Dersler 
//
Matematik Bölümü 
//
Mimar Sinan Güzel Sanatlar Üniversitesi
MAT 383
Özel Fonksiyonlar I
- 
 - 
3 Saat/Hafta, Teori, 3 Kredi, 5 AKTS
 - 
Amaç/İçerik:
 - 
Fourier serileri, Çift ve tek fonksiyonlar için Fourier serileri (Kosinüs ve Sinüs Serileri), Kompleks Fourier serileri. Özdeğer ve Özfonksiyonlar, Sturm-Liouville sistemleri, Değişkenlerine ayırma metodu, Titreşen tel problemi, Isı iletimi Problemi.
 - 
Ön Koşul:
 - 
Yok
 - 
Değerlendirme Yöntemleri:
 - 
1 Ara sınav, 1 Yarıyıl sonu  sınavı
 - 
Önerilen Kaynak Listesi:
 - 
Tyn Myint-u, Partial Differential Equations of Mathematical Physics
W. E.Boyce, R. C.Diprima, Elementary Differential Equations and Boundary Value Problems
N. H.Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems
Shepley L.Ross, Differential Equations
Richard Haberman, Elementary Applied Partial Differential Equations.
 
 
Special Functions I
- 
 - 
3 hrs/week, Theory   , 3 credits, ECTS 5
 - 
Objective:
 - 
Fourier Series, Cosine and Sine Series,Complex  Fourier Series, Change of Interval, Sturm-Liouville Systems, Eigenvalues and Eigenfunctions, Eigen Function Expansions, Completeness and Parseval's Equality, Method of Separation of variables. The Vibrating String Problem, The Heat Conduction Problem.
 - 
Prerequisite:
 - 
None
 - 
Assessment Methods:
 - 
1 Midterm, 1 Final exam
 - 
Recommended text:
 - 
Tyn Myint-u, Partial Differential Equations of Mathematical Physics
W. E.Boyce, R. C.Diprima, Elementary Differential Equations and Boundary Value Problems
N. H.Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems
Shepley L.Ross, Differential Equations
Richard Haberman, Elementary Applied Partial Differential Equations.
 
 
 
Son değişiklik: Wednesday, 25 January 2012, 13:29:29 EET