω that
models ψ, Mod(ψ) = {x ∈ XL : Mx |= ψ} is an isomorphism-invariant Borel
subset of XL.

Example

Let L consist of a single ternary relation. If we associate any countable group
(ω, ·) with the characteristic function of · ⊆ ω × ω × ω, then the class of
countable groups, being axiomatized by a Lω1,ω-sentence, is a Borel subset of XL
and thus itself is a standard Borel space.
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The Isomorphism Relation on Mod(ψ)

The isomorphism relation on Mod(ψ) is given by

x ∼= y ⇔ ∃g ∈ Sym(ω) g · x = y

and is an analytic equivalence relation being the projection of graph of a Borel
action, and need not be Borel in general.

Example (Mekler)

The isomorphism relation on the space of countable groups ∼=G is not Borel.

On the other hand, for the structures that are of ”finite rank” in a broad sense,
the isomorphism relation is a Borel relation. E.g. Finitely generated groups, finite
rank torsion-free abelian groups, connected locally finite graphs,...
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An example from topological dynamics

Fix some n ≥ 2.

Definition

A closed infinite subset S of the Cantor space nZ is called a subshift if it is
invariant under the shift operator (σ(x))(k) = x(k + 1).

Two subshifts S and T are called topologically conjugate if there exists a
homeomorphism ψ : S → T such that ψ ◦ σ = σ ◦ ψ
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Standard Borel Space of Subshifts

Definition

Let X be a Polish space and K (X ) be the set of all non-empty compact subsets of
X . Then the Vietoris topology on K (X ) generated by the sets
{K ∈ K (X ) : K ⊆ U} and {K ∈ K (X ) : K ∩ U 6= ∅} for U open in X is a Polish
topology. If d is a complete metric on X inducing its Polish topology, then the
Hausdorff metric

δH(K , L) = max{maxx∈Kd(x , L),maxx∈Ld(x ,K )}

is a compatible metric for the Vietoris topology.

Theorem

The collection Sn of subshifts of nZ is a Borel subset of K (nZ), and hence is a
standard Borel space and the topological conjugacy relation on it is a Borel
equivalence relation.
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Borel Equivalence Relations

Definition

Let X be a standard Borel space. An equivalence relation E ⊆ X 2 is called
Borel if it is a Borel subset of X × X . A Borel equivalence relation is called
countable if every E -equivalence class is countable.

Let G be a Polish group. A standard Borel G -space is a standard Borel space
X equipped with a Borel G -action. The corresponding orbit equivalence
relation is denoted by EX

G .

Example

Let G be a countable group endowed with discrete topology and X be a standard
Borel G -space. Then, EX

G is a countable Borel equivalence relation.
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Borel Reducibility

Definition
Let E ,F be Borel equivalence relations on standard Borel spaces X and Y
respectively.

We say E is Borel reducible to F , denoted by E ≤B F , if there exists a Borel
map f : X → Y such that for all x , y ∈ X

x E y ⇔ f (x) F f (y)

In this case, f is said to be a reduction from E to F.

E ∼B F if both E ≤B F and F ≤B E .

E<BF if E ≤B F but F �B E .

If E is Borel reducible to F , then the classification with respect to E is, intuitively
speaking, no harder than the classification with respect to F . The intuition behind
the requirement that f is Borel is that Borel maps are thought as ”explicit
computations”.
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Climbing up in the hierarchy of ≤B

Theorem (Silver)

Let E be a Borel equivalence relation on a standard Borel space. Then either
E ≤B ∆ω or ∆2ω ≤B E .

Definition
A Borel equivalence relation E is called smooth if E ≤B ∆X for some
(equivalently every) uncountable standard Borel space X .

Example

Let ∼=ψ denote the isomorphism relation on the standard Borel space of countable
divisible abelian groups. Any countable divisible abelian group G can be written
as (⊕i∈r0(G)Q)⊕ (⊕p∈P ⊕j∈rp(G) Z[p∞]) where 0 ≤ r0(G ), rp(G ) ≤ ω and these
ranks determine G up to isomorphism. Then, the Borel map
f (G ) = (r0(G ), r2(G ), r3(G ), ...) witnesses the fact that ∼=ψ is smooth.
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Examples of non-smooth Borel equivalence relation

Example

Let E0 be the countable Borel equivalence relation on 2ω defined by:

x E0 y ⇔ ∃n ∀m ≥ n x(m) = y(m)

Assume that there is a Borel reduction f : 2ω → [0, 1] from E0 to ∆[0,1]. If we
endow 2ω with its usual product probability measure, then both f −1[0, 1/2] and
f −1[1/2, 1] are Borel tail events, and one of them has to have measure 1 by
Kolmogorov 0-1 law. Continuing in this manner, we see that f is constant almost
everywhere, which is a contradiction.

It turns out that E0 is the immediate successor of ∆2ω with respect to ≤B

Theorem (Harrington-Kechris-Louveau)

Let E be a Borel equivalence relation on a standard Borel space. Then either
E ≤B ∆2ω or E0 ≤B E .
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The Feldman-Moore Theorem

Recall that any countable discrete group G acting a standard Borel G -space
induces a countable Borel equivalence relation as its orbit equivalence relation.
Remarkably, the converse of this is also true:

Theorem (Feldman-Moore)

Let E be a countable Borel equivalence relation on a standard Borel space X .
Then, there exists a countable discrete group G and a Borel G -action on X such
that E = EX

G . Moreover, G can be chosen such that

x E y ⇔ ∃g ∈ G g2 = 1 ∧ g · x = y

An important consequence of this theorem is that, up to ∼B , there is a
≤B -maximal element for countable Borel equivalence relations.

Theorem (Dougherty-Jackson-Kechris)

There exists a universal countable Borel equivalence relation Eω, i.e. for all
countable Borel equivalence relations E we have E ≤B Eω.

Burak Kaya (Rutgers University) MSFAU Math Department 8 January 2015 14 / 31



Examples of universal countable Borel equivalence relations

Let F2 be the free group on two generators and E∞ be the orbit equivalence
relation of the Borel action of F2 on 2F2 defined by (g · x)(h) = x(g−1h).

Theorem (Dougherty-Jackson-Kechris)

E∞ is a universal countable Borel equivalence relation.

Theorem (Clemens, 2009)

Topological conjugacy on the space of subshifts Sn is a universal countable Borel
equivalence relation.

Theorem (Thomas-Velickovic, 1998)

The isomorphism relation on the space of finitely generated groups Gfg is a
universal countable Borel equivalence relation.
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Cantor Minimal Systems

Definition

Let (X ,T ) be a Cantor topological dynamical system, i.e. X is a Cantor set and
T : X → X is a homeomorphism. (X ,T ) is called a Cantor minimal system if X
has no non-empty closed T -invariant proper subsets.

Definition

A point x ∈ X is called almost periodic (or uniformly recurrent) if for every open
neighborhood U of x , the set R = {i ∈ Z : T i (x) ∈ U} of returning times has
bounded gaps, i.e. there exists l ≥ 1 such that for all n ∈ Z,
R ∩ {n, n + 1, ..., n + l} 6= ∅.

Remark

X is minimal if and only if X is the orbit closure Ō(x) = {T n(x) : n ∈ Z} of some
almost periodic point x , in which case every point is almost periodic.
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Topological Full Groups of Cantor Minimal Systems

Definition

Let (X ,T ) be a Cantor minimal system. The topological full group [[TX ]] is the
group of homeomorphisms π : X → X such that there exists a clopen partition
X = C1 t C2 t ... t Cm and n1, n2, ..., nm ∈ Z such that π � Ci = T ni � Ci for all
1 ≤ i ≤ m.

Definition

Let (X ,T ) and (Y ,S) be Cantor minimal systems. (X ,T ) and (Y ,S) are
topologically conjugate if there exists a homeomorphism π : X → Y such that
π ◦ T = S ◦ π. (X ,T ) and (Y ,S) are said to be flip conjugate if (X ,T ) is
topologically conjugate to either (Y ,S) or (Y ,S−1).
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Topological Full Groups of Cantor Minimal Systems

Theorem (Giordano-Putnam-Skau and Bezuglyi-Medynets)

Let (X ,T ) and (Y ,S) be Cantor minimal systems. The following are equivalent:
• (X ,T ) and (Y ,S) are flip conjugate.
• [[TX ]] and [[SY ]] are isomorphic.
• [[TX ]]′ and [[SY ]]′ are isomorphic.

Combining the work of Matui and Juschenko-Monod on topological full groups,
we have the following theorem:

Theorem

If (X ,T ) is topologically conjugate to a minimal subshift over a finite alphabet,
then [[TX ]]′ is an infinite finitely generated simple amenable group.
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Back to the space of finitely generated groups

Theorem (Thomas, 2012)

The isomorphism relations on the space of finitely generated simple groups and
finitely generated amenable groups are not smooth.

The idea is to construct a Borel reduction from flip conjugacy on minimal
subshifts to isomorphism on finitely generated simple amenable groups and then
to show that flip conjugacy on minimal subshifts is not smooth. It follows from
the Feldman-Moore theorem that if E ⊆ F are countable Borel relations and E is
not smooth, then F is not smooth. Hence, it is sufficient to prove that topological
conjugacy on minimal subshifts is not smooth.
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Toeplitz Sequences

Definition

An element α ∈ nZ is called a Toeplitz sequence if for all i ∈ Z there exists
j ∈ N+ such that α(i + kj) = α(i) for all k ∈ Z. Equivalently, Toeplitz sequences
are those in which every block appears periodically.

Example

Let ∗ denote the blank symbol. Construct a sequence of bisequences over n ∪ {∗}
inductively as follows:
- Start with the bisequence with constant value *.
- At the k-th stage of the construction, periodically fill one hole that is not yet
filled in each interval [m2k , (m + 1)2k).
- Alternate the symbol to be used every stage.
- Alternate the relative position of the hole to be filled every stage, that is, if the
hole to be filled is chosen from the left half of the interval at stage k, then the
hole to be filled at the (k + 1)-th stage will be chosen from the right half of the
corresponding interval.
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Toeplitz Sequences

Example (Continued)

The bisequence obtained by taking the limit of the following bisequences will be a
Toeplitz sequence.
...*********************************************************...
...0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0...
...0*010*010*010*010*010*010*010*010*010*010*010*010*010*010...
...00010*0100010*0100010*0100010*0100010*0100010*0100010*010...
...0001010100010*010001010100010*010001010100010*01000101010...
...0001010100010*0100010101000100010001010100010*01000101010... and so
on.

Conversely, every Toeplitz sequence can be imagined to be obtained by such a
recursive construction where one chooses a period length k at each stage and
periodically fill some of the holes not yet filled in each interval [mk , (m + 1)k) in
such a way that every blank symbol is filled at some stage of the construction.
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Toeplitz Sequences

To each Toeplitz sequence α ∈ nZ, we will associate the following objects. For
each p ∈ N+,

Definition

For each symbol a ∈ n, set Perp(α, a) = {i ∈ Z : ∀l ∈ Z α(i + pl) = a}
The p-periodic parts of α is defined to be the set of indices

Perp(α) =
⋃
a∈n

Perp(α, a) = {i ∈ Z : ∀l ∈ Z α(i) = α(i + pl)}

The sequence obtained from α by replacing α(i) with a new blank symbol *
for each i /∈ Perp(α) will be called the p-skeleton of α.

The p-symbols of α is the set of blocks Wp(α) = {α[ip, (i + 1)p) : i ∈ Z}
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Toeplitz Sequences

Definition

A positive integer p ∈ N+ is an essential period of α if Perp(α) 6= ∅ and for all
q<p we have Perp(α) 6= Perq(α). Equivalently, p is an essential period of α if and
only if p-skeleton of α is not periodic with any smaller period.

Definition

A period structure for a non-periodic Toeplitz sequence α ∈ nZ is an increasing
sequence (pi )i∈N of natural numbers such that:

For all i ∈ N, pi is an essential period of α and pi |pi+1,⋃
i∈N Perpi (α) = Z
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Toeplitz Subshifts

Any Toeplitz sequence α ∈ nZ is almost periodic in the closure of its orbit under
the shift transformation since all of its subblocks are periodic. Thus its shift orbit
closure Ō(α) is a minimal subshift. We shall call these minimal subshifts
Toeplitz subshifts (or Toeplitz flows).

Remark
The class of Toeplitz subshifts Tn over the alphabet n is a Borel subset of the
standard Borel space of minimal subshifts Mn and hence is itself a standard Borel
space. Similarly, we can form the standard Borel space T p

n of pointed Toeplitz
subshifts {(O, α) : O is a Toeplitz subshift & α ∈ O & α is a Toeplitz sequence}.

We can define a stronger notion of isomorphism on the space of pointed Toeplitz
flows as follows: Two pointed Toeplitz flows (O, α) and (O ′, β) are said to be
pointed topologically conjugate if there exists a topological conjugacy π : O → O ′

such that π(α) = β.
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Scale of a Toeplitz flow

For any sequence (ui )i∈N of natural numbers, define
∏

((ui )i∈N) to be the formal
product u =

∏
i∈N+ p

ki
i where pi is the i-th prime number and ki ∈ N ∪ {∞} such

that
ki = sup{j ∈ N : ∃m ∈ N pji |um}

If α ∈ nZ is a non-periodic Toeplitz sequence and (ui )i∈N is a period structure of
α, we will refer to the supernatural number

∏
((ui )i∈N) as the scale of α and

(ui )i∈N will be called a factorization of the scale
∏

((ui )i∈N).

Remark
The scale of a Toeplitz sequence α does not depend on the choice of its period
structure and any two Toeplitz sequences in the same Toeplitz flow give the same
scale. Topologically conjugate Toeplitz flows have the same scale. However, not
all the flows having the same scale are isomorphic.
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Complexity of Topological Conjugacy and Pointed
Topological Conjugacy on Toeplitz Flows

Let Etc and Eptc denote the topological conjugacy and pointed topological
conjugacy relations on the standard Borel spaces Tn and T p

n respectively. It
follows from the Curtis-Lyndon-Hedlund Theorem that Etc and Eptc are countable
Borel equivalence relations.

Theorem (Thomas, 2012)

Etc and Eptc are not smooth, i.e. E0 ≤B Etc and E0 ≤B Eptc .

Corollary

Flip conjugacy on the space of minimal subshifts is not smooth and hence the
isomorphism relation on the space of infinite finitely generated simple amenable
groups is not smooth.
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Complexity of Topological Conjugacy and Pointed
Topological Conjugacy on Toeplitz Flows

Theorem (Downarowicz-Kwiatkowski-Lacroix, 1995)

Let (O1, α) and (O2, β) be pointed Toeplitz flows with common scale where α
and β are Toeplitz sequences and let (rt)t∈N be a factorization of their common
scale. Then, (O1, α) and (O2, β) are pointed topologically conjugate if and only if
there exist t ∈ N and a bijective function Γ : Wrt (α)→Wrt (β) such that
β[krt , (k + 1)rt) = Γ(α[krt , (k + 1)rt)) for all k ∈ Z.

Using this criterion, for each scale, one can construct a countable locally finite
group action inducing the pointed topological conjugacy relation for the flows
having that scale and it follows that

Theorem (K.)

Eptc ∼B E0.
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From Topological Conjugacy to Pointed Topological
Conjugacy

Does there exist a Borel way to choose a Toeplitz sequence from each Toeplitz
flow?

Theorem

There exists a Borel map f : Tn → nZ such that f (O) ∈ O is a Toeplitz sequence.

Is it possible to do this in an isomorphism invariant way? If there exists a Borel
map f : Tn → nZ such that O ∼= O ′ implies (O, f (O)) ∼= (O ′, f (O ′)), then
obviously Etc ≤B Eptc ≤B E0.

Conjecture (Common Sense)

There does not exist a Borel map f : Tn → nZ such that O ∼= O ′ implies
(O, f (O)) ∼= (O ′, f (O ′)).
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Toeplitz Subshifts Admitting Single Hole Constructions

Definition

Let α ∈ nZ be an element from a Toeplitz flow O and p ∈ N+. If p is a period of
α, that is, Perp(α) 6= ∅, then let a, b ∈ N+ be the least positive integers that
satisfy

a ≤ b, [a, b] ⊆ Perp(α) and,

For all a′, b′ ∈ Z, |b − a| ≥ |b′ − a′| whenever [a′, b′] ⊆ Perp(α).

and define ηp(α) = |b − a|+ 1.

Definition
A Toeplitz flow O is said to admit a single hole construction if there exists a
period structure (ui )i∈N such that ηui (O) = ui − 1 for all i ∈ N.
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A successor to E0

Let E1 be the Borel equivalence relation on the standard Borel space (2ω)ω

defined by
xE1y ⇔ ∃m ∈ ω ∀n ≥ m xn = yn

Theorem (Kechris-Louveau)

For every Borel equivalence relation E such that E ≤B E1, either E ≤B E0 or
E ∼B E1. Moreover, E1 is not Borel reducible to any countable Borel equivalence
relation.

Hence, in order to show that a non-smooth countable Borel equivalence relation is
Borel bireducible with E0, it is sufficient to show that it is Borel reducible to E1.
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Topological Conjugacy on Toeplitz Subshifts Admitting
Single Hole Constructions

Let T ∗n be the collection of Toeplitz flows that are isomorphic to Toeplitz flows
admitting single hole constructions. It follows that T ∗n is a Borel subset of Tn. Let
E∗tc be the countable Borel equivalence relation Etc ∩ (T ∗n × T ∗n ).

Theorem (K.)

E∗tc ≤B E1.

Corollary

E∗tc ∼B E0.

Use of the Kechris-Louveau dichotomy in the proof of that E∗tc ≤B E0 seems
unavoidable. Find a Borel reduction from E∗tc to E0 on 2ω explicitly or show that
E∗tc is hyperfinite by exhibiting an increasing sequence of finite Borel equivalence
relations whose union is E∗tc .
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