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Basic definition

Definition

If X ,Y are subsets of a group G , then we denote

XY := {xy | x ∈ X , y ∈ Y } and X 2 := {x1x2 | x1, x2 ∈ X} .

If X = {x}, then we denote XY by xY and if Y = {y}, then we write
Xy instead of X{y}.
If G is an additive group, then we denote

X + Y = {x + y | x ∈ X , y ∈ Y } and 2X = {x1 + x2 | x1, x2 ∈ X} .
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in which, using some knowledge of the set of sums, we learn something
about the set of summands."
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Dilates

Subsets of Z of the form

r ∗ A := {rx : x ∈ A},

where r is a positive integer and A is a finite subset of Z, are called
r -dilates.

Minkowski sums of dilates are defined as follows:

r1 ∗ A + ...+ rs ∗ A := {r1x1 + ...+ rsxs : xi ∈ A, 1 ≤ i ≤ s}.
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These sums have been recently studied in different situations by Bukh,
Cilleruelo, Hamidoune, Plagne, Rué, Silva, Vinuesa.

In particular, they examined sums of two dilates of the form

A + r ∗ A = {a + rb | a, b ∈ A}

and solved various direct and inverse problems concerning their sizes.
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For example, it was shown by J. Cilleruelo, M. Silva, C. Vinuesa
(A sumset problem, J. Comb. Number Theory 2 (2010), no. 1, 79–89)

that

|A + 2 ∗ A| ≥ 3|A| − 2.

Moreover, they proved that if

|A + 2 ∗ A| = 3|A| − 2,

then A must be an arithmetic progression .
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Dilates

Let A is a finite subset of Z.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

|A + 2 ∗ A| ≥ 3|A| − 2.

Question

What about |A + r ∗ A| , where r ≥ 3 ?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If r ≥ 3, then |A + r ∗ A| ≥ 4|A| − 4.



Dilates

Let A is a finite subset of Z.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

|A + 2 ∗ A| ≥ 3|A| − 2.

Question

What about |A + r ∗ A| , where r ≥ 3 ?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If r ≥ 3, then |A + r ∗ A| ≥ 4|A| − 4.



Dilates

Let A is a finite subset of Z.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

|A + 2 ∗ A| ≥ 3|A| − 2.

Question

What about |A + r ∗ A| , where r ≥ 3 ?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If r ≥ 3, then |A + r ∗ A| ≥ 4|A| − 4.



Dilates

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If |A + 2 ∗ A| = 3|A| − 2, then A must be an arithmetic progression.

Question

What is the structure of the set A if |A + 2 ∗ A| < 4|A| − 4 ?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If |A + 2 ∗ A| < 4|A| − 4, |A| ≥ 3,
then A is a subset of an arithmetic progression of size ≤ 2|A| − 3.
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Useful results

Write [m, n] = {x ∈ Z | m ≤ x ≤ n} and N = {x ∈ Z | x ≥ 0}.
Let A and B finite subsets of Z.
It is well known that |A + B| ≥ |A|+ |B| − 1.
Let A = {a0 < a1 < ... < ak−1} be a finite increasing set of k integers.
By the length `(A) of A we mean the difference

`(A) := max(A)−min(A) = ak−1 − a0

between its maximal and minimal elements and

hA := `(A) + 1− |A|

denotes the number of holes in A, that is hA = | [a0, ak−1] \ A |.
Finally, if k ≥ 2, then we denote

d(A) := g .c .d .(a1 − a0, a2 − a0, ..., ak−1 − a0).
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Useful results

Theorem (V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu)

Let A and B be finite subsets of N such that 0 ∈ A ∩ B. Define

δA,B =

{
1, if `(A) = `(B),

0, if `(A) 6= `(B).

Then the following statements hold:

(i) If `(A) = max(`(A), `(B)) ≥ |A|+ |B| − 1− δA,B and d(A) = 1,
then

|A + B| ≥ |A|+ 2|B| − 2− δA,B .

(ii) If max(`(A), `(B)) ≤ |A|+ |B| − 2− δA,B , then

|A+B| ≥ (|A|+|B|−1)+max(hA, hB) = max(`(A)+|B|, `(B)+|A|).



Dilates

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If |A + 2 ∗ A| < 4|A| − 4 ,

then A is a subset of an arithmetic progression of size ≤ 2|A| − 3.
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Let A = {a0 < a1 < a2 < · · · < ak−1} ⊂ Z be a finite set of integers of
size k = |A| ≥ 1. Then the following statements hold.

(a) If 1 ≤ k ≤ 2, then |A + 2 ∗ A| = 3k − 2 and A is an arithmetic
progression of size k.

(b) If k ≥ 3, assume that |A + 2 ∗ A| = (3k − 2) + h < 4k − 4.

Then h ≥ 0, |A + 2 ∗ A| ≥ 3k − 2
and the set A is a subset of an arithmetic progression

P = {a0, a0 + d , a0 + 2d , . . . , a0 + (t − 1)d}
of size |P| bounded by |P| ≤ k + h = |A+ 2 ∗A| − 2k + 2 ≤ 2k − 3.

(c) If k ≥ 1 and |A+ 2 ∗A| = 3k − 2, then A is an arithmetic progression
A = {a0, a0 + d , a0 + 2d , . . . , a0 + (k − 1)d}.
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Proof of the Theorem - sketch

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let A = {a0 < a1 < a2 < · · · < ak−1} ⊂ Z be a finite set of integers of
size k = |A| ≥ 1. Then the following statements hold.

(a) If 1 ≤ k ≤ 2, then |A + 2 ∗ A| = 3k − 2 and A is an arithmetic
progression of size k.

Proof (a) If k = 1, then |A + 2 ∗ A| = 1 = 3k − 2 and A is an arithmetic
progression of size k.
If k = 2 and A = {a < b}, then

A + 2 ∗ A = {3a, a + 2b, b + 2a, 3b}.

Since a 6= b, it follows that |A + 2 ∗ A| = 4 = 3k − 2 and A is an
arithmetic progression of size k . The proof of (a) is complete.
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We denote

A0 = {0 = 2x0 < 2x1 < ... < 2xm−1},
A∗0 := 1

2A0 = {0 < x1 < ... < xm−1},
A1 = {2y0 + 1 < 2y1 + 1 < ... < 2yn−1 + 1}, and

A∗1 := 1
2 (A1 − 1)− y0 = {0 < y1 − y0 < y2 − y0 < ... < yn−1 − y0}.

Thus

`(A∗0) = xm−1 < ak−1 = `(A) and also `(A∗1) = yn−1− y0 < ak−1 = `(A).

The set A + 2 ∗ A is the union of two disjoint subsets A0 + 2 ∗ A ⊆ 2Z
and A1 + 2 ∗ A ⊆ 2Z + 1 and therefore

|A + 2 ∗ A| = |A0 + 2 ∗ A|+ |A1 + 2 ∗ A| = |A∗0 + A|+ |A∗1 + A|.
We continue our proof with two claims.
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Claim 1:
`(A) ≤ k + max(m, n)− 2 ≤ 2k − 3.

For the proof of Claim 1 we shall use (i) of the Theorem of V.F. Lev -
P.Y. Smelianski and Y.V. Stanchescu.

Claim 2:
|A + 2 ∗ A| ≥ (3k − 2) + hA.

Recall that hA = `(A) + 1− |A|. For the proof of Claim 2 we shall use
Claim 1 and (ii) of the Theorem of V.F. Lev - P.Y. Smelianski and Y.V.
Stanchescu.
We distinguish between two cases: m ≤ n and n < m.
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In both cases we obtain that hA, the total number of holes in the normal
set A, satisfies

0 ≤ hA ≤ |A + 2 ∗ A| − (3k − 2) =: h ≤ k − 3.

Hence
h ≥ hA ≥ 0 and |A + 2 ∗ A| ≥ (3k − 2).

Moreover, the set A is contained in the arithmetic progression

P = {a0, a0 + 1, a0 + 2, ..., ak−1} = {0, 1, 2, ..., ak−1}

of size ak−1 + 1 = k + hA ≤ k + h ≤ 2k − 3.
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It follows that Theorem (b) holds for normal sets A satisfying the
hypothesis.

Let now A be an arbitrary finite set of k = |A| ≥ 3 integers satisfying
the hypothesis. We define

B =
1

d(A)
(A− a0) = { 1

d(A)
(x − a0) : x ∈ A}.

...

//
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Small doubling property

Let G be a group and S a finite subset of G .
Let S2 = {s1s2 | s1, s2 ∈ S}.

Problem

What if the structure of S if |S2| satisfies

|S2| ≤ α|S |+ β,

for some small α ≥ 1 and small |β| ?

Definition

The subset S of G is said to satisfy the small doubling property if

|S2| ≤ α|S |+ β,

where α and β denote real numbers, α ≥ 1.
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The groups BS(m, n)

For integers m and n, the general Baumslag-Solitar group BS(m, n) is a

group with two generators a, b and one defining relation b−1amb = an:

BS(m, n) := 〈a, b | amb = ban〉.

"The Baumslag-Solitar groups are a particular class of two-generator
one-relator groups which have played a surprisingly useful role in
combinatorial and, more recently (the 1990s), geometric group theory.
In a number of situations they have provided examples which mark
boundaries between different classes of groups and they often provide a
testbed for theories and techniques."

Encyclopedia of Mathematics
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BS(m, n) = 〈a, b | amb = ban〉
These groups were introduced by Gilbert Baumslag and Donald Solitar in
1962 in order to provide some simple examples of non-Hopfian groups.

("Some two generator one-relator non-Hopfian groups", Bull. Amer.
Math. Soc., 689 (1962), 199-201).

A group is called Hopfian (or nowadays Hopf) if every epimorphism from
the group to itself is an isomorphism.

The name is derived from the topologist Heinz Hopf and is thought to
reflect the fact that whether fundamental groups of manifolds are
Hopfian is of interest.
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Hopfian groups

In the early 30’s Heinz Hopf asked whether a finitely generated group can
be isomorphic to a proper factor group of itself (whether a finitely
generated non-Hopfian group exists).

In 1944 Reinhold Baer published an example of a non-Hopfian
2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely
related non-Hopfian group.
("A two-generator group isomorphic to a proper facotor group, J. London
Math. Soc., 25 (1950), 247-248)



Hopfian groups

In the early 30’s Heinz Hopf asked whether a finitely generated group can
be isomorphic to a proper factor group of itself (whether a finitely
generated non-Hopfian group exists).

In 1944 Reinhold Baer published an example of a non-Hopfian
2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely
related non-Hopfian group.
("A two-generator group isomorphic to a proper facotor group, J. London
Math. Soc., 25 (1950), 247-248)



Hopfian groups

In the early 30’s Heinz Hopf asked whether a finitely generated group can
be isomorphic to a proper factor group of itself (whether a finitely
generated non-Hopfian group exists).

In 1944 Reinhold Baer published an example of a non-Hopfian
2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely
related non-Hopfian group.
("A two-generator group isomorphic to a proper facotor group, J. London
Math. Soc., 25 (1950), 247-248)



Hopfian groups

In the early 30’s Heinz Hopf asked whether a finitely generated group can
be isomorphic to a proper factor group of itself (whether a finitely
generated non-Hopfian group exists).

In 1944 Reinhold Baer published an example of a non-Hopfian
2-generator group but then he discovered a mistake.

B.H. Neumann in 1950 found an example of a 2-generator infinitely
related non-Hopfian group.
("A two-generator group isomorphic to a proper facotor group, J. London
Math. Soc., 25 (1950), 247-248)



Hopfian groups

Next year Graham Higman exhibited an example of a finitely presented
non-Hopfian group; more precisesely, this group was 3-generator and with
2 defining relations.
("A finitely related group with an isomorphic proper factor group, J.
London Math. Soc., 26 (1951), 59-61).

In his paper he quoted Bernhard and Hanna Neumann for a proof that
one-relator groups had to be Hopfian, but they were only trying to show
this, unsuccessfully.

Finally, in 1962, Gilbert Baumslag and Donald Solitar showed that the
group

BS(2, 3) = 〈a, b | a2b = ba3〉

is non-Hopfian.
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When BS(m, n) is a Hopfian group

More generally:
BS(m, n) = 〈a, b | amb = ban〉

is Hopfian if and only if :
(i) |m| = |n| or
(ii) |m| = 1 or
(iii) |n| = 1 or
(iv) π(m) = π(n) where π(m) denotes the set of prime divisors of m.

We shall concentrate on the Baumslag-Solitar groups

BS(1, n) = 〈a, b | ab = ban〉.

They are extensions of a copy of the additive group of n-adic rational
numbers by an infinite cyclic group. They are orderable groups.
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The groups BS(1, n) = 〈a, b | ab = ban〉

Let S be a finite subset of BS(1, n) of size k contained in the coset

br < a > for some r ≥ 0 . Then

S = {brax0 , brax1 , . . . , braxk−1},

where A = {x0, x1, . . . , xk1−1} is a subset of Z. We introduce now

the notation

S = {brax : x ∈ A} =: braA.

Thus |S | = |A|.
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Let S be a finite subset of BS(1, n) of size k contained in the coset
br < a > for some r ∈ N and let T be a finite subset of BS(1, n) of size
h contained in the coset bs < a > for some s ∈ N.

Then

S = braA , T = bsaB

for some subsets A = {x0, x1, . . . , xk−1} and B = {y0, y1, . . . , yh−1} of
Z.
From axb = banx for each x ∈ Z it follows

(brax)(bsay ) = br (axbs)ay = br (bsansx)ay = br+sansx+y .
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The groups BS(1, n) = 〈a, b | ab = ban〉

Therefore if

S = braA , T = bsaB

where A = {x0, x1, . . . , xk−1} and B = {y0, y1, . . . , yh−1} are

subsets of Z, from (brax)(bsay ) = br+sansx+y it follows

ST = br+sans∗A+B and |ST | = |ns ∗ A + B |.

In particular

S2 = b2ranr∗A+A and |S2| = |nr ∗ A + A|.
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The groups BS(1, n) = 〈a, b | ab = ban〉

Theorem

Suppose that S = braA ⊆ BS(1, n), T = bsaB ⊆ BS(1, n),

where r , s ∈ Z, r , s ≥ 0 and A,B are finite subsets of Z. Then

ST = br+sans∗A+B

and

|ST | = |ns ∗ A + B |.

In particular,

S2 = b2ranr∗A+A

and

|S2| = |nr ∗ A + A| = |A + nr ∗ A|.



The group BS(1, 2) = 〈a, b | ab = ba2〉

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If A is a finite set of integers, then |A + 2 ∗ A| ≥ 3|A| − 2 and
|A + 2 ∗ A| = 3|A| − 2 if and only if A is an arithmetic progression.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If S = baA ⊆ BS(1, 2), where A is a finite subset of Z, then

|S2| ≥ 3|S | − 2

and if |S2| = 3|S | − 2, then A is an arithmetic progression and S
is a geometric progression.
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The groups BS(1, n) = 〈a, b | ab = ban〉
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The group BS(1, 2) = 〈a, b | ab = ba2〉

Problem

What is the structure of an arbitrary subset of BS(1, 2), satisfying some
small doubling condition?

Very difficult!

Definition
Consider the submonoid

BS+(1, 2) := {bmax ∈ BS(1, 2) | x , m ∈ Z, m ≥ 0}

of BS(1, 2).
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Definition
Consider the submonoid

BS+(1, 2) = {bmax ∈ BS(1, 2) | x , m ∈ Z, m ≥ 0}

of BS(1, 2).

Remark
All elements of

BS+(1, 2)

can be uniquely represented by a word of the form bmax , which is not
the case in BS(1, 2).
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BS+(1, 2) = {bmax ∈ BS(1, 2) | x , m ∈ Z, m ≥ 0}

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of BS+(1, 2) and suppose that

|S2| < 7
2
|S | − 4.

Then

S = baA,

where A is a set of integers of size |S |, which is contained in an
arithmetic progression of size less than 3

2 |S | − 2.
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Remark

This result is best possible.

In fact, there exist non-abelian subsets S of BS+(1, 2) satisfying
|S2| = 7

2 |S | − 4, which are not contained in one coset of 〈a〉 in
BS+(1, 2).
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There exist non-abelian subsets S of BS+(1, 2) satisfying |S2| = 7
2 |S |− 4,

which are not contained in one coset of 〈a〉 in BS+(1, 2).

Example

Let

S := aA0 ∪ {b} ⊂ BS+(1, 2),

where

A0 = {0, 1, 2, ..., k − 2} and k > 2 is even.

The set S is clearly non-abelian, and it intersects non-trivially the two
distinct cosets 1〈a〉 and b〈a〉 of 〈a〉 in BS+(1, 2).
Moreover, |S2| = 7

2k − 4.
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A0 = {0, 1, 2, ..., k − 2} and k > 2 is even.

The set S is clearly non-abelian, and it intersects non-trivially the two
distinct cosets 1〈a〉 and b〈a〉 of 〈a〉 in BS+(1, 2).
Moreover, |S2| = 7
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S = aA0 ∪ {b} ⊂ BS+(1, 2), A0 = {0, 1, 2, ..., k − 2}, k > 2 even

For,

S2 = aA0aA0 ∪ baA0 ∪ aA0b ∪ {b2},
and using aA0b = ba2∗A0 , we get

S2 = aA0+A0∪(baA0∪ba2∗A0)∪{b2} = aA0+A0∪baA0∪2∗A0∪{b2}.

Since

aA0+A0 ⊆ aZ, baA0∪2∗A0 ⊆ baZ, {b2} ⊆ b2aZ,

it follows that the three components of S2 are disjoint in pairs and hence

|S2| = |A0 + A0|+ |A0 ∪ 2 ∗ A0|+ 1 =

(2k − 3) + (
3
2
k − 2) + 1 =

7
2
k − 4.
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Theorem - sketch of the Proof

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of BS+(1, 2) and suppose that
|S2| < 7

2 |S | − 4. Then S = baA, where A is a set of integers of size |S |,
which is contained in an arithmetic progression of size less than 3

2 |S | − 2.

Write

S = S0 ∪ S1 ∪ ... ∪ St ,

where t ≥ 0,
Si = bmi aAi ⊆ bmi aZ,

0 ≤ m0 < m1 < ... < mt ,

and

ki = |Si | = |Ai | ≥ 1.
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S = S0 ∪ S1 ∪ ... ∪ St , t ≥ 0 , Si = bmiaAi , 0 ≤ m0 < m1 < ... < mt

Lemma (1)

Let S ⊆ BS+(1, 2) be a finite set of size k = |S |. Suppose that t ≥ 1
and there is 0 ≤ j ≤ t such that kj = |Sj | ≥ 2. Then S generates a
non-abelian group.

Proof. If j = 0 and m0 = 0, then k0 = |S0| = |A0| ≥ 2 implies that
S0 6= {1} and A0 6= {0}. Since t ≥ 1, it follows that there are three
integers m, x , z such that m ≥ 1, x 6= 0, ax ∈ S0 and bmaz ∈ S1. In this
case

ax(bmaz) = bmaz+2mx 6= (bmaz)ax = bmaz+x

and therefore S generates a non-abelian group.
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t ≥ 1 and there is 0 ≤ j ≤ t such that kj = |Sj | ≥ 2

It remains to examine the following two cases:

(i) j ≥ 1.
(ii) j = 0 and m0 ≥ 1.
If j ≥ 1, then mj ≥ 1 and kj = |Sj | = |bmj aAj | ≥ 2 implies that |Aj | ≥ 2.
On the other hand, if j = 0 and m0 ≥ 1, then k0 = |S0| = |bm0aA0 | ≥ 2
implies that |A0| ≥ 2. In both cases, let m = mj . Then m ≥ 1 and there
are two integers x 6= y such that {bmax , bmay} ⊆ Sj . We conclude that

(bmax)(bmay ) = b2may+2mx 6= (bmay )(bmax) = b2max+2my ,

since x 6= y and m ≥ 1. The proof of Lemma is complete. //
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S = S0 ∪ S1 ∪ ... ∪ St , t ≥ 0 , Si = bmiaAi , 0 ≤ m0 < m1 < ... < mt

Let S ⊆ BS+(1, 2) be a finite set of size k = |S |.

Lemma (2)

Suppose that t = 1. Then |S2| ≥ 7
2 |S | − 4.

Lemma (3)

Suppose that t ≥ 2. If k0 = |S0| ≥ 2 and ki = |Si | = 1 for every
1 ≤ i ≤ t, then |S2| ≥ 4k − 5 > 7

2 |S | − 4 and the inequality is tight.

Lemma (4)

Suppose that t ≥ 2. If kt = |St | ≥ 2 and ki = |Si | = 1 for every
0 ≤ i ≤ t − 1, then |S2| ≥ 4k − 5 > 7

2 |S | − 4 and the inequality is
tight.

...
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